hwasan_report.cpp 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//

#include "hwasan_report.h"

#include <dlfcn.h>

#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_globals.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"

using namespace __sanitizer;

namespace __hwasan {

class ScopedReport {
 public:
  ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
    BlockingMutexLock lock(&error_message_lock_);
    error_message_ptr_ = fatal ? &error_message_ : nullptr;
    ++hwasan_report_count;
  }

  ~ScopedReport() {
    {
      BlockingMutexLock lock(&error_message_lock_);
      if (fatal)
        SetAbortMessage(error_message_.data());
      error_message_ptr_ = nullptr;
    }
    if (common_flags()->print_module_map >= 2 ||
        (fatal && common_flags()->print_module_map))
      DumpProcessMap();
    if (fatal)
      Die();
  }

  static void MaybeAppendToErrorMessage(const char *msg) {
    BlockingMutexLock lock(&error_message_lock_);
    if (!error_message_ptr_)
      return;
    uptr len = internal_strlen(msg);
    uptr old_size = error_message_ptr_->size();
    error_message_ptr_->resize(old_size + len);
    // overwrite old trailing '\0', keep new trailing '\0' untouched.
    internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
  }
 private:
  ScopedErrorReportLock error_report_lock_;
  InternalMmapVector<char> error_message_;
  bool fatal;

  static InternalMmapVector<char> *error_message_ptr_;
  static BlockingMutex error_message_lock_;
};

InternalMmapVector<char> *ScopedReport::error_message_ptr_;
BlockingMutex ScopedReport::error_message_lock_;

// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
  ScopedReport::MaybeAppendToErrorMessage(buffer);
}

static StackTrace GetStackTraceFromId(u32 id) {
  CHECK(id);
  StackTrace res = StackDepotGet(id);
  CHECK(res.trace);
  return res;
}

// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
 public:
  SavedStackAllocations(StackAllocationsRingBuffer *rb) {
    uptr size = rb->size() * sizeof(uptr);
    void *storage =
        MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
    new (&rb_) StackAllocationsRingBuffer(*rb, storage);
  }

  ~SavedStackAllocations() {
    StackAllocationsRingBuffer *rb = get();
    UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
  }

  StackAllocationsRingBuffer *get() {
    return (StackAllocationsRingBuffer *)&rb_;
  }

 private:
  uptr rb_;
};

class Decorator: public __sanitizer::SanitizerCommonDecorator {
 public:
  Decorator() : SanitizerCommonDecorator() { }
  const char *Access() { return Blue(); }
  const char *Allocation() const { return Magenta(); }
  const char *Origin() const { return Magenta(); }
  const char *Name() const { return Green(); }
  const char *Location() { return Green(); }
  const char *Thread() { return Green(); }
};

static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
                               HeapAllocationRecord *har, uptr *ring_index,
                               uptr *num_matching_addrs,
                               uptr *num_matching_addrs_4b) {
  if (!rb) return false;

  *num_matching_addrs = 0;
  *num_matching_addrs_4b = 0;
  for (uptr i = 0, size = rb->size(); i < size; i++) {
    auto h = (*rb)[i];
    if (h.tagged_addr <= tagged_addr &&
        h.tagged_addr + h.requested_size > tagged_addr) {
      *har = h;
      *ring_index = i;
      return true;
    }

    // Measure the number of heap ring buffer entries that would have matched
    // if we had only one entry per address (e.g. if the ring buffer data was
    // stored at the address itself). This will help us tune the allocator
    // implementation for MTE.
    if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
        UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
      ++*num_matching_addrs;
    }

    // Measure the number of heap ring buffer entries that would have matched
    // if we only had 4 tag bits, which is the case for MTE.
    auto untag_4b = [](uptr p) {
      return p & ((1ULL << 60) - 1);
    };
    if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
        untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
      ++*num_matching_addrs_4b;
    }
  }
  return false;
}

static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
                                  tag_t addr_tag, uptr untagged_addr) {
  uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
  bool found_local = false;
  for (uptr i = 0; i < frames; i++) {
    const uptr *record_addr = &(*sa)[i];
    uptr record = *record_addr;
    if (!record)
      break;
    tag_t base_tag =
        reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
    uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
    uptr pc_mask = (1ULL << kRecordFPShift) - 1;
    uptr pc = record & pc_mask;
    FrameInfo frame;
    if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
      for (LocalInfo &local : frame.locals) {
        if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
          continue;
        tag_t obj_tag = base_tag ^ local.tag_offset;
        if (obj_tag != addr_tag)
          continue;
        // Calculate the offset from the object address to the faulting
        // address. Because we only store bits 4-19 of FP (bits 0-3 are
        // guaranteed to be zero), the calculation is performed mod 2^20 and may
        // harmlessly underflow if the address mod 2^20 is below the object
        // address.
        uptr obj_offset =
            (untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
        if (obj_offset >= local.size)
          continue;
        if (!found_local) {
          Printf("Potentially referenced stack objects:\n");
          found_local = true;
        }
        Printf("  %s in %s %s:%d\n", local.name, local.function_name,
               local.decl_file, local.decl_line);
      }
      frame.Clear();
    }
  }

  if (found_local)
    return;

  // We didn't find any locals. Most likely we don't have symbols, so dump
  // the information that we have for offline analysis.
  InternalScopedString frame_desc(GetPageSizeCached() * 2);
  Printf("Previously allocated frames:\n");
  for (uptr i = 0; i < frames; i++) {
    const uptr *record_addr = &(*sa)[i];
    uptr record = *record_addr;
    if (!record)
      break;
    uptr pc_mask = (1ULL << 48) - 1;
    uptr pc = record & pc_mask;
    frame_desc.append("  record_addr:0x%zx record:0x%zx",
                      reinterpret_cast<uptr>(record_addr), record);
    if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
      RenderFrame(&frame_desc, " %F %L\n", 0, frame->info,
                  common_flags()->symbolize_vs_style,
                  common_flags()->strip_path_prefix);
      frame->ClearAll();
    }
    Printf("%s", frame_desc.data());
    frame_desc.clear();
  }
}

// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
  if (tag == *tag_ptr)
    return true;
  if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
    return false;
  uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
  tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
  return tag == inline_tag;
}

// HWASan globals store the size of the global in the descriptor. In cases where
// we don't have a binary with symbols, we can't grab the size of the global
// from the debug info - but we might be able to retrieve it from the
// descriptor. Returns zero if the lookup failed.
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
  // Find the ELF object that this global resides in.
  Dl_info info;
  dladdr(reinterpret_cast<void *>(ptr), &info);
  auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
  auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
      reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);

  // Get the load bias. This is normally the same as the dli_fbase address on
  // position-independent code, but can be different on non-PIE executables,
  // binaries using LLD's partitioning feature, or binaries compiled with a
  // linker script.
  ElfW(Addr) load_bias = 0;
  for (const auto &phdr :
       ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
    if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
      continue;
    load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
    break;
  }

  // Walk all globals in this ELF object, looking for the one we're interested
  // in. Once we find it, we can stop iterating and return the size of the
  // global we're interested in.
  for (const hwasan_global &global :
       HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
    if (global.addr() <= ptr && ptr < global.addr() + global.size())
      return global.size();

  return 0;
}

void PrintAddressDescription(
    uptr tagged_addr, uptr access_size,
    StackAllocationsRingBuffer *current_stack_allocations) {
  Decorator d;
  int num_descriptions_printed = 0;
  uptr untagged_addr = UntagAddr(tagged_addr);

  // Print some very basic information about the address, if it's a heap.
  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
  if (uptr beg = chunk.Beg()) {
    uptr size = chunk.ActualSize();
    Printf("%s[%p,%p) is a %s %s heap chunk; "
           "size: %zd offset: %zd\n%s",
           d.Location(),
           beg, beg + size,
           chunk.FromSmallHeap() ? "small" : "large",
           chunk.IsAllocated() ? "allocated" : "unallocated",
           size, untagged_addr - beg,
           d.Default());
  }

  // Check if this looks like a heap buffer overflow by scanning
  // the shadow left and right and looking for the first adjacent
  // object with a different memory tag. If that tag matches addr_tag,
  // check the allocator if it has a live chunk there.
  tag_t addr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
  for (int i = 0; i < 1000; i++) {
    if (TagsEqual(addr_tag, left)) {
      candidate = left;
      break;
    }
    --left;
    if (TagsEqual(addr_tag, right)) {
      candidate = right;
      break;
    }
    ++right;
  }

  if (candidate) {
    uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
    HwasanChunkView chunk = FindHeapChunkByAddress(mem);
    if (chunk.IsAllocated()) {
      Printf("%s", d.Location());
      Printf("%p is located %zd bytes to the %s of %zd-byte region [%p,%p)\n",
             untagged_addr,
             candidate == left ? untagged_addr - chunk.End()
                               : chunk.Beg() - untagged_addr,
             candidate == left ? "right" : "left", chunk.UsedSize(),
             chunk.Beg(), chunk.End());
      Printf("%s", d.Allocation());
      Printf("allocated here:\n");
      Printf("%s", d.Default());
      GetStackTraceFromId(chunk.GetAllocStackId()).Print();
      num_descriptions_printed++;
    } else {
      // Check whether the address points into a loaded library. If so, this is
      // most likely a global variable.
      const char *module_name;
      uptr module_address;
      Symbolizer *sym = Symbolizer::GetOrInit();
      if (sym->GetModuleNameAndOffsetForPC(mem, &module_name,
                                           &module_address)) {
        DataInfo info;
        if (sym->SymbolizeData(mem, &info) && info.start) {
          Printf(
              "%p is located %zd bytes to the %s of %zd-byte global variable "
              "%s [%p,%p) in %s\n",
              untagged_addr,
              candidate == left ? untagged_addr - (info.start + info.size)
                                : info.start - untagged_addr,
              candidate == left ? "right" : "left", info.size, info.name,
              info.start, info.start + info.size, module_name);
        } else {
          uptr size = GetGlobalSizeFromDescriptor(mem);
          if (size == 0)
            // We couldn't find the size of the global from the descriptors.
            Printf(
                "%p is located to the %s of a global variable in (%s+0x%x)\n",
                untagged_addr, candidate == left ? "right" : "left",
                module_name, module_address);
          else
            Printf(
                "%p is located to the %s of a %zd-byte global variable in "
                "(%s+0x%x)\n",
                untagged_addr, candidate == left ? "right" : "left", size,
                module_name, module_address);
        }
        num_descriptions_printed++;
      }
    }
  }

  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
    // Scan all threads' ring buffers to find if it's a heap-use-after-free.
    HeapAllocationRecord har;
    uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
    if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
                           &ring_index, &num_matching_addrs,
                           &num_matching_addrs_4b)) {
      Printf("%s", d.Location());
      Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
             untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
             har.requested_size, UntagAddr(har.tagged_addr),
             UntagAddr(har.tagged_addr) + har.requested_size);
      Printf("%s", d.Allocation());
      Printf("freed by thread T%zd here:\n", t->unique_id());
      Printf("%s", d.Default());
      GetStackTraceFromId(har.free_context_id).Print();

      Printf("%s", d.Allocation());
      Printf("previously allocated here:\n", t);
      Printf("%s", d.Default());
      GetStackTraceFromId(har.alloc_context_id).Print();

      // Print a developer note: the index of this heap object
      // in the thread's deallocation ring buffer.
      Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
             flags()->heap_history_size);
      Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
      Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
             num_matching_addrs_4b);

      t->Announce();
      num_descriptions_printed++;
    }

    // Very basic check for stack memory.
    if (t->AddrIsInStack(untagged_addr)) {
      Printf("%s", d.Location());
      Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
             t->unique_id());
      Printf("%s", d.Default());
      t->Announce();

      auto *sa = (t == GetCurrentThread() && current_stack_allocations)
                     ? current_stack_allocations
                     : t->stack_allocations();
      PrintStackAllocations(sa, addr_tag, untagged_addr);
      num_descriptions_printed++;
    }
  });

  // Print the remaining threads, as an extra information, 1 line per thread.
  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });

  if (!num_descriptions_printed)
    // We exhausted our possibilities. Bail out.
    Printf("HWAddressSanitizer can not describe address in more detail.\n");
}

void ReportStats() {}

static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
                                   void (*print_tag)(InternalScopedString &s,
                                                     tag_t *tag)) {
  const uptr row_len = 16;  // better be power of two.
  tag_t *center_row_beg = reinterpret_cast<tag_t *>(
      RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
  tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
  tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
  InternalScopedString s(GetPageSizeCached() * 8);
  for (tag_t *row = beg_row; row < end_row; row += row_len) {
    s.append("%s", row == center_row_beg ? "=>" : "  ");
    s.append("%p:", row);
    for (uptr i = 0; i < row_len; i++) {
      s.append("%s", row + i == tag_ptr ? "[" : " ");
      print_tag(s, &row[i]);
      s.append("%s", row + i == tag_ptr ? "]" : " ");
    }
    s.append("\n");
  }
  Printf("%s", s.data());
}

static void PrintTagsAroundAddr(tag_t *tag_ptr) {
  Printf(
      "Memory tags around the buggy address (one tag corresponds to %zd "
      "bytes):\n", kShadowAlignment);
  PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
    s.append("%02x", *tag);
  });

  Printf(
      "Tags for short granules around the buggy address (one tag corresponds "
      "to %zd bytes):\n",
      kShadowAlignment);
  PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
    if (*tag >= 1 && *tag <= kShadowAlignment) {
      uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
      s.append("%02x",
               *reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
    } else {
      s.append("..");
    }
  });
  Printf(
      "See "
      "https://clang.llvm.org/docs/"
      "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
      "description of short granule tags\n");
}

void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
  ScopedReport R(flags()->halt_on_error);

  uptr untagged_addr = UntagAddr(tagged_addr);
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  tag_t mem_tag = *tag_ptr;
  Decorator d;
  Printf("%s", d.Error());
  uptr pc = stack->size ? stack->trace[0] : 0;
  const char *bug_type = "invalid-free";
  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
         untagged_addr, pc);
  Printf("%s", d.Access());
  Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
  Printf("%s", d.Default());

  stack->Print();

  PrintAddressDescription(tagged_addr, 0, nullptr);

  PrintTagsAroundAddr(tag_ptr);

  ReportErrorSummary(bug_type, stack);
}

void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
                           const u8 *expected) {
  uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
  ScopedReport R(flags()->halt_on_error);
  Decorator d;
  uptr untagged_addr = UntagAddr(tagged_addr);
  Printf("%s", d.Error());
  const char *bug_type = "allocation-tail-overwritten";
  Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
         bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
  Printf("\n%s", d.Default());
  stack->Print();
  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
  if (chunk.Beg()) {
    Printf("%s", d.Allocation());
    Printf("allocated here:\n");
    Printf("%s", d.Default());
    GetStackTraceFromId(chunk.GetAllocStackId()).Print();
  }

  InternalScopedString s(GetPageSizeCached() * 8);
  CHECK_GT(tail_size, 0U);
  CHECK_LT(tail_size, kShadowAlignment);
  u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
  s.append("Tail contains: ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append(".. ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%02x ", tail[i]);
  s.append("\n");
  s.append("Expected:      ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append(".. ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%02x ", expected[i]);
  s.append("\n");
  s.append("               ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append("   ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%s ", expected[i] != tail[i] ? "^^" : "  ");

  s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
    "to the right of a heap object, but within the %zd-byte granule, e.g.\n"
    "   char *x = new char[20];\n"
    "   x[25] = 42;\n"
    "%s does not detect such bugs in uninstrumented code at the time of write,"
    "\nbut can detect them at the time of free/delete.\n"
    "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
    kShadowAlignment, SanitizerToolName);
  Printf("%s", s.data());
  GetCurrentThread()->Announce();

  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  PrintTagsAroundAddr(tag_ptr);

  ReportErrorSummary(bug_type, stack);
}

void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
                       bool is_store, bool fatal, uptr *registers_frame) {
  ScopedReport R(fatal);
  SavedStackAllocations current_stack_allocations(
      GetCurrentThread()->stack_allocations());

  Decorator d;
  Printf("%s", d.Error());
  uptr untagged_addr = UntagAddr(tagged_addr);
  // TODO: when possible, try to print heap-use-after-free, etc.
  const char *bug_type = "tag-mismatch";
  uptr pc = stack->size ? stack->trace[0] : 0;
  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
         untagged_addr, pc);

  Thread *t = GetCurrentThread();

  sptr offset =
      __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
  CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr =
      reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
  tag_t mem_tag = *tag_ptr;

  Printf("%s", d.Access());
  Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
         is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
         mem_tag, t->unique_id());
  if (offset != 0)
    Printf("Invalid access starting at offset [%zu, %zu)\n", offset,
           Min(access_size, static_cast<uptr>(offset) + (1 << kShadowScale)));
  Printf("%s", d.Default());

  stack->Print();

  PrintAddressDescription(tagged_addr, access_size,
                          current_stack_allocations.get());
  t->Announce();

  PrintTagsAroundAddr(tag_ptr);

  if (registers_frame)
    ReportRegisters(registers_frame, pc);

  ReportErrorSummary(bug_type, stack);
}

// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_aarch64.S).
void ReportRegisters(uptr *frame, uptr pc) {
  Printf("Registers where the failure occurred (pc %p):\n", pc);

  // We explicitly print a single line (4 registers/line) each iteration to
  // reduce the amount of logcat error messages printed. Each Printf() will
  // result in a new logcat line, irrespective of whether a newline is present,
  // and so we wish to reduce the number of Printf() calls we have to make.
  Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
       frame[0], frame[1], frame[2], frame[3]);
  Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
       frame[4], frame[5], frame[6], frame[7]);
  Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
       frame[8], frame[9], frame[10], frame[11]);
  Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
       frame[12], frame[13], frame[14], frame[15]);
  Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
       frame[16], frame[17], frame[18], frame[19]);
  Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
       frame[20], frame[21], frame[22], frame[23]);
  Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
       frame[24], frame[25], frame[26], frame[27]);
  Printf("    x28 %016llx  x29 %016llx  x30 %016llx\n",
       frame[28], frame[29], frame[30]);
}

}  // namespace __hwasan