BranchProbabilityInfo.cpp 46.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "branch-prob"

static cl::opt<bool> PrintBranchProb(
    "print-bpi", cl::init(false), cl::Hidden,
    cl::desc("Print the branch probability info."));

cl::opt<std::string> PrintBranchProbFuncName(
    "print-bpi-func-name", cl::Hidden,
    cl::desc("The option to specify the name of the function "
             "whose branch probability info is printed."));

INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
                      "Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
                    "Branch Probability Analysis", false, true)

BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
    : FunctionPass(ID) {
  initializeBranchProbabilityInfoWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

char BranchProbabilityInfoWrapperPass::ID = 0;

// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
//         ...
//          |
//          V
//         BB1<-+
//          |   |
//          |   | (Weight = 124)
//          V   |
//         BB2--+
//          |
//          | (Weight = 4)
//          V
//         BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
// Unlikely edges within a loop are half as likely as other edges
static const uint32_t LBH_UNLIKELY_WEIGHT = 62;

/// Unreachable-terminating branch taken probability.
///
/// This is the probability for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
/// All reachable probability will proportionally share the remaining part.
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);

/// Weight for a branch taken going into a cold block.
///
/// This is the weight for a branch taken toward a block marked
/// cold.  A block is marked cold if it's postdominated by a
/// block containing a call to a cold function.  Cold functions
/// are those marked with attribute 'cold'.
static const uint32_t CC_TAKEN_WEIGHT = 4;

/// Weight for a branch not-taken into a cold block.
///
/// This is the weight for a branch not taken toward a block marked
/// cold.
static const uint32_t CC_NONTAKEN_WEIGHT = 64;

static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;

static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;

static const uint32_t FPH_TAKEN_WEIGHT = 20;
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;

/// This is the probability for an ordered floating point comparison.
static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
/// This is the probability for an unordered floating point comparison, it means
/// one or two of the operands are NaN. Usually it is used to test for an
/// exceptional case, so the result is unlikely.
static const uint32_t FPH_UNO_WEIGHT = 1;

/// Invoke-terminating normal branch taken weight
///
/// This is the weight for branching to the normal destination of an invoke
/// instruction. We expect this to happen most of the time. Set the weight to an
/// absurdly high value so that nested loops subsume it.
static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;

/// Invoke-terminating normal branch not-taken weight.
///
/// This is the weight for branching to the unwind destination of an invoke
/// instruction. This is essentially never taken.
static const uint32_t IH_NONTAKEN_WEIGHT = 1;

BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
  // Record SCC numbers of blocks in the CFG to identify irreducible loops.
  // FIXME: We could only calculate this if the CFG is known to be irreducible
  // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
  int SccNum = 0;
  for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
       ++It, ++SccNum) {
    // Ignore single-block SCCs since they either aren't loops or LoopInfo will
    // catch them.
    const std::vector<const BasicBlock *> &Scc = *It;
    if (Scc.size() == 1)
      continue;

    LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
    for (const auto *BB : Scc) {
      LLVM_DEBUG(dbgs() << " " << BB->getName());
      SccNums[BB] = SccNum;
      calculateSccBlockType(BB, SccNum);
    }
    LLVM_DEBUG(dbgs() << "\n");
  }
}

int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
  auto SccIt = SccNums.find(BB);
  if (SccIt == SccNums.end())
    return -1;
  return SccIt->second;
}

void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
    int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {

  for (auto MapIt : SccBlocks[SccNum]) {
    const auto *BB = MapIt.first;
    if (isSCCHeader(BB, SccNum))
      for (const auto *Pred : predecessors(BB))
        if (getSCCNum(Pred) != SccNum)
          Enters.push_back(const_cast<BasicBlock *>(BB));
  }
}

void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
    int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
  for (auto MapIt : SccBlocks[SccNum]) {
    const auto *BB = MapIt.first;
    if (isSCCExitingBlock(BB, SccNum))
      for (const auto *Succ : successors(BB))
        if (getSCCNum(Succ) != SccNum)
          Exits.push_back(const_cast<BasicBlock *>(BB));
  }
}

uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
                                                         int SccNum) const {
  assert(getSCCNum(BB) == SccNum);

  assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
  const auto &SccBlockTypes = SccBlocks[SccNum];

  auto It = SccBlockTypes.find(BB);
  if (It != SccBlockTypes.end()) {
    return It->second;
  }
  return Inner;
}

void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
                                                           int SccNum) {
  assert(getSCCNum(BB) == SccNum);
  uint32_t BlockType = Inner;

  if (llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
                   [&](const BasicBlock *Pred) {
        // Consider any block that is an entry point to the SCC as
        // a header.
        return getSCCNum(Pred) != SccNum;
      }))
    BlockType |= Header;

  if (llvm::any_of(
          make_range(succ_begin(BB), succ_end(BB)),
          [&](const BasicBlock *Succ) { return getSCCNum(Succ) != SccNum; }))
    BlockType |= Exiting;

  // Lazily compute the set of headers for a given SCC and cache the results
  // in the SccHeaderMap.
  if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
    SccBlocks.resize(SccNum + 1);
  auto &SccBlockTypes = SccBlocks[SccNum];

  if (BlockType != Inner) {
    bool IsInserted;
    std::tie(std::ignore, IsInserted) =
        SccBlockTypes.insert(std::make_pair(BB, BlockType));
    assert(IsInserted && "Duplicated block in SCC");
  }
}

BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
                                            const LoopInfo &LI,
                                            const SccInfo &SccI)
    : BB(BB) {
  LD.first = LI.getLoopFor(BB);
  if (!LD.first) {
    LD.second = SccI.getSCCNum(BB);
  }
}

bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
  const auto &SrcBlock = Edge.first;
  const auto &DstBlock = Edge.second;
  return (DstBlock.getLoop() &&
          !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
         // Assume that SCCs can't be nested.
         (DstBlock.getSccNum() != -1 &&
          SrcBlock.getSccNum() != DstBlock.getSccNum());
}

bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
  return isLoopEnteringEdge({Edge.second, Edge.first});
}

bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
    const LoopEdge &Edge) const {
  return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
}

bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
  const auto &SrcBlock = Edge.first;
  const auto &DstBlock = Edge.second;
  return SrcBlock.belongsToSameLoop(DstBlock) &&
         ((DstBlock.getLoop() &&
           DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
          (DstBlock.getSccNum() != -1 &&
           SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
}

void BranchProbabilityInfo::getLoopEnterBlocks(
    const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
  if (LB.getLoop()) {
    auto *Header = LB.getLoop()->getHeader();
    Enters.append(pred_begin(Header), pred_end(Header));
  } else {
    assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
    SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
  }
}

void BranchProbabilityInfo::getLoopExitBlocks(
    const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
  if (LB.getLoop()) {
    LB.getLoop()->getExitBlocks(Exits);
  } else {
    assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
    SccI->getSccExitBlocks(LB.getSccNum(), Exits);
  }
}

static void UpdatePDTWorklist(const BasicBlock *BB, PostDominatorTree *PDT,
                              SmallVectorImpl<const BasicBlock *> &WorkList,
                              SmallPtrSetImpl<const BasicBlock *> &TargetSet) {
  SmallVector<BasicBlock *, 8> Descendants;
  SmallPtrSet<const BasicBlock *, 16> NewItems;

  PDT->getDescendants(const_cast<BasicBlock *>(BB), Descendants);
  for (auto *BB : Descendants)
    if (TargetSet.insert(BB).second)
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        if (!TargetSet.count(*PI))
          NewItems.insert(*PI);
  WorkList.insert(WorkList.end(), NewItems.begin(), NewItems.end());
}

/// Compute a set of basic blocks that are post-dominated by unreachables.
void BranchProbabilityInfo::computePostDominatedByUnreachable(
    const Function &F, PostDominatorTree *PDT) {
  SmallVector<const BasicBlock *, 8> WorkList;
  for (auto &BB : F) {
    const Instruction *TI = BB.getTerminator();
    if (TI->getNumSuccessors() == 0) {
      if (isa<UnreachableInst>(TI) ||
          // If this block is terminated by a call to
          // @llvm.experimental.deoptimize then treat it like an unreachable
          // since the @llvm.experimental.deoptimize call is expected to
          // practically never execute.
          BB.getTerminatingDeoptimizeCall())
        UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByUnreachable);
    }
  }

  while (!WorkList.empty()) {
    const BasicBlock *BB = WorkList.pop_back_val();
    if (PostDominatedByUnreachable.count(BB))
      continue;
    // If the terminator is an InvokeInst, check only the normal destination
    // block as the unwind edge of InvokeInst is also very unlikely taken.
    if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
      if (PostDominatedByUnreachable.count(II->getNormalDest()))
        UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable);
    }
    // If all the successors are unreachable, BB is unreachable as well.
    else if (!successors(BB).empty() &&
             llvm::all_of(successors(BB), [this](const BasicBlock *Succ) {
               return PostDominatedByUnreachable.count(Succ);
             }))
      UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable);
  }
}

/// compute a set of basic blocks that are post-dominated by ColdCalls.
void BranchProbabilityInfo::computePostDominatedByColdCall(
    const Function &F, PostDominatorTree *PDT) {
  SmallVector<const BasicBlock *, 8> WorkList;
  for (auto &BB : F)
    for (auto &I : BB)
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
        if (CI->hasFnAttr(Attribute::Cold))
          UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByColdCall);

  while (!WorkList.empty()) {
    const BasicBlock *BB = WorkList.pop_back_val();

    // If the terminator is an InvokeInst, check only the normal destination
    // block as the unwind edge of InvokeInst is also very unlikely taken.
    if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
      if (PostDominatedByColdCall.count(II->getNormalDest()))
        UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall);
    }
    // If all of successor are post dominated then BB is also done.
    else if (!successors(BB).empty() &&
             llvm::all_of(successors(BB), [this](const BasicBlock *Succ) {
               return PostDominatedByColdCall.count(Succ);
             }))
      UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall);
  }
}

/// Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
  const Instruction *TI = BB->getTerminator();
  (void) TI;
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
  assert(!isa<InvokeInst>(TI) &&
         "Invokes should have already been handled by calcInvokeHeuristics");

  SmallVector<unsigned, 4> UnreachableEdges;
  SmallVector<unsigned, 4> ReachableEdges;

  for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
    if (PostDominatedByUnreachable.count(*I))
      UnreachableEdges.push_back(I.getSuccessorIndex());
    else
      ReachableEdges.push_back(I.getSuccessorIndex());

  // Skip probabilities if all were reachable.
  if (UnreachableEdges.empty())
    return false;

  SmallVector<BranchProbability, 4> EdgeProbabilities(
      BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
  if (ReachableEdges.empty()) {
    BranchProbability Prob(1, UnreachableEdges.size());
    for (unsigned SuccIdx : UnreachableEdges)
      EdgeProbabilities[SuccIdx] = Prob;
    setEdgeProbability(BB, EdgeProbabilities);
    return true;
  }

  auto UnreachableProb = UR_TAKEN_PROB;
  auto ReachableProb =
      (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
      ReachableEdges.size();

  for (unsigned SuccIdx : UnreachableEdges)
    EdgeProbabilities[SuccIdx] = UnreachableProb;
  for (unsigned SuccIdx : ReachableEdges)
    EdgeProbabilities[SuccIdx] = ReachableProb;

  setEdgeProbability(BB, EdgeProbabilities);
  return true;
}

// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing. Examine metadata against unreachable
// heuristic. The probability of the edge coming to unreachable block is
// set to min of metadata and unreachable heuristic.
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
  const Instruction *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
  if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
        isa<InvokeInst>(TI)))
    return false;

  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
  if (!WeightsNode)
    return false;

  // Check that the number of successors is manageable.
  assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");

  // Ensure there are weights for all of the successors. Note that the first
  // operand to the metadata node is a name, not a weight.
  if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
    return false;

  // Build up the final weights that will be used in a temporary buffer.
  // Compute the sum of all weights to later decide whether they need to
  // be scaled to fit in 32 bits.
  uint64_t WeightSum = 0;
  SmallVector<uint32_t, 2> Weights;
  SmallVector<unsigned, 2> UnreachableIdxs;
  SmallVector<unsigned, 2> ReachableIdxs;
  Weights.reserve(TI->getNumSuccessors());
  for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
    ConstantInt *Weight =
        mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
    if (!Weight)
      return false;
    assert(Weight->getValue().getActiveBits() <= 32 &&
           "Too many bits for uint32_t");
    Weights.push_back(Weight->getZExtValue());
    WeightSum += Weights.back();
    if (PostDominatedByUnreachable.count(TI->getSuccessor(I - 1)))
      UnreachableIdxs.push_back(I - 1);
    else
      ReachableIdxs.push_back(I - 1);
  }
  assert(Weights.size() == TI->getNumSuccessors() && "Checked above");

  // If the sum of weights does not fit in 32 bits, scale every weight down
  // accordingly.
  uint64_t ScalingFactor =
      (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;

  if (ScalingFactor > 1) {
    WeightSum = 0;
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
      Weights[I] /= ScalingFactor;
      WeightSum += Weights[I];
    }
  }
  assert(WeightSum <= UINT32_MAX &&
         "Expected weights to scale down to 32 bits");

  if (WeightSum == 0 || ReachableIdxs.size() == 0) {
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
      Weights[I] = 1;
    WeightSum = TI->getNumSuccessors();
  }

  // Set the probability.
  SmallVector<BranchProbability, 2> BP;
  for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
    BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });

  // Examine the metadata against unreachable heuristic.
  // If the unreachable heuristic is more strong then we use it for this edge.
  if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
    setEdgeProbability(BB, BP);
    return true;
  }

  auto UnreachableProb = UR_TAKEN_PROB;
  for (auto I : UnreachableIdxs)
    if (UnreachableProb < BP[I]) {
      BP[I] = UnreachableProb;
    }

  // Sum of all edge probabilities must be 1.0. If we modified the probability
  // of some edges then we must distribute the introduced difference over the
  // reachable blocks.
  //
  // Proportional distribution: the relation between probabilities of the
  // reachable edges is kept unchanged. That is for any reachable edges i and j:
  //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
  //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
  // Where K is independent of i,j.
  //   newBP[i] == oldBP[i] * K
  // We need to find K.
  // Make sum of all reachables of the left and right parts:
  //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
  // Sum of newBP must be equal to 1.0:
  //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
  //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
  // Where sum_of_unreachable(newBP) is what has been just changed.
  // Finally:
  //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
  //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
  BranchProbability NewUnreachableSum = BranchProbability::getZero();
  for (auto I : UnreachableIdxs)
    NewUnreachableSum += BP[I];

  BranchProbability NewReachableSum =
      BranchProbability::getOne() - NewUnreachableSum;

  BranchProbability OldReachableSum = BranchProbability::getZero();
  for (auto I : ReachableIdxs)
    OldReachableSum += BP[I];

  if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
    if (OldReachableSum.isZero()) {
      // If all oldBP[i] are zeroes then the proportional distribution results
      // in all zero probabilities and the error stays big. In this case we
      // evenly spread NewReachableSum over the reachable edges.
      BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
      for (auto I : ReachableIdxs)
        BP[I] = PerEdge;
    } else {
      for (auto I : ReachableIdxs) {
        // We use uint64_t to avoid double rounding error of the following
        // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
        // The formula is taken from the private constructor
        // BranchProbability(uint32_t Numerator, uint32_t Denominator)
        uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
                       BP[I].getNumerator();
        uint32_t Div = static_cast<uint32_t>(
            divideNearest(Mul, OldReachableSum.getNumerator()));
        BP[I] = BranchProbability::getRaw(Div);
      }
    }
  }

  setEdgeProbability(BB, BP);

  return true;
}

/// Calculate edge weights for edges leading to cold blocks.
///
/// A cold block is one post-dominated by  a block with a call to a
/// cold function.  Those edges are unlikely to be taken, so we give
/// them relatively low weight.
///
/// Return true if we could compute the weights for cold edges.
/// Return false, otherwise.
bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
  const Instruction *TI = BB->getTerminator();
  (void) TI;
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
  assert(!isa<InvokeInst>(TI) &&
         "Invokes should have already been handled by calcInvokeHeuristics");

  // Determine which successors are post-dominated by a cold block.
  SmallVector<unsigned, 4> ColdEdges;
  SmallVector<unsigned, 4> NormalEdges;
  for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
    if (PostDominatedByColdCall.count(*I))
      ColdEdges.push_back(I.getSuccessorIndex());
    else
      NormalEdges.push_back(I.getSuccessorIndex());

  // Skip probabilities if no cold edges.
  if (ColdEdges.empty())
    return false;

  SmallVector<BranchProbability, 4> EdgeProbabilities(
      BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
  if (NormalEdges.empty()) {
    BranchProbability Prob(1, ColdEdges.size());
    for (unsigned SuccIdx : ColdEdges)
      EdgeProbabilities[SuccIdx] = Prob;
    setEdgeProbability(BB, EdgeProbabilities);
    return true;
  }

  auto ColdProb = BranchProbability::getBranchProbability(
      CC_TAKEN_WEIGHT,
      (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
  auto NormalProb = BranchProbability::getBranchProbability(
      CC_NONTAKEN_WEIGHT,
      (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));

  for (unsigned SuccIdx : ColdEdges)
    EdgeProbabilities[SuccIdx] = ColdProb;
  for (unsigned SuccIdx : NormalEdges)
    EdgeProbabilities[SuccIdx] = NormalProb;

  setEdgeProbability(BB, EdgeProbabilities);
  return true;
}

// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);

  if (!LHS->getType()->isPointerTy())
    return false;

  assert(CI->getOperand(1)->getType()->isPointerTy());

  BranchProbability TakenProb(PH_TAKEN_WEIGHT,
                              PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
  BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT,
                                PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);

  // p != 0   ->   isProb = true
  // p == 0   ->   isProb = false
  // p != q   ->   isProb = true
  // p == q   ->   isProb = false;
  bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
  if (!isProb)
    std::swap(TakenProb, UntakenProb);

  setEdgeProbability(
      BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
  return true;
}

// Compute the unlikely successors to the block BB in the loop L, specifically
// those that are unlikely because this is a loop, and add them to the
// UnlikelyBlocks set.
static void
computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
                          SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
  // Sometimes in a loop we have a branch whose condition is made false by
  // taking it. This is typically something like
  //  int n = 0;
  //  while (...) {
  //    if (++n >= MAX) {
  //      n = 0;
  //    }
  //  }
  // In this sort of situation taking the branch means that at the very least it
  // won't be taken again in the next iteration of the loop, so we should
  // consider it less likely than a typical branch.
  //
  // We detect this by looking back through the graph of PHI nodes that sets the
  // value that the condition depends on, and seeing if we can reach a successor
  // block which can be determined to make the condition false.
  //
  // FIXME: We currently consider unlikely blocks to be half as likely as other
  // blocks, but if we consider the example above the likelyhood is actually
  // 1/MAX. We could therefore be more precise in how unlikely we consider
  // blocks to be, but it would require more careful examination of the form
  // of the comparison expression.
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return;

  // Check if the branch is based on an instruction compared with a constant
  CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
  if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
      !isa<Constant>(CI->getOperand(1)))
    return;

  // Either the instruction must be a PHI, or a chain of operations involving
  // constants that ends in a PHI which we can then collapse into a single value
  // if the PHI value is known.
  Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
  PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
  Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
  // Collect the instructions until we hit a PHI
  SmallVector<BinaryOperator *, 1> InstChain;
  while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
         isa<Constant>(CmpLHS->getOperand(1))) {
    // Stop if the chain extends outside of the loop
    if (!L->contains(CmpLHS))
      return;
    InstChain.push_back(cast<BinaryOperator>(CmpLHS));
    CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
    if (CmpLHS)
      CmpPHI = dyn_cast<PHINode>(CmpLHS);
  }
  if (!CmpPHI || !L->contains(CmpPHI))
    return;

  // Trace the phi node to find all values that come from successors of BB
  SmallPtrSet<PHINode*, 8> VisitedInsts;
  SmallVector<PHINode*, 8> WorkList;
  WorkList.push_back(CmpPHI);
  VisitedInsts.insert(CmpPHI);
  while (!WorkList.empty()) {
    PHINode *P = WorkList.back();
    WorkList.pop_back();
    for (BasicBlock *B : P->blocks()) {
      // Skip blocks that aren't part of the loop
      if (!L->contains(B))
        continue;
      Value *V = P->getIncomingValueForBlock(B);
      // If the source is a PHI add it to the work list if we haven't
      // already visited it.
      if (PHINode *PN = dyn_cast<PHINode>(V)) {
        if (VisitedInsts.insert(PN).second)
          WorkList.push_back(PN);
        continue;
      }
      // If this incoming value is a constant and B is a successor of BB, then
      // we can constant-evaluate the compare to see if it makes the branch be
      // taken or not.
      Constant *CmpLHSConst = dyn_cast<Constant>(V);
      if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
        continue;
      // First collapse InstChain
      for (Instruction *I : llvm::reverse(InstChain)) {
        CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
                                        cast<Constant>(I->getOperand(1)), true);
        if (!CmpLHSConst)
          break;
      }
      if (!CmpLHSConst)
        continue;
      // Now constant-evaluate the compare
      Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
                                                  CmpLHSConst, CmpConst, true);
      // If the result means we don't branch to the block then that block is
      // unlikely.
      if (Result &&
          ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
           (Result->isOneValue() && B == BI->getSuccessor(1))))
        UnlikelyBlocks.insert(B);
    }
  }
}

// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
                                                     const LoopInfo &LI) {
  LoopBlock LB(BB, LI, *SccI.get());
  if (!LB.belongsToLoop())
    return false;

  SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks;
  if (LB.getLoop())
    computeUnlikelySuccessors(BB, LB.getLoop(), UnlikelyBlocks);

  SmallVector<unsigned, 8> BackEdges;
  SmallVector<unsigned, 8> ExitingEdges;
  SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
  SmallVector<unsigned, 8> UnlikelyEdges;

  for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    LoopBlock SuccLB(*I, LI, *SccI.get());
    LoopEdge Edge(LB, SuccLB);
    bool IsUnlikelyEdge =
        LB.getLoop() && (UnlikelyBlocks.find(*I) != UnlikelyBlocks.end());

    if (IsUnlikelyEdge)
      UnlikelyEdges.push_back(I.getSuccessorIndex());
    else if (isLoopExitingEdge(Edge))
      ExitingEdges.push_back(I.getSuccessorIndex());
    else if (isLoopBackEdge(Edge))
      BackEdges.push_back(I.getSuccessorIndex());
    else {
      InEdges.push_back(I.getSuccessorIndex());
    }
  }

  if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty())
    return false;

  // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
  // normalize them so that they sum up to one.
  unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
                   (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
                   (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
                   (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);

  SmallVector<BranchProbability, 4> EdgeProbabilities(
      BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
  if (uint32_t numBackEdges = BackEdges.size()) {
    BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
    auto Prob = TakenProb / numBackEdges;
    for (unsigned SuccIdx : BackEdges)
      EdgeProbabilities[SuccIdx] = Prob;
  }

  if (uint32_t numInEdges = InEdges.size()) {
    BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
    auto Prob = TakenProb / numInEdges;
    for (unsigned SuccIdx : InEdges)
      EdgeProbabilities[SuccIdx] = Prob;
  }

  if (uint32_t numExitingEdges = ExitingEdges.size()) {
    BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT,
                                                       Denom);
    auto Prob = NotTakenProb / numExitingEdges;
    for (unsigned SuccIdx : ExitingEdges)
      EdgeProbabilities[SuccIdx] = Prob;
  }

  if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
    BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT,
                                                       Denom);
    auto Prob = UnlikelyProb / numUnlikelyEdges;
    for (unsigned SuccIdx : UnlikelyEdges)
      EdgeProbabilities[SuccIdx] = Prob;
  }

  setEdgeProbability(BB, EdgeProbabilities);
  return true;
}

bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
                                               const TargetLibraryInfo *TLI) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI)
    return false;

  auto GetConstantInt = [](Value *V) {
    if (auto *I = dyn_cast<BitCastInst>(V))
      return dyn_cast<ConstantInt>(I->getOperand(0));
    return dyn_cast<ConstantInt>(V);
  };

  Value *RHS = CI->getOperand(1);
  ConstantInt *CV = GetConstantInt(RHS);
  if (!CV)
    return false;

  // If the LHS is the result of AND'ing a value with a single bit bitmask,
  // we don't have information about probabilities.
  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
    if (LHS->getOpcode() == Instruction::And)
      if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
        if (AndRHS->getValue().isPowerOf2())
          return false;

  // Check if the LHS is the return value of a library function
  LibFunc Func = NumLibFuncs;
  if (TLI)
    if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
      if (Function *CalledFn = Call->getCalledFunction())
        TLI->getLibFunc(*CalledFn, Func);

  bool isProb;
  if (Func == LibFunc_strcasecmp ||
      Func == LibFunc_strcmp ||
      Func == LibFunc_strncasecmp ||
      Func == LibFunc_strncmp ||
      Func == LibFunc_memcmp ||
      Func == LibFunc_bcmp) {
    // strcmp and similar functions return zero, negative, or positive, if the
    // first string is equal, less, or greater than the second. We consider it
    // likely that the strings are not equal, so a comparison with zero is
    // probably false, but also a comparison with any other number is also
    // probably false given that what exactly is returned for nonzero values is
    // not specified. Any kind of comparison other than equality we know
    // nothing about.
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      isProb = true;
      break;
    default:
      return false;
    }
  } else if (CV->isZero()) {
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      // X == 0   ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      // X != 0   ->  Likely
      isProb = true;
      break;
    case CmpInst::ICMP_SLT:
      // X < 0   ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_SGT:
      // X > 0   ->  Likely
      isProb = true;
      break;
    default:
      return false;
    }
  } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
    // InstCombine canonicalizes X <= 0 into X < 1.
    // X <= 0   ->  Unlikely
    isProb = false;
  } else if (CV->isMinusOne()) {
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      // X == -1  ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      // X != -1  ->  Likely
      isProb = true;
      break;
    case CmpInst::ICMP_SGT:
      // InstCombine canonicalizes X >= 0 into X > -1.
      // X >= 0   ->  Likely
      isProb = true;
      break;
    default:
      return false;
    }
  } else {
    return false;
  }

  BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
                              ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
  BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT,
                                ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
  if (!isProb)
    std::swap(TakenProb, UntakenProb);

  setEdgeProbability(
      BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
  return true;
}

bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
  if (!FCmp)
    return false;

  uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
  uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
  bool isProb;
  if (FCmp->isEquality()) {
    // f1 == f2 -> Unlikely
    // f1 != f2 -> Likely
    isProb = !FCmp->isTrueWhenEqual();
  } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
    // !isnan -> Likely
    isProb = true;
    TakenWeight = FPH_ORD_WEIGHT;
    NontakenWeight = FPH_UNO_WEIGHT;
  } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
    // isnan -> Unlikely
    isProb = false;
    TakenWeight = FPH_ORD_WEIGHT;
    NontakenWeight = FPH_UNO_WEIGHT;
  } else {
    return false;
  }

  BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
  BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight);
  if (!isProb)
    std::swap(TakenProb, UntakenProb);

  setEdgeProbability(
      BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
  return true;
}

bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
  const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
  if (!II)
    return false;

  BranchProbability TakenProb(IH_TAKEN_WEIGHT,
                              IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
  setEdgeProbability(
      BB, SmallVector<BranchProbability, 2>({TakenProb, TakenProb.getCompl()}));
  return true;
}

void BranchProbabilityInfo::releaseMemory() {
  Probs.clear();
  Handles.clear();
}

bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
                                       FunctionAnalysisManager::Invalidator &) {
  // Check whether the analysis, all analyses on functions, or the function's
  // CFG have been preserved.
  auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
           PAC.preservedSet<CFGAnalyses>());
}

void BranchProbabilityInfo::print(raw_ostream &OS) const {
  OS << "---- Branch Probabilities ----\n";
  // We print the probabilities from the last function the analysis ran over,
  // or the function it is currently running over.
  assert(LastF && "Cannot print prior to running over a function");
  for (const auto &BI : *LastF) {
    for (const_succ_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
         ++SI) {
      printEdgeProbability(OS << "  ", &BI, *SI);
    }
  }
}

bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
  // Hot probability is at least 4/5 = 80%
  // FIXME: Compare against a static "hot" BranchProbability.
  return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
}

const BasicBlock *
BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
  auto MaxProb = BranchProbability::getZero();
  const BasicBlock *MaxSucc = nullptr;

  for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    const BasicBlock *Succ = *I;
    auto Prob = getEdgeProbability(BB, Succ);
    if (Prob > MaxProb) {
      MaxProb = Prob;
      MaxSucc = Succ;
    }
  }

  // Hot probability is at least 4/5 = 80%
  if (MaxProb > BranchProbability(4, 5))
    return MaxSucc;

  return nullptr;
}

/// Get the raw edge probability for the edge. If can't find it, return a
/// default probability 1/N where N is the number of successors. Here an edge is
/// specified using PredBlock and an
/// index to the successors.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          unsigned IndexInSuccessors) const {
  auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));

  if (I != Probs.end())
    return I->second;

  return {1, static_cast<uint32_t>(succ_size(Src))};
}

BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          const_succ_iterator Dst) const {
  return getEdgeProbability(Src, Dst.getSuccessorIndex());
}

/// Get the raw edge probability calculated for the block pair. This returns the
/// sum of all raw edge probabilities from Src to Dst.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          const BasicBlock *Dst) const {
  auto Prob = BranchProbability::getZero();
  bool FoundProb = false;
  uint32_t EdgeCount = 0;
  for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
    if (*I == Dst) {
      ++EdgeCount;
      auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
      if (MapI != Probs.end()) {
        FoundProb = true;
        Prob += MapI->second;
      }
    }
  uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
  return FoundProb ? Prob : BranchProbability(EdgeCount, succ_num);
}

/// Set the edge probability for a given edge specified by PredBlock and an
/// index to the successors.
void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
                                               unsigned IndexInSuccessors,
                                               BranchProbability Prob) {
  Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
  Handles.insert(BasicBlockCallbackVH(Src, this));
  LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
                    << IndexInSuccessors << " successor probability to " << Prob
                    << "\n");
}

/// Set the edge probability for all edges at once.
void BranchProbabilityInfo::setEdgeProbability(
    const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
  assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
  if (Probs.size() == 0)
    return; // Nothing to set.

  uint64_t TotalNumerator = 0;
  for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
    setEdgeProbability(Src, SuccIdx, Probs[SuccIdx]);
    TotalNumerator += Probs[SuccIdx].getNumerator();
  }

  // Because of rounding errors the total probability cannot be checked to be
  // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
  // Instead, every single probability in Probs must be as accurate as possible.
  // This results in error 1/denominator at most, thus the total absolute error
  // should be within Probs.size / BranchProbability::getDenominator.
  assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
  assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
}

raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
                                            const BasicBlock *Src,
                                            const BasicBlock *Dst) const {
  const BranchProbability Prob = getEdgeProbability(Src, Dst);
  OS << "edge " << Src->getName() << " -> " << Dst->getName()
     << " probability is " << Prob
     << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");

  return OS;
}

void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
  for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    auto MapI = Probs.find(std::make_pair(BB, I.getSuccessorIndex()));
    if (MapI != Probs.end())
      Probs.erase(MapI);
  }
}

void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
                                      const TargetLibraryInfo *TLI,
                                      PostDominatorTree *PDT) {
  LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
                    << " ----\n\n");
  LastF = &F; // Store the last function we ran on for printing.
  assert(PostDominatedByUnreachable.empty());
  assert(PostDominatedByColdCall.empty());

  SccI = std::make_unique<SccInfo>(F);

  std::unique_ptr<PostDominatorTree> PDTPtr;

  if (!PDT) {
    PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
    PDT = PDTPtr.get();
  }

  computePostDominatedByUnreachable(F, PDT);
  computePostDominatedByColdCall(F, PDT);

  // Walk the basic blocks in post-order so that we can build up state about
  // the successors of a block iteratively.
  for (auto BB : post_order(&F.getEntryBlock())) {
    LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
                      << "\n");
    // If there is no at least two successors, no sense to set probability.
    if (BB->getTerminator()->getNumSuccessors() < 2)
      continue;
    if (calcMetadataWeights(BB))
      continue;
    if (calcInvokeHeuristics(BB))
      continue;
    if (calcUnreachableHeuristics(BB))
      continue;
    if (calcColdCallHeuristics(BB))
      continue;
    if (calcLoopBranchHeuristics(BB, LI))
      continue;
    if (calcPointerHeuristics(BB))
      continue;
    if (calcZeroHeuristics(BB, TLI))
      continue;
    if (calcFloatingPointHeuristics(BB))
      continue;
  }

  PostDominatedByUnreachable.clear();
  PostDominatedByColdCall.clear();
  SccI.reset();

  if (PrintBranchProb &&
      (PrintBranchProbFuncName.empty() ||
       F.getName().equals(PrintBranchProbFuncName))) {
    print(dbgs());
  }
}

void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  // We require DT so it's available when LI is available. The LI updating code
  // asserts that DT is also present so if we don't make sure that we have DT
  // here, that assert will trigger.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addRequired<PostDominatorTreeWrapperPass>();
  AU.setPreservesAll();
}

bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
  const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  const TargetLibraryInfo &TLI =
      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  PostDominatorTree &PDT =
      getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
  BPI.calculate(F, LI, &TLI, &PDT);
  return false;
}

void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }

void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
                                             const Module *) const {
  BPI.print(OS);
}

AnalysisKey BranchProbabilityAnalysis::Key;
BranchProbabilityInfo
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
  BranchProbabilityInfo BPI;
  BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
                &AM.getResult<TargetLibraryAnalysis>(F),
                &AM.getResult<PostDominatorTreeAnalysis>(F));
  return BPI;
}

PreservedAnalyses
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
  OS << "Printing analysis results of BPI for function "
     << "'" << F.getName() << "':"
     << "\n";
  AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}