RegAllocFast.cpp
50.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This register allocator allocates registers to a basic block at a
/// time, attempting to keep values in registers and reusing registers as
/// appropriate.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Metadata.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumStores, "Number of stores added");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumCoalesced, "Number of copies coalesced");
// FIXME: Remove this switch when all testcases are fixed!
static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
cl::Hidden);
static RegisterRegAlloc
fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
namespace {
class RegAllocFast : public MachineFunctionPass {
public:
static char ID;
RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
private:
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
RegisterClassInfo RegClassInfo;
/// Basic block currently being allocated.
MachineBasicBlock *MBB;
/// Maps virtual regs to the frame index where these values are spilled.
IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
/// Everything we know about a live virtual register.
struct LiveReg {
MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
Register VirtReg; ///< Virtual register number.
MCPhysReg PhysReg = 0; ///< Currently held here.
bool LiveOut = false; ///< Register is possibly live out.
bool Reloaded = false; ///< Register was reloaded.
bool Error = false; ///< Could not allocate.
explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
unsigned getSparseSetIndex() const {
return Register::virtReg2Index(VirtReg);
}
};
using LiveRegMap = SparseSet<LiveReg>;
/// This map contains entries for each virtual register that is currently
/// available in a physical register.
LiveRegMap LiveVirtRegs;
DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
/// List of DBG_VALUE that we encountered without the vreg being assigned
/// because they were placed after the last use of the vreg.
DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
/// Has a bit set for every virtual register for which it was determined
/// that it is alive across blocks.
BitVector MayLiveAcrossBlocks;
/// State of a register unit.
enum RegUnitState {
/// A free register is not currently in use and can be allocated
/// immediately without checking aliases.
regFree,
/// A pre-assigned register has been assigned before register allocation
/// (e.g., setting up a call parameter).
regPreAssigned,
/// Used temporarily in reloadAtBegin() to mark register units that are
/// live-in to the basic block.
regLiveIn,
/// A register state may also be a virtual register number, indication
/// that the physical register is currently allocated to a virtual
/// register. In that case, LiveVirtRegs contains the inverse mapping.
};
/// Maps each physical register to a RegUnitState enum or virtual register.
std::vector<unsigned> RegUnitStates;
SmallVector<MachineInstr *, 32> Coalesced;
using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
/// Set of register units that are used in the current instruction, and so
/// cannot be allocated.
RegUnitSet UsedInInstr;
RegUnitSet PhysRegUses;
SmallVector<uint16_t, 8> DefOperandIndexes;
void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
bool isPhysRegFree(MCPhysReg PhysReg) const;
/// Mark a physreg as used in this instruction.
void markRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
UsedInInstr.insert(*Units);
}
/// Check if a physreg or any of its aliases are used in this instruction.
bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
if (UsedInInstr.count(*Units))
return true;
if (LookAtPhysRegUses && PhysRegUses.count(*Units))
return true;
}
return false;
}
/// Mark physical register as being used in a register use operand.
/// This is only used by the special livethrough handling code.
void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
PhysRegUses.insert(*Units);
}
/// Remove mark of physical register being used in the instruction.
void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
UsedInInstr.erase(*Units);
}
enum : unsigned {
spillClean = 50,
spillDirty = 100,
spillPrefBonus = 20,
spillImpossible = ~0u
};
public:
StringRef getPassName() const override { return "Fast Register Allocator"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
MachineFunctionProperties getSetProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
bool runOnMachineFunction(MachineFunction &MF) override;
void allocateBasicBlock(MachineBasicBlock &MBB);
void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
Register Reg) const;
void allocateInstruction(MachineInstr &MI);
void handleDebugValue(MachineInstr &MI);
#ifndef NDEBUG
bool verifyRegStateMapping(const LiveReg &LR) const;
#endif
bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
void freePhysReg(MCPhysReg PhysReg);
unsigned calcSpillCost(MCPhysReg PhysReg) const;
LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
}
LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
}
void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
bool LookAtPhysRegUses = false);
void allocVirtRegUndef(MachineOperand &MO);
void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
MCPhysReg Reg);
void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
Register VirtReg);
void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
bool LookAtPhysRegUses = false);
void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
MachineBasicBlock::iterator
getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
SmallSet<Register, 2> &PrologLiveIns) const;
void reloadAtBegin(MachineBasicBlock &MBB);
void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
Register traceCopies(Register VirtReg) const;
Register traceCopyChain(Register Reg) const;
int getStackSpaceFor(Register VirtReg);
void spill(MachineBasicBlock::iterator Before, Register VirtReg,
MCPhysReg AssignedReg, bool Kill, bool LiveOut);
void reload(MachineBasicBlock::iterator Before, Register VirtReg,
MCPhysReg PhysReg);
bool mayLiveOut(Register VirtReg);
bool mayLiveIn(Register VirtReg);
void dumpState() const;
};
} // end anonymous namespace
char RegAllocFast::ID = 0;
INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
false)
void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
RegUnitStates[*UI] = NewState;
}
bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
if (RegUnitStates[*UI] != regFree)
return false;
}
return true;
}
/// This allocates space for the specified virtual register to be held on the
/// stack.
int RegAllocFast::getStackSpaceFor(Register VirtReg) {
// Find the location Reg would belong...
int SS = StackSlotForVirtReg[VirtReg];
// Already has space allocated?
if (SS != -1)
return SS;
// Allocate a new stack object for this spill location...
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
unsigned Size = TRI->getSpillSize(RC);
Align Alignment = TRI->getSpillAlign(RC);
int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
// Assign the slot.
StackSlotForVirtReg[VirtReg] = FrameIdx;
return FrameIdx;
}
static bool dominates(MachineBasicBlock &MBB,
MachineBasicBlock::const_iterator A,
MachineBasicBlock::const_iterator B) {
auto MBBEnd = MBB.end();
if (B == MBBEnd)
return true;
MachineBasicBlock::const_iterator I = MBB.begin();
for (; &*I != A && &*I != B; ++I)
;
return &*I == A;
}
/// Returns false if \p VirtReg is known to not live out of the current block.
bool RegAllocFast::mayLiveOut(Register VirtReg) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
// Cannot be live-out if there are no successors.
return !MBB->succ_empty();
}
const MachineInstr *SelfLoopDef = nullptr;
// If this block loops back to itself, it is necessary to check whether the
// use comes after the def.
if (MBB->isSuccessor(MBB)) {
SelfLoopDef = MRI->getUniqueVRegDef(VirtReg);
if (!SelfLoopDef) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
}
// See if the first \p Limit uses of the register are all in the current
// block.
static const unsigned Limit = 8;
unsigned C = 0;
for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
if (UseInst.getParent() != MBB || ++C >= Limit) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
// Cannot be live-out if there are no successors.
return !MBB->succ_empty();
}
if (SelfLoopDef) {
// Try to handle some simple cases to avoid spilling and reloading every
// value inside a self looping block.
if (SelfLoopDef == &UseInst ||
!dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return true;
}
}
}
return false;
}
/// Returns false if \p VirtReg is known to not be live into the current block.
bool RegAllocFast::mayLiveIn(Register VirtReg) {
if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
return !MBB->pred_empty();
// See if the first \p Limit def of the register are all in the current block.
static const unsigned Limit = 8;
unsigned C = 0;
for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
if (DefInst.getParent() != MBB || ++C >= Limit) {
MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
return !MBB->pred_empty();
}
}
return false;
}
/// Insert spill instruction for \p AssignedReg before \p Before. Update
/// DBG_VALUEs with \p VirtReg operands with the stack slot.
void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
<< " in " << printReg(AssignedReg, TRI));
int FI = getStackSpaceFor(VirtReg);
LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
++NumStores;
MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
// When we spill a virtual register, we will have spill instructions behind
// every definition of it, meaning we can switch all the DBG_VALUEs over
// to just reference the stack slot.
SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
for (MachineInstr *DBG : LRIDbgValues) {
MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
assert(NewDV->getParent() == MBB && "dangling parent pointer");
(void)NewDV;
LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
if (LiveOut) {
// We need to insert a DBG_VALUE at the end of the block if the spill slot
// is live out, but there is another use of the value after the
// spill. This will allow LiveDebugValues to see the correct live out
// value to propagate to the successors.
MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
MBB->insert(FirstTerm, ClonedDV);
LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
}
// Rewrite unassigned dbg_values to use the stack slot.
MachineOperand &MO = DBG->getOperand(0);
if (MO.isReg() && MO.getReg() == 0)
updateDbgValueForSpill(*DBG, FI);
}
// Now this register is spilled there is should not be any DBG_VALUE
// pointing to this register because they are all pointing to spilled value
// now.
LRIDbgValues.clear();
}
/// Insert reload instruction for \p PhysReg before \p Before.
void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
MCPhysReg PhysReg) {
LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
<< printReg(PhysReg, TRI) << '\n');
int FI = getStackSpaceFor(VirtReg);
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
++NumLoads;
}
/// Get basic block begin insertion point.
/// This is not just MBB.begin() because surprisingly we have EH_LABEL
/// instructions marking the begin of a basic block. This means we must insert
/// new instructions after such labels...
MachineBasicBlock::iterator
RegAllocFast::getMBBBeginInsertionPoint(
MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
MachineBasicBlock::iterator I = MBB.begin();
while (I != MBB.end()) {
if (I->isLabel()) {
++I;
continue;
}
// Most reloads should be inserted after prolog instructions.
if (!TII->isBasicBlockPrologue(*I))
break;
// However if a prolog instruction reads a register that needs to be
// reloaded, the reload should be inserted before the prolog.
for (MachineOperand &MO : I->operands()) {
if (MO.isReg())
PrologLiveIns.insert(MO.getReg());
}
++I;
}
return I;
}
/// Reload all currently assigned virtual registers.
void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
if (LiveVirtRegs.empty())
return;
for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
MCPhysReg Reg = P.PhysReg;
// Set state to live-in. This possibly overrides mappings to virtual
// registers but we don't care anymore at this point.
setPhysRegState(Reg, regLiveIn);
}
SmallSet<Register, 2> PrologLiveIns;
// The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
// of spilling here is deterministic, if arbitrary.
MachineBasicBlock::iterator InsertBefore
= getMBBBeginInsertionPoint(MBB, PrologLiveIns);
for (const LiveReg &LR : LiveVirtRegs) {
MCPhysReg PhysReg = LR.PhysReg;
if (PhysReg == 0)
continue;
unsigned FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
if (RegUnitStates[FirstUnit] == regLiveIn)
continue;
assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
"no reload in start block. Missing vreg def?");
if (PrologLiveIns.count(PhysReg)) {
// FIXME: Theoretically this should use an insert point skipping labels
// but I'm not sure how labels should interact with prolog instruction
// that need reloads.
reload(MBB.begin(), LR.VirtReg, PhysReg);
} else
reload(InsertBefore, LR.VirtReg, PhysReg);
}
LiveVirtRegs.clear();
}
/// Handle the direct use of a physical register. Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
assert(Register::isPhysicalRegister(Reg) && "expected physreg");
bool displacedAny = displacePhysReg(MI, Reg);
setPhysRegState(Reg, regPreAssigned);
markRegUsedInInstr(Reg);
return displacedAny;
}
bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
bool displacedAny = displacePhysReg(MI, Reg);
setPhysRegState(Reg, regPreAssigned);
return displacedAny;
}
/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
/// similar to defineVirtReg except the physreg is reserved instead of
/// allocated.
bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
bool displacedAny = false;
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
unsigned Unit = *UI;
switch (unsigned VirtReg = RegUnitStates[Unit]) {
default: {
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
MachineBasicBlock::iterator ReloadBefore =
std::next((MachineBasicBlock::iterator)MI.getIterator());
reload(ReloadBefore, VirtReg, LRI->PhysReg);
setPhysRegState(LRI->PhysReg, regFree);
LRI->PhysReg = 0;
LRI->Reloaded = true;
displacedAny = true;
break;
}
case regPreAssigned:
RegUnitStates[Unit] = regFree;
displacedAny = true;
break;
case regFree:
break;
}
}
return displacedAny;
}
void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
unsigned FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
case regFree:
LLVM_DEBUG(dbgs() << '\n');
return;
case regPreAssigned:
LLVM_DEBUG(dbgs() << '\n');
setPhysRegState(PhysReg, regFree);
return;
default: {
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
assert(LRI != LiveVirtRegs.end());
LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
setPhysRegState(LRI->PhysReg, regFree);
LRI->PhysReg = 0;
}
return;
}
}
/// Return the cost of spilling clearing out PhysReg and aliases so it is free
/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
/// disabled - it can be allocated directly.
/// \returns spillImpossible when PhysReg or an alias can't be spilled.
unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
switch (unsigned VirtReg = RegUnitStates[*UI]) {
case regFree:
break;
case regPreAssigned:
LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
<< printReg(PhysReg, TRI) << '\n');
return spillImpossible;
default: {
bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
findLiveVirtReg(VirtReg)->LiveOut;
return SureSpill ? spillClean : spillDirty;
}
}
}
return 0;
}
void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
Register VirtReg, MCPhysReg Reg) {
auto UDBGValIter = DanglingDbgValues.find(VirtReg);
if (UDBGValIter == DanglingDbgValues.end())
return;
SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
for (MachineInstr *DbgValue : Dangling) {
assert(DbgValue->isDebugValue());
MachineOperand &MO = DbgValue->getOperand(0);
if (!MO.isReg())
continue;
// Test whether the physreg survives from the definition to the DBG_VALUE.
MCPhysReg SetToReg = Reg;
unsigned Limit = 20;
for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
E = DbgValue->getIterator(); I != E; ++I) {
if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
<< '\n');
SetToReg = 0;
break;
}
}
MO.setReg(SetToReg);
if (SetToReg != 0)
MO.setIsRenamable();
}
Dangling.clear();
}
/// This method updates local state so that we know that PhysReg is the
/// proper container for VirtReg now. The physical register must not be used
/// for anything else when this is called.
void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
MCPhysReg PhysReg) {
Register VirtReg = LR.VirtReg;
LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
<< printReg(PhysReg, TRI) << '\n');
assert(LR.PhysReg == 0 && "Already assigned a physreg");
assert(PhysReg != 0 && "Trying to assign no register");
LR.PhysReg = PhysReg;
setPhysRegState(PhysReg, VirtReg);
assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
}
static bool isCoalescable(const MachineInstr &MI) {
return MI.isFullCopy();
}
Register RegAllocFast::traceCopyChain(Register Reg) const {
static const unsigned ChainLengthLimit = 3;
unsigned C = 0;
do {
if (Reg.isPhysical())
return Reg;
assert(Reg.isVirtual());
MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
if (!VRegDef || !isCoalescable(*VRegDef))
return 0;
Reg = VRegDef->getOperand(1).getReg();
} while (++C <= ChainLengthLimit);
return 0;
}
/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
/// chain of copies to check whether we reach a physical register we can
/// coalesce with.
Register RegAllocFast::traceCopies(Register VirtReg) const {
static const unsigned DefLimit = 3;
unsigned C = 0;
for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
if (isCoalescable(MI)) {
Register Reg = MI.getOperand(1).getReg();
Reg = traceCopyChain(Reg);
if (Reg.isValid())
return Reg;
}
if (++C >= DefLimit)
break;
}
return Register();
}
/// Allocates a physical register for VirtReg.
void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
Register Hint0, bool LookAtPhysRegUses) {
const Register VirtReg = LR.VirtReg;
assert(LR.PhysReg == 0);
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
<< " in class " << TRI->getRegClassName(&RC)
<< " with hint " << printReg(Hint0, TRI) << '\n');
// Take hint when possible.
if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
!isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
// Take hint if the register is currently free.
if (isPhysRegFree(Hint0)) {
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
<< '\n');
assignVirtToPhysReg(MI, LR, Hint0);
return;
} else {
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
<< " occupied\n");
}
} else {
Hint0 = Register();
}
// Try other hint.
Register Hint1 = traceCopies(VirtReg);
if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
!isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
// Take hint if the register is currently free.
if (isPhysRegFree(Hint1)) {
LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
<< '\n');
assignVirtToPhysReg(MI, LR, Hint1);
return;
} else {
LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
<< " occupied\n");
}
} else {
Hint1 = Register();
}
MCPhysReg BestReg = 0;
unsigned BestCost = spillImpossible;
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
for (MCPhysReg PhysReg : AllocationOrder) {
LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
LLVM_DEBUG(dbgs() << "already used in instr.\n");
continue;
}
unsigned Cost = calcSpillCost(PhysReg);
LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
// Immediate take a register with cost 0.
if (Cost == 0) {
assignVirtToPhysReg(MI, LR, PhysReg);
return;
}
if (PhysReg == Hint0 || PhysReg == Hint1)
Cost -= spillPrefBonus;
if (Cost < BestCost) {
BestReg = PhysReg;
BestCost = Cost;
}
}
if (!BestReg) {
// Nothing we can do: Report an error and keep going with an invalid
// allocation.
if (MI.isInlineAsm())
MI.emitError("inline assembly requires more registers than available");
else
MI.emitError("ran out of registers during register allocation");
LR.Error = true;
LR.PhysReg = 0;
return;
}
displacePhysReg(MI, BestReg);
assignVirtToPhysReg(MI, LR, BestReg);
}
void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
assert(MO.isUndef() && "expected undef use");
Register VirtReg = MO.getReg();
assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
MCPhysReg PhysReg;
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
PhysReg = LRI->PhysReg;
} else {
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
assert(!AllocationOrder.empty() && "Allocation order must not be empty");
PhysReg = AllocationOrder[0];
}
unsigned SubRegIdx = MO.getSubReg();
if (SubRegIdx != 0) {
PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
MO.setSubReg(0);
}
MO.setReg(PhysReg);
MO.setIsRenamable(true);
}
/// Variation of defineVirtReg() with special handling for livethrough regs
/// (tied or earlyclobber) that may interfere with preassigned uses.
void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
Register VirtReg) {
LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
if (LRI != LiveVirtRegs.end()) {
MCPhysReg PrevReg = LRI->PhysReg;
if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
<< " (tied/earlyclobber resolution)\n");
freePhysReg(PrevReg);
LRI->PhysReg = 0;
allocVirtReg(MI, *LRI, 0, true);
MachineBasicBlock::iterator InsertBefore =
std::next((MachineBasicBlock::iterator)MI.getIterator());
LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
<< printReg(PrevReg, TRI) << '\n');
BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
TII->get(TargetOpcode::COPY), PrevReg)
.addReg(LRI->PhysReg, llvm::RegState::Kill);
}
MachineOperand &MO = MI.getOperand(OpNum);
if (MO.getSubReg() && !MO.isUndef()) {
LRI->LastUse = &MI;
}
}
return defineVirtReg(MI, OpNum, VirtReg, true);
}
/// Allocates a register for VirtReg definition. Typically the register is
/// already assigned from a use of the virtreg, however we still need to
/// perform an allocation if:
/// - It is a dead definition without any uses.
/// - The value is live out and all uses are in different basic blocks.
void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
Register VirtReg, bool LookAtPhysRegUses) {
assert(VirtReg.isVirtual() && "Not a virtual register");
MachineOperand &MO = MI.getOperand(OpNum);
LiveRegMap::iterator LRI;
bool New;
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
if (New) {
if (!MO.isDead()) {
if (mayLiveOut(VirtReg)) {
LRI->LiveOut = true;
} else {
// It is a dead def without the dead flag; add the flag now.
MO.setIsDead(true);
}
}
}
if (LRI->PhysReg == 0)
allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
else {
assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
"TODO: preassign mismatch");
LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
<< " use existing assignment to "
<< printReg(LRI->PhysReg, TRI) << '\n');
}
MCPhysReg PhysReg = LRI->PhysReg;
assert(PhysReg != 0 && "Register not assigned");
if (LRI->Reloaded || LRI->LiveOut) {
if (!MI.isImplicitDef()) {
MachineBasicBlock::iterator SpillBefore =
std::next((MachineBasicBlock::iterator)MI.getIterator());
LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
<< LRI->Reloaded << '\n');
bool Kill = LRI->LastUse == nullptr;
spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
LRI->LastUse = nullptr;
}
LRI->LiveOut = false;
LRI->Reloaded = false;
}
markRegUsedInInstr(PhysReg);
setPhysReg(MI, MO, PhysReg);
}
/// Allocates a register for a VirtReg use.
void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
Register VirtReg) {
assert(VirtReg.isVirtual() && "Not a virtual register");
MachineOperand &MO = MI.getOperand(OpNum);
LiveRegMap::iterator LRI;
bool New;
std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
if (New) {
MachineOperand &MO = MI.getOperand(OpNum);
if (!MO.isKill()) {
if (mayLiveOut(VirtReg)) {
LRI->LiveOut = true;
} else {
// It is a last (killing) use without the kill flag; add the flag now.
MO.setIsKill(true);
}
}
} else {
assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
}
// If necessary allocate a register.
if (LRI->PhysReg == 0) {
assert(!MO.isTied() && "tied op should be allocated");
Register Hint;
if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
Hint = MI.getOperand(0).getReg();
assert(Hint.isPhysical() &&
"Copy destination should already be assigned");
}
allocVirtReg(MI, *LRI, Hint, false);
if (LRI->Error) {
const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
setPhysReg(MI, MO, *AllocationOrder.begin());
return;
}
}
LRI->LastUse = &MI;
markRegUsedInInstr(LRI->PhysReg);
setPhysReg(MI, MO, LRI->PhysReg);
}
/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
/// may invalidate any operand pointers. Return true if the operand kills its
/// register.
void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
MCPhysReg PhysReg) {
if (!MO.getSubReg()) {
MO.setReg(PhysReg);
MO.setIsRenamable(true);
return;
}
// Handle subregister index.
MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register());
MO.setIsRenamable(true);
// Note: We leave the subreg number around a little longer in case of defs.
// This is so that the register freeing logic in allocateInstruction can still
// recognize this as subregister defs. The code there will clear the number.
if (!MO.isDef())
MO.setSubReg(0);
// A kill flag implies killing the full register. Add corresponding super
// register kill.
if (MO.isKill()) {
MI.addRegisterKilled(PhysReg, TRI, true);
return;
}
// A <def,read-undef> of a sub-register requires an implicit def of the full
// register.
if (MO.isDef() && MO.isUndef()) {
if (MO.isDead())
MI.addRegisterDead(PhysReg, TRI, true);
else
MI.addRegisterDefined(PhysReg, TRI);
}
}
#ifndef NDEBUG
void RegAllocFast::dumpState() const {
for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
++Unit) {
switch (unsigned VirtReg = RegUnitStates[Unit]) {
case regFree:
break;
case regPreAssigned:
dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
break;
case regLiveIn:
llvm_unreachable("Should not have regLiveIn in map");
default: {
dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
if (I->LiveOut || I->Reloaded) {
dbgs() << '[';
if (I->LiveOut) dbgs() << 'O';
if (I->Reloaded) dbgs() << 'R';
dbgs() << ']';
}
assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
break;
}
}
}
dbgs() << '\n';
// Check that LiveVirtRegs is the inverse.
for (const LiveReg &LR : LiveVirtRegs) {
Register VirtReg = LR.VirtReg;
assert(VirtReg.isVirtual() && "Bad map key");
MCPhysReg PhysReg = LR.PhysReg;
if (PhysReg != 0) {
assert(Register::isPhysicalRegister(PhysReg) &&
"mapped to physreg");
for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
}
}
}
}
#endif
/// Count number of defs consumed from each register class by \p Reg
void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
Register Reg) const {
assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
if (Reg.isVirtual()) {
const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
RCIdx != RCIdxEnd; ++RCIdx) {
const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
// FIXME: Consider aliasing sub/super registers.
if (OpRC->hasSubClassEq(IdxRC))
++RegClassDefCounts[RCIdx];
}
return;
}
for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
RCIdx != RCIdxEnd; ++RCIdx) {
const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
if (IdxRC->contains(*Alias)) {
++RegClassDefCounts[RCIdx];
break;
}
}
}
}
void RegAllocFast::allocateInstruction(MachineInstr &MI) {
// The basic algorithm here is:
// 1. Mark registers of def operands as free
// 2. Allocate registers to use operands and place reload instructions for
// registers displaced by the allocation.
//
// However we need to handle some corner cases:
// - pre-assigned defs and uses need to be handled before the other def/use
// operands are processed to avoid the allocation heuristics clashing with
// the pre-assignment.
// - The "free def operands" step has to come last instead of first for tied
// operands and early-clobbers.
UsedInInstr.clear();
// Scan for special cases; Apply pre-assigned register defs to state.
bool HasPhysRegUse = false;
bool HasRegMask = false;
bool HasVRegDef = false;
bool HasDef = false;
bool HasEarlyClobber = false;
bool NeedToAssignLiveThroughs = false;
for (MachineOperand &MO : MI.operands()) {
if (MO.isReg()) {
Register Reg = MO.getReg();
if (Reg.isVirtual()) {
if (MO.isDef()) {
HasDef = true;
HasVRegDef = true;
if (MO.isEarlyClobber()) {
HasEarlyClobber = true;
NeedToAssignLiveThroughs = true;
}
if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef()))
NeedToAssignLiveThroughs = true;
}
} else if (Reg.isPhysical()) {
if (!MRI->isReserved(Reg)) {
if (MO.isDef()) {
HasDef = true;
bool displacedAny = definePhysReg(MI, Reg);
if (MO.isEarlyClobber())
HasEarlyClobber = true;
if (!displacedAny)
MO.setIsDead(true);
}
if (MO.readsReg())
HasPhysRegUse = true;
}
}
} else if (MO.isRegMask()) {
HasRegMask = true;
}
}
// Allocate virtreg defs.
if (HasDef) {
if (HasVRegDef) {
// Special handling for early clobbers, tied operands or subregister defs:
// Compared to "normal" defs these:
// - Must not use a register that is pre-assigned for a use operand.
// - In order to solve tricky inline assembly constraints we change the
// heuristic to figure out a good operand order before doing
// assignments.
if (NeedToAssignLiveThroughs) {
DefOperandIndexes.clear();
PhysRegUses.clear();
// Track number of defs which may consume a register from the class.
std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
assert(RegClassDefCounts[0] == 0);
LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (MO.readsReg()) {
if (Reg.isPhysical()) {
LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
<< '\n');
markPhysRegUsedInInstr(Reg);
}
}
if (MO.isDef()) {
if (Reg.isVirtual())
DefOperandIndexes.push_back(I);
addRegClassDefCounts(RegClassDefCounts, Reg);
}
}
llvm::sort(DefOperandIndexes.begin(), DefOperandIndexes.end(),
[&](uint16_t I0, uint16_t I1) {
const MachineOperand &MO0 = MI.getOperand(I0);
const MachineOperand &MO1 = MI.getOperand(I1);
Register Reg0 = MO0.getReg();
Register Reg1 = MO1.getReg();
const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
// Identify regclass that are easy to use up completely just in this
// instruction.
unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
if (SmallClass0 > SmallClass1)
return true;
if (SmallClass0 < SmallClass1)
return false;
// Allocate early clobbers and livethrough operands first.
bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
(MO0.getSubReg() == 0 && !MO0.isUndef());
bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
(MO1.getSubReg() == 0 && !MO1.isUndef());
if (Livethrough0 > Livethrough1)
return true;
if (Livethrough0 < Livethrough1)
return false;
// Tie-break rule: operand index.
return I0 < I1;
});
for (uint16_t OpIdx : DefOperandIndexes) {
MachineOperand &MO = MI.getOperand(OpIdx);
LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
unsigned Reg = MO.getReg();
if (MO.isEarlyClobber() || MO.isTied() ||
(MO.getSubReg() && !MO.isUndef())) {
defineLiveThroughVirtReg(MI, OpIdx, Reg);
} else {
defineVirtReg(MI, OpIdx, Reg);
}
}
} else {
// Assign virtual register defs.
for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
if (Reg.isVirtual())
defineVirtReg(MI, I, Reg);
}
}
}
// Free registers occupied by defs.
// Iterate operands in reverse order, so we see the implicit super register
// defs first (we added them earlier in case of <def,read-undef>).
for (unsigned I = MI.getNumOperands(); I-- > 0;) {
MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg() || !MO.isDef())
continue;
// subreg defs don't free the full register. We left the subreg number
// around as a marker in setPhysReg() to recognize this case here.
if (MO.getSubReg() != 0) {
MO.setSubReg(0);
continue;
}
// Do not free tied operands and early clobbers.
if (MO.isTied() || MO.isEarlyClobber())
continue;
Register Reg = MO.getReg();
if (!Reg)
continue;
assert(Reg.isPhysical());
if (MRI->isReserved(Reg))
continue;
freePhysReg(Reg);
unmarkRegUsedInInstr(Reg);
}
}
// Displace clobbered registers.
if (HasRegMask) {
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
// MRI bookkeeping.
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
// Displace clobbered registers.
const uint32_t *Mask = MO.getRegMask();
for (LiveRegMap::iterator LRI = LiveVirtRegs.begin(),
LRIE = LiveVirtRegs.end(); LRI != LRIE; ++LRI) {
MCPhysReg PhysReg = LRI->PhysReg;
if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg))
displacePhysReg(MI, PhysReg);
}
}
}
}
// Apply pre-assigned register uses to state.
if (HasPhysRegUse) {
for (MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.readsReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isPhysical())
continue;
if (MRI->isReserved(Reg))
continue;
bool displacedAny = usePhysReg(MI, Reg);
if (!displacedAny && !MRI->isReserved(Reg))
MO.setIsKill(true);
}
}
// Allocate virtreg uses and insert reloads as necessary.
bool HasUndefUse = false;
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg() || !MO.isUse())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual())
continue;
if (MO.isUndef()) {
HasUndefUse = true;
continue;
}
// Populate MayLiveAcrossBlocks in case the use block is allocated before
// the def block (removing the vreg uses).
mayLiveIn(Reg);
assert(!MO.isInternalRead() && "Bundles not supported");
assert(MO.readsReg() && "reading use");
useVirtReg(MI, I, Reg);
}
// Allocate undef operands. This is a separate step because in a situation
// like ` = OP undef %X, %X` both operands need the same register assign
// so we should perform the normal assignment first.
if (HasUndefUse) {
for (MachineOperand &MO : MI.uses()) {
if (!MO.isReg() || !MO.isUse())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual())
continue;
assert(MO.isUndef() && "Should only have undef virtreg uses left");
allocVirtRegUndef(MO);
}
}
// Free early clobbers.
if (HasEarlyClobber) {
for (unsigned I = MI.getNumOperands(); I-- > 0; ) {
MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
continue;
// subreg defs don't free the full register. We left the subreg number
// around as a marker in setPhysReg() to recognize this case here.
if (MO.getSubReg() != 0) {
MO.setSubReg(0);
continue;
}
Register Reg = MO.getReg();
if (!Reg)
continue;
assert(Reg.isPhysical() && "should have register assigned");
// We sometimes get odd situations like:
// early-clobber %x0 = INSTRUCTION %x0
// which is semantically questionable as the early-clobber should
// apply before the use. But in practice we consider the use to
// happen before the early clobber now. Don't free the early clobber
// register in this case.
if (MI.readsRegister(Reg, TRI))
continue;
freePhysReg(Reg);
}
}
LLVM_DEBUG(dbgs() << "<< " << MI);
if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
MI.getNumOperands() == 2) {
LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
Coalesced.push_back(&MI);
}
}
void RegAllocFast::handleDebugValue(MachineInstr &MI) {
MachineOperand &MO = MI.getDebugOperand(0);
// Ignore DBG_VALUEs that aren't based on virtual registers. These are
// mostly constants and frame indices.
if (!MO.isReg())
return;
Register Reg = MO.getReg();
if (!Register::isVirtualRegister(Reg))
return;
// Already spilled to a stackslot?
int SS = StackSlotForVirtReg[Reg];
if (SS != -1) {
// Modify DBG_VALUE now that the value is in a spill slot.
updateDbgValueForSpill(MI, SS);
LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
return;
}
// See if this virtual register has already been allocated to a physical
// register or spilled to a stack slot.
LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
setPhysReg(MI, MO, LRI->PhysReg);
} else {
DanglingDbgValues[Reg].push_back(&MI);
}
// If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
// that future spills of Reg will have DBG_VALUEs.
LiveDbgValueMap[Reg].push_back(&MI);
}
#ifndef NDEBUG
bool RegAllocFast::verifyRegStateMapping(const LiveReg &LR) const {
for (MCRegUnitIterator UI(LR.PhysReg, TRI); UI.isValid(); ++UI) {
if (RegUnitStates[*UI] != LR.VirtReg)
return false;
}
return true;
}
#endif
void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
this->MBB = &MBB;
LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
for (MachineBasicBlock *Succ : MBB.successors()) {
for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins())
setPhysRegState(LI.PhysReg, regPreAssigned);
}
Coalesced.clear();
// Traverse block in reverse order allocating instructions one by one.
for (MachineInstr &MI : reverse(MBB)) {
LLVM_DEBUG(
dbgs() << "\n>> " << MI << "Regs:";
dumpState()
);
// Special handling for debug values. Note that they are not allowed to
// affect codegen of the other instructions in any way.
if (MI.isDebugValue()) {
handleDebugValue(MI);
continue;
}
allocateInstruction(MI);
}
LLVM_DEBUG(
dbgs() << "Begin Regs:";
dumpState()
);
// Spill all physical registers holding virtual registers now.
LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
reloadAtBegin(MBB);
// Erase all the coalesced copies. We are delaying it until now because
// LiveVirtRegs might refer to the instrs.
for (MachineInstr *MI : Coalesced)
MBB.erase(MI);
NumCoalesced += Coalesced.size();
for (auto &UDBGPair : DanglingDbgValues) {
for (MachineInstr *DbgValue : UDBGPair.second) {
assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
MachineOperand &MO = DbgValue->getOperand(0);
// Nothing to do if the vreg was spilled in the meantime.
if (!MO.isReg())
continue;
LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
<< '\n');
MO.setReg(0);
}
}
DanglingDbgValues.clear();
LLVM_DEBUG(MBB.dump());
}
bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
<< "********** Function: " << MF.getName() << '\n');
MRI = &MF.getRegInfo();
const TargetSubtargetInfo &STI = MF.getSubtarget();
TRI = STI.getRegisterInfo();
TII = STI.getInstrInfo();
MFI = &MF.getFrameInfo();
MRI->freezeReservedRegs(MF);
RegClassInfo.runOnMachineFunction(MF);
unsigned NumRegUnits = TRI->getNumRegUnits();
UsedInInstr.clear();
UsedInInstr.setUniverse(NumRegUnits);
PhysRegUses.clear();
PhysRegUses.setUniverse(NumRegUnits);
// initialize the virtual->physical register map to have a 'null'
// mapping for all virtual registers
unsigned NumVirtRegs = MRI->getNumVirtRegs();
StackSlotForVirtReg.resize(NumVirtRegs);
LiveVirtRegs.setUniverse(NumVirtRegs);
MayLiveAcrossBlocks.clear();
MayLiveAcrossBlocks.resize(NumVirtRegs);
// Loop over all of the basic blocks, eliminating virtual register references
for (MachineBasicBlock &MBB : MF)
allocateBasicBlock(MBB);
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers.
MRI->clearVirtRegs();
StackSlotForVirtReg.clear();
LiveDbgValueMap.clear();
return true;
}
FunctionPass *llvm::createFastRegisterAllocator() {
return new RegAllocFast();
}