SemaExprCXX.cpp 344 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Implements semantic analysis for C++ expressions.
///
//===----------------------------------------------------------------------===//

#include "clang/Sema/Template.h"
#include "clang/Sema/SemaInternal.h"
#include "TreeTransform.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/AlignedAllocation.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaLambda.h"
#include "clang/Sema/TemplateDeduction.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
using namespace sema;

/// Handle the result of the special case name lookup for inheriting
/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
/// constructor names in member using declarations, even if 'X' is not the
/// name of the corresponding type.
ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
                                              SourceLocation NameLoc,
                                              IdentifierInfo &Name) {
  NestedNameSpecifier *NNS = SS.getScopeRep();

  // Convert the nested-name-specifier into a type.
  QualType Type;
  switch (NNS->getKind()) {
  case NestedNameSpecifier::TypeSpec:
  case NestedNameSpecifier::TypeSpecWithTemplate:
    Type = QualType(NNS->getAsType(), 0);
    break;

  case NestedNameSpecifier::Identifier:
    // Strip off the last layer of the nested-name-specifier and build a
    // typename type for it.
    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
                                        NNS->getAsIdentifier());
    break;

  case NestedNameSpecifier::Global:
  case NestedNameSpecifier::Super:
  case NestedNameSpecifier::Namespace:
  case NestedNameSpecifier::NamespaceAlias:
    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
  }

  // This reference to the type is located entirely at the location of the
  // final identifier in the qualified-id.
  return CreateParsedType(Type,
                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
}

ParsedType Sema::getConstructorName(IdentifierInfo &II,
                                    SourceLocation NameLoc,
                                    Scope *S, CXXScopeSpec &SS,
                                    bool EnteringContext) {
  CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
  assert(CurClass && &II == CurClass->getIdentifier() &&
         "not a constructor name");

  // When naming a constructor as a member of a dependent context (eg, in a
  // friend declaration or an inherited constructor declaration), form an
  // unresolved "typename" type.
  if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
    QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
    return ParsedType::make(T);
  }

  if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
    return ParsedType();

  // Find the injected-class-name declaration. Note that we make no attempt to
  // diagnose cases where the injected-class-name is shadowed: the only
  // declaration that can validly shadow the injected-class-name is a
  // non-static data member, and if the class contains both a non-static data
  // member and a constructor then it is ill-formed (we check that in
  // CheckCompletedCXXClass).
  CXXRecordDecl *InjectedClassName = nullptr;
  for (NamedDecl *ND : CurClass->lookup(&II)) {
    auto *RD = dyn_cast<CXXRecordDecl>(ND);
    if (RD && RD->isInjectedClassName()) {
      InjectedClassName = RD;
      break;
    }
  }
  if (!InjectedClassName) {
    if (!CurClass->isInvalidDecl()) {
      // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
      // properly. Work around it here for now.
      Diag(SS.getLastQualifierNameLoc(),
           diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
    }
    return ParsedType();
  }

  QualType T = Context.getTypeDeclType(InjectedClassName);
  DiagnoseUseOfDecl(InjectedClassName, NameLoc);
  MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);

  return ParsedType::make(T);
}

ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
                                   IdentifierInfo &II,
                                   SourceLocation NameLoc,
                                   Scope *S, CXXScopeSpec &SS,
                                   ParsedType ObjectTypePtr,
                                   bool EnteringContext) {
  // Determine where to perform name lookup.

  // FIXME: This area of the standard is very messy, and the current
  // wording is rather unclear about which scopes we search for the
  // destructor name; see core issues 399 and 555. Issue 399 in
  // particular shows where the current description of destructor name
  // lookup is completely out of line with existing practice, e.g.,
  // this appears to be ill-formed:
  //
  //   namespace N {
  //     template <typename T> struct S {
  //       ~S();
  //     };
  //   }
  //
  //   void f(N::S<int>* s) {
  //     s->N::S<int>::~S();
  //   }
  //
  // See also PR6358 and PR6359.
  //
  // For now, we accept all the cases in which the name given could plausibly
  // be interpreted as a correct destructor name, issuing off-by-default
  // extension diagnostics on the cases that don't strictly conform to the
  // C++20 rules. This basically means we always consider looking in the
  // nested-name-specifier prefix, the complete nested-name-specifier, and
  // the scope, and accept if we find the expected type in any of the three
  // places.

  if (SS.isInvalid())
    return nullptr;

  // Whether we've failed with a diagnostic already.
  bool Failed = false;

  llvm::SmallVector<NamedDecl*, 8> FoundDecls;
  llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;

  // If we have an object type, it's because we are in a
  // pseudo-destructor-expression or a member access expression, and
  // we know what type we're looking for.
  QualType SearchType =
      ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();

  auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
    auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
      auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
      if (!Type)
        return false;

      if (SearchType.isNull() || SearchType->isDependentType())
        return true;

      QualType T = Context.getTypeDeclType(Type);
      return Context.hasSameUnqualifiedType(T, SearchType);
    };

    unsigned NumAcceptableResults = 0;
    for (NamedDecl *D : Found) {
      if (IsAcceptableResult(D))
        ++NumAcceptableResults;

      // Don't list a class twice in the lookup failure diagnostic if it's
      // found by both its injected-class-name and by the name in the enclosing
      // scope.
      if (auto *RD = dyn_cast<CXXRecordDecl>(D))
        if (RD->isInjectedClassName())
          D = cast<NamedDecl>(RD->getParent());

      if (FoundDeclSet.insert(D).second)
        FoundDecls.push_back(D);
    }

    // As an extension, attempt to "fix" an ambiguity by erasing all non-type
    // results, and all non-matching results if we have a search type. It's not
    // clear what the right behavior is if destructor lookup hits an ambiguity,
    // but other compilers do generally accept at least some kinds of
    // ambiguity.
    if (Found.isAmbiguous() && NumAcceptableResults == 1) {
      Diag(NameLoc, diag::ext_dtor_name_ambiguous);
      LookupResult::Filter F = Found.makeFilter();
      while (F.hasNext()) {
        NamedDecl *D = F.next();
        if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
          Diag(D->getLocation(), diag::note_destructor_type_here)
              << Context.getTypeDeclType(TD);
        else
          Diag(D->getLocation(), diag::note_destructor_nontype_here);

        if (!IsAcceptableResult(D))
          F.erase();
      }
      F.done();
    }

    if (Found.isAmbiguous())
      Failed = true;

    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
      if (IsAcceptableResult(Type)) {
        QualType T = Context.getTypeDeclType(Type);
        MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
        return CreateParsedType(T,
                                Context.getTrivialTypeSourceInfo(T, NameLoc));
      }
    }

    return nullptr;
  };

  bool IsDependent = false;

  auto LookupInObjectType = [&]() -> ParsedType {
    if (Failed || SearchType.isNull())
      return nullptr;

    IsDependent |= SearchType->isDependentType();

    LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
    DeclContext *LookupCtx = computeDeclContext(SearchType);
    if (!LookupCtx)
      return nullptr;
    LookupQualifiedName(Found, LookupCtx);
    return CheckLookupResult(Found);
  };

  auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
    if (Failed)
      return nullptr;

    IsDependent |= isDependentScopeSpecifier(LookupSS);
    DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
    if (!LookupCtx)
      return nullptr;

    LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
    if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
      Failed = true;
      return nullptr;
    }
    LookupQualifiedName(Found, LookupCtx);
    return CheckLookupResult(Found);
  };

  auto LookupInScope = [&]() -> ParsedType {
    if (Failed || !S)
      return nullptr;

    LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
    LookupName(Found, S);
    return CheckLookupResult(Found);
  };

  // C++2a [basic.lookup.qual]p6:
  //   In a qualified-id of the form
  //
  //     nested-name-specifier[opt] type-name :: ~ type-name
  //
  //   the second type-name is looked up in the same scope as the first.
  //
  // We interpret this as meaning that if you do a dual-scope lookup for the
  // first name, you also do a dual-scope lookup for the second name, per
  // C++ [basic.lookup.classref]p4:
  //
  //   If the id-expression in a class member access is a qualified-id of the
  //   form
  //
  //     class-name-or-namespace-name :: ...
  //
  //   the class-name-or-namespace-name following the . or -> is first looked
  //   up in the class of the object expression and the name, if found, is used.
  //   Otherwise, it is looked up in the context of the entire
  //   postfix-expression.
  //
  // This looks in the same scopes as for an unqualified destructor name:
  //
  // C++ [basic.lookup.classref]p3:
  //   If the unqualified-id is ~ type-name, the type-name is looked up
  //   in the context of the entire postfix-expression. If the type T
  //   of the object expression is of a class type C, the type-name is
  //   also looked up in the scope of class C. At least one of the
  //   lookups shall find a name that refers to cv T.
  //
  // FIXME: The intent is unclear here. Should type-name::~type-name look in
  // the scope anyway if it finds a non-matching name declared in the class?
  // If both lookups succeed and find a dependent result, which result should
  // we retain? (Same question for p->~type-name().)

  if (NestedNameSpecifier *Prefix =
      SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
    // This is
    //
    //   nested-name-specifier type-name :: ~ type-name
    //
    // Look for the second type-name in the nested-name-specifier.
    CXXScopeSpec PrefixSS;
    PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
    if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
      return T;
  } else {
    // This is one of
    //
    //   type-name :: ~ type-name
    //   ~ type-name
    //
    // Look in the scope and (if any) the object type.
    if (ParsedType T = LookupInScope())
      return T;
    if (ParsedType T = LookupInObjectType())
      return T;
  }

  if (Failed)
    return nullptr;

  if (IsDependent) {
    // We didn't find our type, but that's OK: it's dependent anyway.

    // FIXME: What if we have no nested-name-specifier?
    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
                                   SS.getWithLocInContext(Context),
                                   II, NameLoc);
    return ParsedType::make(T);
  }

  // The remaining cases are all non-standard extensions imitating the behavior
  // of various other compilers.
  unsigned NumNonExtensionDecls = FoundDecls.size();

  if (SS.isSet()) {
    // For compatibility with older broken C++ rules and existing code,
    //
    //   nested-name-specifier :: ~ type-name
    //
    // also looks for type-name within the nested-name-specifier.
    if (ParsedType T = LookupInNestedNameSpec(SS)) {
      Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
          << SS.getRange()
          << FixItHint::CreateInsertion(SS.getEndLoc(),
                                        ("::" + II.getName()).str());
      return T;
    }

    // For compatibility with other compilers and older versions of Clang,
    //
    //   nested-name-specifier type-name :: ~ type-name
    //
    // also looks for type-name in the scope. Unfortunately, we can't
    // reasonably apply this fallback for dependent nested-name-specifiers.
    if (SS.getScopeRep()->getPrefix()) {
      if (ParsedType T = LookupInScope()) {
        Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
            << FixItHint::CreateRemoval(SS.getRange());
        Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
            << GetTypeFromParser(T);
        return T;
      }
    }
  }

  // We didn't find anything matching; tell the user what we did find (if
  // anything).

  // Don't tell the user about declarations we shouldn't have found.
  FoundDecls.resize(NumNonExtensionDecls);

  // List types before non-types.
  std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
                   [](NamedDecl *A, NamedDecl *B) {
                     return isa<TypeDecl>(A->getUnderlyingDecl()) >
                            isa<TypeDecl>(B->getUnderlyingDecl());
                   });

  // Suggest a fixit to properly name the destroyed type.
  auto MakeFixItHint = [&]{
    const CXXRecordDecl *Destroyed = nullptr;
    // FIXME: If we have a scope specifier, suggest its last component?
    if (!SearchType.isNull())
      Destroyed = SearchType->getAsCXXRecordDecl();
    else if (S)
      Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
    if (Destroyed)
      return FixItHint::CreateReplacement(SourceRange(NameLoc),
                                          Destroyed->getNameAsString());
    return FixItHint();
  };

  if (FoundDecls.empty()) {
    // FIXME: Attempt typo-correction?
    Diag(NameLoc, diag::err_undeclared_destructor_name)
      << &II << MakeFixItHint();
  } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
    if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
      assert(!SearchType.isNull() &&
             "should only reject a type result if we have a search type");
      QualType T = Context.getTypeDeclType(TD);
      Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
          << T << SearchType << MakeFixItHint();
    } else {
      Diag(NameLoc, diag::err_destructor_expr_nontype)
          << &II << MakeFixItHint();
    }
  } else {
    Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
                                      : diag::err_destructor_expr_mismatch)
        << &II << SearchType << MakeFixItHint();
  }

  for (NamedDecl *FoundD : FoundDecls) {
    if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
      Diag(FoundD->getLocation(), diag::note_destructor_type_here)
          << Context.getTypeDeclType(TD);
    else
      Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
          << FoundD;
  }

  return nullptr;
}

ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
                                              ParsedType ObjectType) {
  if (DS.getTypeSpecType() == DeclSpec::TST_error)
    return nullptr;

  if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
    Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
    return nullptr;
  }

  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
         "unexpected type in getDestructorType");
  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());

  // If we know the type of the object, check that the correct destructor
  // type was named now; we can give better diagnostics this way.
  QualType SearchType = GetTypeFromParser(ObjectType);
  if (!SearchType.isNull() && !SearchType->isDependentType() &&
      !Context.hasSameUnqualifiedType(T, SearchType)) {
    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
      << T << SearchType;
    return nullptr;
  }

  return ParsedType::make(T);
}

bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
                                  const UnqualifiedId &Name) {
  assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);

  if (!SS.isValid())
    return false;

  switch (SS.getScopeRep()->getKind()) {
  case NestedNameSpecifier::Identifier:
  case NestedNameSpecifier::TypeSpec:
  case NestedNameSpecifier::TypeSpecWithTemplate:
    // Per C++11 [over.literal]p2, literal operators can only be declared at
    // namespace scope. Therefore, this unqualified-id cannot name anything.
    // Reject it early, because we have no AST representation for this in the
    // case where the scope is dependent.
    Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
        << SS.getScopeRep();
    return true;

  case NestedNameSpecifier::Global:
  case NestedNameSpecifier::Super:
  case NestedNameSpecifier::Namespace:
  case NestedNameSpecifier::NamespaceAlias:
    return false;
  }

  llvm_unreachable("unknown nested name specifier kind");
}

/// Build a C++ typeid expression with a type operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
                                SourceLocation TypeidLoc,
                                TypeSourceInfo *Operand,
                                SourceLocation RParenLoc) {
  // C++ [expr.typeid]p4:
  //   The top-level cv-qualifiers of the lvalue expression or the type-id
  //   that is the operand of typeid are always ignored.
  //   If the type of the type-id is a class type or a reference to a class
  //   type, the class shall be completely-defined.
  Qualifiers Quals;
  QualType T
    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
                                      Quals);
  if (T->getAs<RecordType>() &&
      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
    return ExprError();

  if (T->isVariablyModifiedType())
    return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);

  if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
    return ExprError();

  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
                                     SourceRange(TypeidLoc, RParenLoc));
}

/// Build a C++ typeid expression with an expression operand.
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
                                SourceLocation TypeidLoc,
                                Expr *E,
                                SourceLocation RParenLoc) {
  bool WasEvaluated = false;
  if (E && !E->isTypeDependent()) {
    if (E->getType()->isPlaceholderType()) {
      ExprResult result = CheckPlaceholderExpr(E);
      if (result.isInvalid()) return ExprError();
      E = result.get();
    }

    QualType T = E->getType();
    if (const RecordType *RecordT = T->getAs<RecordType>()) {
      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
      // C++ [expr.typeid]p3:
      //   [...] If the type of the expression is a class type, the class
      //   shall be completely-defined.
      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
        return ExprError();

      // C++ [expr.typeid]p3:
      //   When typeid is applied to an expression other than an glvalue of a
      //   polymorphic class type [...] [the] expression is an unevaluated
      //   operand. [...]
      if (RecordD->isPolymorphic() && E->isGLValue()) {
        // The subexpression is potentially evaluated; switch the context
        // and recheck the subexpression.
        ExprResult Result = TransformToPotentiallyEvaluated(E);
        if (Result.isInvalid()) return ExprError();
        E = Result.get();

        // We require a vtable to query the type at run time.
        MarkVTableUsed(TypeidLoc, RecordD);
        WasEvaluated = true;
      }
    }

    ExprResult Result = CheckUnevaluatedOperand(E);
    if (Result.isInvalid())
      return ExprError();
    E = Result.get();

    // C++ [expr.typeid]p4:
    //   [...] If the type of the type-id is a reference to a possibly
    //   cv-qualified type, the result of the typeid expression refers to a
    //   std::type_info object representing the cv-unqualified referenced
    //   type.
    Qualifiers Quals;
    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
    if (!Context.hasSameType(T, UnqualT)) {
      T = UnqualT;
      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
    }
  }

  if (E->getType()->isVariablyModifiedType())
    return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
                     << E->getType());
  else if (!inTemplateInstantiation() &&
           E->HasSideEffects(Context, WasEvaluated)) {
    // The expression operand for typeid is in an unevaluated expression
    // context, so side effects could result in unintended consequences.
    Diag(E->getExprLoc(), WasEvaluated
                              ? diag::warn_side_effects_typeid
                              : diag::warn_side_effects_unevaluated_context);
  }

  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
                                     SourceRange(TypeidLoc, RParenLoc));
}

/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
ExprResult
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
  // typeid is not supported in OpenCL.
  if (getLangOpts().OpenCLCPlusPlus) {
    return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
                     << "typeid");
  }

  // Find the std::type_info type.
  if (!getStdNamespace())
    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));

  if (!CXXTypeInfoDecl) {
    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
    LookupQualifiedName(R, getStdNamespace());
    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    // Microsoft's typeinfo doesn't have type_info in std but in the global
    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
    if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
      LookupQualifiedName(R, Context.getTranslationUnitDecl());
      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
    }
    if (!CXXTypeInfoDecl)
      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
  }

  if (!getLangOpts().RTTI) {
    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
  }

  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);

  if (isType) {
    // The operand is a type; handle it as such.
    TypeSourceInfo *TInfo = nullptr;
    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
                                   &TInfo);
    if (T.isNull())
      return ExprError();

    if (!TInfo)
      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);

    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
  }

  // The operand is an expression.
  ExprResult Result =
      BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);

  if (!getLangOpts().RTTIData && !Result.isInvalid())
    if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
      if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
        Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
            << (getDiagnostics().getDiagnosticOptions().getFormat() ==
                DiagnosticOptions::MSVC);
  return Result;
}

/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
/// a single GUID.
static void
getUuidAttrOfType(Sema &SemaRef, QualType QT,
                  llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
  // Optionally remove one level of pointer, reference or array indirection.
  const Type *Ty = QT.getTypePtr();
  if (QT->isPointerType() || QT->isReferenceType())
    Ty = QT->getPointeeType().getTypePtr();
  else if (QT->isArrayType())
    Ty = Ty->getBaseElementTypeUnsafe();

  const auto *TD = Ty->getAsTagDecl();
  if (!TD)
    return;

  if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
    UuidAttrs.insert(Uuid);
    return;
  }

  // __uuidof can grab UUIDs from template arguments.
  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
    const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
    for (const TemplateArgument &TA : TAL.asArray()) {
      const UuidAttr *UuidForTA = nullptr;
      if (TA.getKind() == TemplateArgument::Type)
        getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
      else if (TA.getKind() == TemplateArgument::Declaration)
        getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);

      if (UuidForTA)
        UuidAttrs.insert(UuidForTA);
    }
  }
}

/// Build a Microsoft __uuidof expression with a type operand.
ExprResult Sema::BuildCXXUuidof(QualType Type,
                                SourceLocation TypeidLoc,
                                TypeSourceInfo *Operand,
                                SourceLocation RParenLoc) {
  MSGuidDecl *Guid = nullptr;
  if (!Operand->getType()->isDependentType()) {
    llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
    getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
    if (UuidAttrs.empty())
      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
    if (UuidAttrs.size() > 1)
      return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
    Guid = UuidAttrs.back()->getGuidDecl();
  }

  return new (Context)
      CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
}

/// Build a Microsoft __uuidof expression with an expression operand.
ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
                                Expr *E, SourceLocation RParenLoc) {
  MSGuidDecl *Guid = nullptr;
  if (!E->getType()->isDependentType()) {
    if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
      // A null pointer results in {00000000-0000-0000-0000-000000000000}.
      Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
    } else {
      llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
      getUuidAttrOfType(*this, E->getType(), UuidAttrs);
      if (UuidAttrs.empty())
        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
      if (UuidAttrs.size() > 1)
        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
      Guid = UuidAttrs.back()->getGuidDecl();
    }
  }

  return new (Context)
      CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
}

/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
ExprResult
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
  QualType GuidType = Context.getMSGuidType();
  GuidType.addConst();

  if (isType) {
    // The operand is a type; handle it as such.
    TypeSourceInfo *TInfo = nullptr;
    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
                                   &TInfo);
    if (T.isNull())
      return ExprError();

    if (!TInfo)
      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);

    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
  }

  // The operand is an expression.
  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
}

/// ActOnCXXBoolLiteral - Parse {true,false} literals.
ExprResult
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
         "Unknown C++ Boolean value!");
  return new (Context)
      CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
}

/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
ExprResult
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
}

/// ActOnCXXThrow - Parse throw expressions.
ExprResult
Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
  bool IsThrownVarInScope = false;
  if (Ex) {
    // C++0x [class.copymove]p31:
    //   When certain criteria are met, an implementation is allowed to omit the
    //   copy/move construction of a class object [...]
    //
    //     - in a throw-expression, when the operand is the name of a
    //       non-volatile automatic object (other than a function or catch-
    //       clause parameter) whose scope does not extend beyond the end of the
    //       innermost enclosing try-block (if there is one), the copy/move
    //       operation from the operand to the exception object (15.1) can be
    //       omitted by constructing the automatic object directly into the
    //       exception object
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
          for( ; S; S = S->getParent()) {
            if (S->isDeclScope(Var)) {
              IsThrownVarInScope = true;
              break;
            }

            if (S->getFlags() &
                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
                 Scope::TryScope))
              break;
          }
        }
      }
  }

  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
}

ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
                               bool IsThrownVarInScope) {
  // Don't report an error if 'throw' is used in system headers.
  if (!getLangOpts().CXXExceptions &&
      !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
    // Delay error emission for the OpenMP device code.
    targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
  }

  // Exceptions aren't allowed in CUDA device code.
  if (getLangOpts().CUDA)
    CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
        << "throw" << CurrentCUDATarget();

  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
    Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";

  if (Ex && !Ex->isTypeDependent()) {
    QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
    if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
      return ExprError();

    // Initialize the exception result.  This implicitly weeds out
    // abstract types or types with inaccessible copy constructors.

    // C++0x [class.copymove]p31:
    //   When certain criteria are met, an implementation is allowed to omit the
    //   copy/move construction of a class object [...]
    //
    //     - in a throw-expression, when the operand is the name of a
    //       non-volatile automatic object (other than a function or
    //       catch-clause
    //       parameter) whose scope does not extend beyond the end of the
    //       innermost enclosing try-block (if there is one), the copy/move
    //       operation from the operand to the exception object (15.1) can be
    //       omitted by constructing the automatic object directly into the
    //       exception object
    const VarDecl *NRVOVariable = nullptr;
    if (IsThrownVarInScope)
      NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);

    InitializedEntity Entity = InitializedEntity::InitializeException(
        OpLoc, ExceptionObjectTy,
        /*NRVO=*/NRVOVariable != nullptr);
    ExprResult Res = PerformMoveOrCopyInitialization(
        Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
    if (Res.isInvalid())
      return ExprError();
    Ex = Res.get();
  }

  return new (Context)
      CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
}

static void
collectPublicBases(CXXRecordDecl *RD,
                   llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
                   llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
                   llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
                   bool ParentIsPublic) {
  for (const CXXBaseSpecifier &BS : RD->bases()) {
    CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
    bool NewSubobject;
    // Virtual bases constitute the same subobject.  Non-virtual bases are
    // always distinct subobjects.
    if (BS.isVirtual())
      NewSubobject = VBases.insert(BaseDecl).second;
    else
      NewSubobject = true;

    if (NewSubobject)
      ++SubobjectsSeen[BaseDecl];

    // Only add subobjects which have public access throughout the entire chain.
    bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
    if (PublicPath)
      PublicSubobjectsSeen.insert(BaseDecl);

    // Recurse on to each base subobject.
    collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
                       PublicPath);
  }
}

static void getUnambiguousPublicSubobjects(
    CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
  llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
  llvm::SmallSet<CXXRecordDecl *, 2> VBases;
  llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
  SubobjectsSeen[RD] = 1;
  PublicSubobjectsSeen.insert(RD);
  collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
                     /*ParentIsPublic=*/true);

  for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
    // Skip ambiguous objects.
    if (SubobjectsSeen[PublicSubobject] > 1)
      continue;

    Objects.push_back(PublicSubobject);
  }
}

/// CheckCXXThrowOperand - Validate the operand of a throw.
bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
                                QualType ExceptionObjectTy, Expr *E) {
  //   If the type of the exception would be an incomplete type or a pointer
  //   to an incomplete type other than (cv) void the program is ill-formed.
  QualType Ty = ExceptionObjectTy;
  bool isPointer = false;
  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
    Ty = Ptr->getPointeeType();
    isPointer = true;
  }
  if (!isPointer || !Ty->isVoidType()) {
    if (RequireCompleteType(ThrowLoc, Ty,
                            isPointer ? diag::err_throw_incomplete_ptr
                                      : diag::err_throw_incomplete,
                            E->getSourceRange()))
      return true;

    if (!isPointer && Ty->isSizelessType()) {
      Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
      return true;
    }

    if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
                               diag::err_throw_abstract_type, E))
      return true;
  }

  // If the exception has class type, we need additional handling.
  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
  if (!RD)
    return false;

  // If we are throwing a polymorphic class type or pointer thereof,
  // exception handling will make use of the vtable.
  MarkVTableUsed(ThrowLoc, RD);

  // If a pointer is thrown, the referenced object will not be destroyed.
  if (isPointer)
    return false;

  // If the class has a destructor, we must be able to call it.
  if (!RD->hasIrrelevantDestructor()) {
    if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
      MarkFunctionReferenced(E->getExprLoc(), Destructor);
      CheckDestructorAccess(E->getExprLoc(), Destructor,
                            PDiag(diag::err_access_dtor_exception) << Ty);
      if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
        return true;
    }
  }

  // The MSVC ABI creates a list of all types which can catch the exception
  // object.  This list also references the appropriate copy constructor to call
  // if the object is caught by value and has a non-trivial copy constructor.
  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
    // We are only interested in the public, unambiguous bases contained within
    // the exception object.  Bases which are ambiguous or otherwise
    // inaccessible are not catchable types.
    llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
    getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);

    for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
      // Attempt to lookup the copy constructor.  Various pieces of machinery
      // will spring into action, like template instantiation, which means this
      // cannot be a simple walk of the class's decls.  Instead, we must perform
      // lookup and overload resolution.
      CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
      if (!CD || CD->isDeleted())
        continue;

      // Mark the constructor referenced as it is used by this throw expression.
      MarkFunctionReferenced(E->getExprLoc(), CD);

      // Skip this copy constructor if it is trivial, we don't need to record it
      // in the catchable type data.
      if (CD->isTrivial())
        continue;

      // The copy constructor is non-trivial, create a mapping from this class
      // type to this constructor.
      // N.B.  The selection of copy constructor is not sensitive to this
      // particular throw-site.  Lookup will be performed at the catch-site to
      // ensure that the copy constructor is, in fact, accessible (via
      // friendship or any other means).
      Context.addCopyConstructorForExceptionObject(Subobject, CD);

      // We don't keep the instantiated default argument expressions around so
      // we must rebuild them here.
      for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
        if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
          return true;
      }
    }
  }

  // Under the Itanium C++ ABI, memory for the exception object is allocated by
  // the runtime with no ability for the compiler to request additional
  // alignment. Warn if the exception type requires alignment beyond the minimum
  // guaranteed by the target C++ runtime.
  if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
    CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
    CharUnits ExnObjAlign = Context.getExnObjectAlignment();
    if (ExnObjAlign < TypeAlign) {
      Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
      Diag(ThrowLoc, diag::note_throw_underaligned_obj)
          << Ty << (unsigned)TypeAlign.getQuantity()
          << (unsigned)ExnObjAlign.getQuantity();
    }
  }

  return false;
}

static QualType adjustCVQualifiersForCXXThisWithinLambda(
    ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
    DeclContext *CurSemaContext, ASTContext &ASTCtx) {

  QualType ClassType = ThisTy->getPointeeType();
  LambdaScopeInfo *CurLSI = nullptr;
  DeclContext *CurDC = CurSemaContext;

  // Iterate through the stack of lambdas starting from the innermost lambda to
  // the outermost lambda, checking if '*this' is ever captured by copy - since
  // that could change the cv-qualifiers of the '*this' object.
  // The object referred to by '*this' starts out with the cv-qualifiers of its
  // member function.  We then start with the innermost lambda and iterate
  // outward checking to see if any lambda performs a by-copy capture of '*this'
  // - and if so, any nested lambda must respect the 'constness' of that
  // capturing lamdbda's call operator.
  //

  // Since the FunctionScopeInfo stack is representative of the lexical
  // nesting of the lambda expressions during initial parsing (and is the best
  // place for querying information about captures about lambdas that are
  // partially processed) and perhaps during instantiation of function templates
  // that contain lambda expressions that need to be transformed BUT not
  // necessarily during instantiation of a nested generic lambda's function call
  // operator (which might even be instantiated at the end of the TU) - at which
  // time the DeclContext tree is mature enough to query capture information
  // reliably - we use a two pronged approach to walk through all the lexically
  // enclosing lambda expressions:
  //
  //  1) Climb down the FunctionScopeInfo stack as long as each item represents
  //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
  //  enclosed by the call-operator of the LSI below it on the stack (while
  //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
  //  the stack represents the innermost lambda.
  //
  //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
  //  represents a lambda's call operator.  If it does, we must be instantiating
  //  a generic lambda's call operator (represented by the Current LSI, and
  //  should be the only scenario where an inconsistency between the LSI and the
  //  DeclContext should occur), so climb out the DeclContexts if they
  //  represent lambdas, while querying the corresponding closure types
  //  regarding capture information.

  // 1) Climb down the function scope info stack.
  for (int I = FunctionScopes.size();
       I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
       (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
                       cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
       CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
    CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);

    if (!CurLSI->isCXXThisCaptured())
        continue;

    auto C = CurLSI->getCXXThisCapture();

    if (C.isCopyCapture()) {
      ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
      if (CurLSI->CallOperator->isConst())
        ClassType.addConst();
      return ASTCtx.getPointerType(ClassType);
    }
  }

  // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
  // happen during instantiation of its nested generic lambda call operator)
  if (isLambdaCallOperator(CurDC)) {
    assert(CurLSI && "While computing 'this' capture-type for a generic "
                     "lambda, we must have a corresponding LambdaScopeInfo");
    assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
           "While computing 'this' capture-type for a generic lambda, when we "
           "run out of enclosing LSI's, yet the enclosing DC is a "
           "lambda-call-operator we must be (i.e. Current LSI) in a generic "
           "lambda call oeprator");
    assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));

    auto IsThisCaptured =
        [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
      IsConst = false;
      IsByCopy = false;
      for (auto &&C : Closure->captures()) {
        if (C.capturesThis()) {
          if (C.getCaptureKind() == LCK_StarThis)
            IsByCopy = true;
          if (Closure->getLambdaCallOperator()->isConst())
            IsConst = true;
          return true;
        }
      }
      return false;
    };

    bool IsByCopyCapture = false;
    bool IsConstCapture = false;
    CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
    while (Closure &&
           IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
      if (IsByCopyCapture) {
        ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
        if (IsConstCapture)
          ClassType.addConst();
        return ASTCtx.getPointerType(ClassType);
      }
      Closure = isLambdaCallOperator(Closure->getParent())
                    ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
                    : nullptr;
    }
  }
  return ASTCtx.getPointerType(ClassType);
}

QualType Sema::getCurrentThisType() {
  DeclContext *DC = getFunctionLevelDeclContext();
  QualType ThisTy = CXXThisTypeOverride;

  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
    if (method && method->isInstance())
      ThisTy = method->getThisType();
  }

  if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
      inTemplateInstantiation()) {

    assert(isa<CXXRecordDecl>(DC) &&
           "Trying to get 'this' type from static method?");

    // This is a lambda call operator that is being instantiated as a default
    // initializer. DC must point to the enclosing class type, so we can recover
    // the 'this' type from it.

    QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
    // There are no cv-qualifiers for 'this' within default initializers,
    // per [expr.prim.general]p4.
    ThisTy = Context.getPointerType(ClassTy);
  }

  // If we are within a lambda's call operator, the cv-qualifiers of 'this'
  // might need to be adjusted if the lambda or any of its enclosing lambda's
  // captures '*this' by copy.
  if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
    return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
                                                    CurContext, Context);
  return ThisTy;
}

Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
                                         Decl *ContextDecl,
                                         Qualifiers CXXThisTypeQuals,
                                         bool Enabled)
  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
{
  if (!Enabled || !ContextDecl)
    return;

  CXXRecordDecl *Record = nullptr;
  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
    Record = Template->getTemplatedDecl();
  else
    Record = cast<CXXRecordDecl>(ContextDecl);

  QualType T = S.Context.getRecordType(Record);
  T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);

  S.CXXThisTypeOverride = S.Context.getPointerType(T);

  this->Enabled = true;
}


Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
  if (Enabled) {
    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
  }
}

bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
    bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
    const bool ByCopy) {
  // We don't need to capture this in an unevaluated context.
  if (isUnevaluatedContext() && !Explicit)
    return true;

  assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");

  const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
                                         ? *FunctionScopeIndexToStopAt
                                         : FunctionScopes.size() - 1;

  // Check that we can capture the *enclosing object* (referred to by '*this')
  // by the capturing-entity/closure (lambda/block/etc) at
  // MaxFunctionScopesIndex-deep on the FunctionScopes stack.

  // Note: The *enclosing object* can only be captured by-value by a
  // closure that is a lambda, using the explicit notation:
  //    [*this] { ... }.
  // Every other capture of the *enclosing object* results in its by-reference
  // capture.

  // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
  // stack), we can capture the *enclosing object* only if:
  // - 'L' has an explicit byref or byval capture of the *enclosing object*
  // -  or, 'L' has an implicit capture.
  // AND
  //   -- there is no enclosing closure
  //   -- or, there is some enclosing closure 'E' that has already captured the
  //      *enclosing object*, and every intervening closure (if any) between 'E'
  //      and 'L' can implicitly capture the *enclosing object*.
  //   -- or, every enclosing closure can implicitly capture the
  //      *enclosing object*


  unsigned NumCapturingClosures = 0;
  for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
    if (CapturingScopeInfo *CSI =
            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
      if (CSI->CXXThisCaptureIndex != 0) {
        // 'this' is already being captured; there isn't anything more to do.
        CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
        break;
      }
      LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
      if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
        // This context can't implicitly capture 'this'; fail out.
        if (BuildAndDiagnose)
          Diag(Loc, diag::err_this_capture)
              << (Explicit && idx == MaxFunctionScopesIndex);
        return true;
      }
      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
          (Explicit && idx == MaxFunctionScopesIndex)) {
        // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
        // iteration through can be an explicit capture, all enclosing closures,
        // if any, must perform implicit captures.

        // This closure can capture 'this'; continue looking upwards.
        NumCapturingClosures++;
        continue;
      }
      // This context can't implicitly capture 'this'; fail out.
      if (BuildAndDiagnose)
        Diag(Loc, diag::err_this_capture)
            << (Explicit && idx == MaxFunctionScopesIndex);
      return true;
    }
    break;
  }
  if (!BuildAndDiagnose) return false;

  // If we got here, then the closure at MaxFunctionScopesIndex on the
  // FunctionScopes stack, can capture the *enclosing object*, so capture it
  // (including implicit by-reference captures in any enclosing closures).

  // In the loop below, respect the ByCopy flag only for the closure requesting
  // the capture (i.e. first iteration through the loop below).  Ignore it for
  // all enclosing closure's up to NumCapturingClosures (since they must be
  // implicitly capturing the *enclosing  object* by reference (see loop
  // above)).
  assert((!ByCopy ||
          dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
         "Only a lambda can capture the enclosing object (referred to by "
         "*this) by copy");
  QualType ThisTy = getCurrentThisType();
  for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
       --idx, --NumCapturingClosures) {
    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);

    // The type of the corresponding data member (not a 'this' pointer if 'by
    // copy').
    QualType CaptureType = ThisTy;
    if (ByCopy) {
      // If we are capturing the object referred to by '*this' by copy, ignore
      // any cv qualifiers inherited from the type of the member function for
      // the type of the closure-type's corresponding data member and any use
      // of 'this'.
      CaptureType = ThisTy->getPointeeType();
      CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
    }

    bool isNested = NumCapturingClosures > 1;
    CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
  }
  return false;
}

ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
  /// is a non-lvalue expression whose value is the address of the object for
  /// which the function is called.

  QualType ThisTy = getCurrentThisType();
  if (ThisTy.isNull())
    return Diag(Loc, diag::err_invalid_this_use);
  return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
}

Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
                             bool IsImplicit) {
  auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
  MarkThisReferenced(This);
  return This;
}

void Sema::MarkThisReferenced(CXXThisExpr *This) {
  CheckCXXThisCapture(This->getExprLoc());
}

bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
  // If we're outside the body of a member function, then we'll have a specified
  // type for 'this'.
  if (CXXThisTypeOverride.isNull())
    return false;

  // Determine whether we're looking into a class that's currently being
  // defined.
  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
  return Class && Class->isBeingDefined();
}

/// Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
ExprResult
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
                                SourceLocation LParenOrBraceLoc,
                                MultiExprArg exprs,
                                SourceLocation RParenOrBraceLoc,
                                bool ListInitialization) {
  if (!TypeRep)
    return ExprError();

  TypeSourceInfo *TInfo;
  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
  if (!TInfo)
    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());

  auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
                                          RParenOrBraceLoc, ListInitialization);
  // Avoid creating a non-type-dependent expression that contains typos.
  // Non-type-dependent expressions are liable to be discarded without
  // checking for embedded typos.
  if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
      !Result.get()->isTypeDependent())
    Result = CorrectDelayedTyposInExpr(Result.get());
  else if (Result.isInvalid())
    Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
                                RParenOrBraceLoc, exprs, Ty);
  return Result;
}

ExprResult
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
                                SourceLocation LParenOrBraceLoc,
                                MultiExprArg Exprs,
                                SourceLocation RParenOrBraceLoc,
                                bool ListInitialization) {
  QualType Ty = TInfo->getType();
  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();

  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
    // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
    // directly. We work around this by dropping the locations of the braces.
    SourceRange Locs = ListInitialization
                           ? SourceRange()
                           : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
    return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
                                              Exprs, Locs.getEnd());
  }

  assert((!ListInitialization ||
          (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
         "List initialization must have initializer list as expression.");
  SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);

  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
  InitializationKind Kind =
      Exprs.size()
          ? ListInitialization
                ? InitializationKind::CreateDirectList(
                      TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
                : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
                                                   RParenOrBraceLoc)
          : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
                                            RParenOrBraceLoc);

  // C++1z [expr.type.conv]p1:
  //   If the type is a placeholder for a deduced class type, [...perform class
  //   template argument deduction...]
  DeducedType *Deduced = Ty->getContainedDeducedType();
  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
    Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
                                                     Kind, Exprs);
    if (Ty.isNull())
      return ExprError();
    Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
  }

  // C++ [expr.type.conv]p1:
  // If the expression list is a parenthesized single expression, the type
  // conversion expression is equivalent (in definedness, and if defined in
  // meaning) to the corresponding cast expression.
  if (Exprs.size() == 1 && !ListInitialization &&
      !isa<InitListExpr>(Exprs[0])) {
    Expr *Arg = Exprs[0];
    return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
                                      RParenOrBraceLoc);
  }

  //   For an expression of the form T(), T shall not be an array type.
  QualType ElemTy = Ty;
  if (Ty->isArrayType()) {
    if (!ListInitialization)
      return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
                         << FullRange);
    ElemTy = Context.getBaseElementType(Ty);
  }

  // There doesn't seem to be an explicit rule against this but sanity demands
  // we only construct objects with object types.
  if (Ty->isFunctionType())
    return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
                       << Ty << FullRange);

  // C++17 [expr.type.conv]p2:
  //   If the type is cv void and the initializer is (), the expression is a
  //   prvalue of the specified type that performs no initialization.
  if (!Ty->isVoidType() &&
      RequireCompleteType(TyBeginLoc, ElemTy,
                          diag::err_invalid_incomplete_type_use, FullRange))
    return ExprError();

  //   Otherwise, the expression is a prvalue of the specified type whose
  //   result object is direct-initialized (11.6) with the initializer.
  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);

  if (Result.isInvalid())
    return Result;

  Expr *Inner = Result.get();
  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
    Inner = BTE->getSubExpr();
  if (!isa<CXXTemporaryObjectExpr>(Inner) &&
      !isa<CXXScalarValueInitExpr>(Inner)) {
    // If we created a CXXTemporaryObjectExpr, that node also represents the
    // functional cast. Otherwise, create an explicit cast to represent
    // the syntactic form of a functional-style cast that was used here.
    //
    // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
    // would give a more consistent AST representation than using a
    // CXXTemporaryObjectExpr. It's also weird that the functional cast
    // is sometimes handled by initialization and sometimes not.
    QualType ResultType = Result.get()->getType();
    SourceRange Locs = ListInitialization
                           ? SourceRange()
                           : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
    Result = CXXFunctionalCastExpr::Create(
        Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
        Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
        Locs.getBegin(), Locs.getEnd());
  }

  return Result;
}

bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
  // [CUDA] Ignore this function, if we can't call it.
  const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
  if (getLangOpts().CUDA &&
      IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
    return false;

  SmallVector<const FunctionDecl*, 4> PreventedBy;
  bool Result = Method->isUsualDeallocationFunction(PreventedBy);

  if (Result || !getLangOpts().CUDA || PreventedBy.empty())
    return Result;

  // In case of CUDA, return true if none of the 1-argument deallocator
  // functions are actually callable.
  return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
    assert(FD->getNumParams() == 1 &&
           "Only single-operand functions should be in PreventedBy");
    return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
  });
}

/// Determine whether the given function is a non-placement
/// deallocation function.
static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
    return S.isUsualDeallocationFunction(Method);

  if (FD->getOverloadedOperator() != OO_Delete &&
      FD->getOverloadedOperator() != OO_Array_Delete)
    return false;

  unsigned UsualParams = 1;

  if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
      S.Context.hasSameUnqualifiedType(
          FD->getParamDecl(UsualParams)->getType(),
          S.Context.getSizeType()))
    ++UsualParams;

  if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
      S.Context.hasSameUnqualifiedType(
          FD->getParamDecl(UsualParams)->getType(),
          S.Context.getTypeDeclType(S.getStdAlignValT())))
    ++UsualParams;

  return UsualParams == FD->getNumParams();
}

namespace {
  struct UsualDeallocFnInfo {
    UsualDeallocFnInfo() : Found(), FD(nullptr) {}
    UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
        : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
          Destroying(false), HasSizeT(false), HasAlignValT(false),
          CUDAPref(Sema::CFP_Native) {
      // A function template declaration is never a usual deallocation function.
      if (!FD)
        return;
      unsigned NumBaseParams = 1;
      if (FD->isDestroyingOperatorDelete()) {
        Destroying = true;
        ++NumBaseParams;
      }

      if (NumBaseParams < FD->getNumParams() &&
          S.Context.hasSameUnqualifiedType(
              FD->getParamDecl(NumBaseParams)->getType(),
              S.Context.getSizeType())) {
        ++NumBaseParams;
        HasSizeT = true;
      }

      if (NumBaseParams < FD->getNumParams() &&
          FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
        ++NumBaseParams;
        HasAlignValT = true;
      }

      // In CUDA, determine how much we'd like / dislike to call this.
      if (S.getLangOpts().CUDA)
        if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
          CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
    }

    explicit operator bool() const { return FD; }

    bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
                      bool WantAlign) const {
      // C++ P0722:
      //   A destroying operator delete is preferred over a non-destroying
      //   operator delete.
      if (Destroying != Other.Destroying)
        return Destroying;

      // C++17 [expr.delete]p10:
      //   If the type has new-extended alignment, a function with a parameter
      //   of type std::align_val_t is preferred; otherwise a function without
      //   such a parameter is preferred
      if (HasAlignValT != Other.HasAlignValT)
        return HasAlignValT == WantAlign;

      if (HasSizeT != Other.HasSizeT)
        return HasSizeT == WantSize;

      // Use CUDA call preference as a tiebreaker.
      return CUDAPref > Other.CUDAPref;
    }

    DeclAccessPair Found;
    FunctionDecl *FD;
    bool Destroying, HasSizeT, HasAlignValT;
    Sema::CUDAFunctionPreference CUDAPref;
  };
}

/// Determine whether a type has new-extended alignment. This may be called when
/// the type is incomplete (for a delete-expression with an incomplete pointee
/// type), in which case it will conservatively return false if the alignment is
/// not known.
static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
  return S.getLangOpts().AlignedAllocation &&
         S.getASTContext().getTypeAlignIfKnown(AllocType) >
             S.getASTContext().getTargetInfo().getNewAlign();
}

/// Select the correct "usual" deallocation function to use from a selection of
/// deallocation functions (either global or class-scope).
static UsualDeallocFnInfo resolveDeallocationOverload(
    Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
    llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
  UsualDeallocFnInfo Best;

  for (auto I = R.begin(), E = R.end(); I != E; ++I) {
    UsualDeallocFnInfo Info(S, I.getPair());
    if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
        Info.CUDAPref == Sema::CFP_Never)
      continue;

    if (!Best) {
      Best = Info;
      if (BestFns)
        BestFns->push_back(Info);
      continue;
    }

    if (Best.isBetterThan(Info, WantSize, WantAlign))
      continue;

    //   If more than one preferred function is found, all non-preferred
    //   functions are eliminated from further consideration.
    if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
      BestFns->clear();

    Best = Info;
    if (BestFns)
      BestFns->push_back(Info);
  }

  return Best;
}

/// Determine whether a given type is a class for which 'delete[]' would call
/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
/// we need to store the array size (even if the type is
/// trivially-destructible).
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
                                         QualType allocType) {
  const RecordType *record =
    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
  if (!record) return false;

  // Try to find an operator delete[] in class scope.

  DeclarationName deleteName =
    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
  S.LookupQualifiedName(ops, record->getDecl());

  // We're just doing this for information.
  ops.suppressDiagnostics();

  // Very likely: there's no operator delete[].
  if (ops.empty()) return false;

  // If it's ambiguous, it should be illegal to call operator delete[]
  // on this thing, so it doesn't matter if we allocate extra space or not.
  if (ops.isAmbiguous()) return false;

  // C++17 [expr.delete]p10:
  //   If the deallocation functions have class scope, the one without a
  //   parameter of type std::size_t is selected.
  auto Best = resolveDeallocationOverload(
      S, ops, /*WantSize*/false,
      /*WantAlign*/hasNewExtendedAlignment(S, allocType));
  return Best && Best.HasSizeT;
}

/// Parsed a C++ 'new' expression (C++ 5.3.4).
///
/// E.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
///
/// \param StartLoc The first location of the expression.
/// \param UseGlobal True if 'new' was prefixed with '::'.
/// \param PlacementLParen Opening paren of the placement arguments.
/// \param PlacementArgs Placement new arguments.
/// \param PlacementRParen Closing paren of the placement arguments.
/// \param TypeIdParens If the type is in parens, the source range.
/// \param D The type to be allocated, as well as array dimensions.
/// \param Initializer The initializing expression or initializer-list, or null
///   if there is none.
ExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
                  Declarator &D, Expr *Initializer) {
  Optional<Expr *> ArraySize;
  // If the specified type is an array, unwrap it and save the expression.
  if (D.getNumTypeObjects() > 0 &&
      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    DeclaratorChunk &Chunk = D.getTypeObject(0);
    if (D.getDeclSpec().hasAutoTypeSpec())
      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
        << D.getSourceRange());
    if (Chunk.Arr.hasStatic)
      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
        << D.getSourceRange());
    if (!Chunk.Arr.NumElts && !Initializer)
      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
        << D.getSourceRange());

    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    D.DropFirstTypeObject();
  }

  // Every dimension shall be of constant size.
  if (ArraySize) {
    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
        break;

      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
      if (Expr *NumElts = (Expr *)Array.NumElts) {
        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
          if (getLangOpts().CPlusPlus14) {
            // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
            //   shall be a converted constant expression (5.19) of type std::size_t
            //   and shall evaluate to a strictly positive value.
            llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
            Array.NumElts
             = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
                                                CCEK_ArrayBound)
                 .get();
          } else {
            Array.NumElts
              = VerifyIntegerConstantExpression(NumElts, nullptr,
                                                diag::err_new_array_nonconst)
                  .get();
          }
          if (!Array.NumElts)
            return ExprError();
        }
      }
    }
  }

  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
  QualType AllocType = TInfo->getType();
  if (D.isInvalidType())
    return ExprError();

  SourceRange DirectInitRange;
  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
    DirectInitRange = List->getSourceRange();

  return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
                     PlacementLParen, PlacementArgs, PlacementRParen,
                     TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
                     Initializer);
}

static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
                                       Expr *Init) {
  if (!Init)
    return true;
  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
    return PLE->getNumExprs() == 0;
  if (isa<ImplicitValueInitExpr>(Init))
    return true;
  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
    return !CCE->isListInitialization() &&
           CCE->getConstructor()->isDefaultConstructor();
  else if (Style == CXXNewExpr::ListInit) {
    assert(isa<InitListExpr>(Init) &&
           "Shouldn't create list CXXConstructExprs for arrays.");
    return true;
  }
  return false;
}

bool
Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
  if (!getLangOpts().AlignedAllocationUnavailable)
    return false;
  if (FD.isDefined())
    return false;
  Optional<unsigned> AlignmentParam;
  if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
      AlignmentParam.hasValue())
    return true;
  return false;
}

// Emit a diagnostic if an aligned allocation/deallocation function that is not
// implemented in the standard library is selected.
void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
                                                SourceLocation Loc) {
  if (isUnavailableAlignedAllocationFunction(FD)) {
    const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
    StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
        getASTContext().getTargetInfo().getPlatformName());
    VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());

    OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
    bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
    Diag(Loc, diag::err_aligned_allocation_unavailable)
        << IsDelete << FD.getType().getAsString() << OSName
        << OSVersion.getAsString() << OSVersion.empty();
    Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
  }
}

ExprResult
Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
                  SourceLocation PlacementLParen,
                  MultiExprArg PlacementArgs,
                  SourceLocation PlacementRParen,
                  SourceRange TypeIdParens,
                  QualType AllocType,
                  TypeSourceInfo *AllocTypeInfo,
                  Optional<Expr *> ArraySize,
                  SourceRange DirectInitRange,
                  Expr *Initializer) {
  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
  SourceLocation StartLoc = Range.getBegin();

  CXXNewExpr::InitializationStyle initStyle;
  if (DirectInitRange.isValid()) {
    assert(Initializer && "Have parens but no initializer.");
    initStyle = CXXNewExpr::CallInit;
  } else if (Initializer && isa<InitListExpr>(Initializer))
    initStyle = CXXNewExpr::ListInit;
  else {
    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
            isa<CXXConstructExpr>(Initializer)) &&
           "Initializer expression that cannot have been implicitly created.");
    initStyle = CXXNewExpr::NoInit;
  }

  Expr **Inits = &Initializer;
  unsigned NumInits = Initializer ? 1 : 0;
  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
    Inits = List->getExprs();
    NumInits = List->getNumExprs();
  }

  // C++11 [expr.new]p15:
  //   A new-expression that creates an object of type T initializes that
  //   object as follows:
  InitializationKind Kind
      //     - If the new-initializer is omitted, the object is default-
      //       initialized (8.5); if no initialization is performed,
      //       the object has indeterminate value
      = initStyle == CXXNewExpr::NoInit
            ? InitializationKind::CreateDefault(TypeRange.getBegin())
            //     - Otherwise, the new-initializer is interpreted according to
            //     the
            //       initialization rules of 8.5 for direct-initialization.
            : initStyle == CXXNewExpr::ListInit
                  ? InitializationKind::CreateDirectList(
                        TypeRange.getBegin(), Initializer->getBeginLoc(),
                        Initializer->getEndLoc())
                  : InitializationKind::CreateDirect(TypeRange.getBegin(),
                                                     DirectInitRange.getBegin(),
                                                     DirectInitRange.getEnd());

  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
  auto *Deduced = AllocType->getContainedDeducedType();
  if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
    if (ArraySize)
      return ExprError(
          Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
               diag::err_deduced_class_template_compound_type)
          << /*array*/ 2
          << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));

    InitializedEntity Entity
      = InitializedEntity::InitializeNew(StartLoc, AllocType);
    AllocType = DeduceTemplateSpecializationFromInitializer(
        AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
    if (AllocType.isNull())
      return ExprError();
  } else if (Deduced) {
    bool Braced = (initStyle == CXXNewExpr::ListInit);
    if (NumInits == 1) {
      if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
        Inits = p->getInits();
        NumInits = p->getNumInits();
        Braced = true;
      }
    }

    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
                       << AllocType << TypeRange);
    if (NumInits > 1) {
      Expr *FirstBad = Inits[1];
      return ExprError(Diag(FirstBad->getBeginLoc(),
                            diag::err_auto_new_ctor_multiple_expressions)
                       << AllocType << TypeRange);
    }
    if (Braced && !getLangOpts().CPlusPlus17)
      Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
          << AllocType << TypeRange;
    Expr *Deduce = Inits[0];
    QualType DeducedType;
    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
                       << AllocType << Deduce->getType()
                       << TypeRange << Deduce->getSourceRange());
    if (DeducedType.isNull())
      return ExprError();
    AllocType = DeducedType;
  }

  // Per C++0x [expr.new]p5, the type being constructed may be a
  // typedef of an array type.
  if (!ArraySize) {
    if (const ConstantArrayType *Array
                              = Context.getAsConstantArrayType(AllocType)) {
      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
                                         Context.getSizeType(),
                                         TypeRange.getEnd());
      AllocType = Array->getElementType();
    }
  }

  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
    return ExprError();

  // In ARC, infer 'retaining' for the allocated
  if (getLangOpts().ObjCAutoRefCount &&
      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
      AllocType->isObjCLifetimeType()) {
    AllocType = Context.getLifetimeQualifiedType(AllocType,
                                    AllocType->getObjCARCImplicitLifetime());
  }

  QualType ResultType = Context.getPointerType(AllocType);

  if (ArraySize && *ArraySize &&
      (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
    ExprResult result = CheckPlaceholderExpr(*ArraySize);
    if (result.isInvalid()) return ExprError();
    ArraySize = result.get();
  }
  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
  //   integral or enumeration type with a non-negative value."
  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
  //   enumeration type, or a class type for which a single non-explicit
  //   conversion function to integral or unscoped enumeration type exists.
  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
  //   std::size_t.
  llvm::Optional<uint64_t> KnownArraySize;
  if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
    ExprResult ConvertedSize;
    if (getLangOpts().CPlusPlus14) {
      assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");

      ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
                                                AA_Converting);

      if (!ConvertedSize.isInvalid() &&
          (*ArraySize)->getType()->getAs<RecordType>())
        // Diagnose the compatibility of this conversion.
        Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
          << (*ArraySize)->getType() << 0 << "'size_t'";
    } else {
      class SizeConvertDiagnoser : public ICEConvertDiagnoser {
      protected:
        Expr *ArraySize;

      public:
        SizeConvertDiagnoser(Expr *ArraySize)
            : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
              ArraySize(ArraySize) {}

        SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
                                             QualType T) override {
          return S.Diag(Loc, diag::err_array_size_not_integral)
                   << S.getLangOpts().CPlusPlus11 << T;
        }

        SemaDiagnosticBuilder diagnoseIncomplete(
            Sema &S, SourceLocation Loc, QualType T) override {
          return S.Diag(Loc, diag::err_array_size_incomplete_type)
                   << T << ArraySize->getSourceRange();
        }

        SemaDiagnosticBuilder diagnoseExplicitConv(
            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
          return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
        }

        SemaDiagnosticBuilder noteExplicitConv(
            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
                   << ConvTy->isEnumeralType() << ConvTy;
        }

        SemaDiagnosticBuilder diagnoseAmbiguous(
            Sema &S, SourceLocation Loc, QualType T) override {
          return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
        }

        SemaDiagnosticBuilder noteAmbiguous(
            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
                   << ConvTy->isEnumeralType() << ConvTy;
        }

        SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
                                                 QualType T,
                                                 QualType ConvTy) override {
          return S.Diag(Loc,
                        S.getLangOpts().CPlusPlus11
                          ? diag::warn_cxx98_compat_array_size_conversion
                          : diag::ext_array_size_conversion)
                   << T << ConvTy->isEnumeralType() << ConvTy;
        }
      } SizeDiagnoser(*ArraySize);

      ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
                                                          SizeDiagnoser);
    }
    if (ConvertedSize.isInvalid())
      return ExprError();

    ArraySize = ConvertedSize.get();
    QualType SizeType = (*ArraySize)->getType();

    if (!SizeType->isIntegralOrUnscopedEnumerationType())
      return ExprError();

    // C++98 [expr.new]p7:
    //   The expression in a direct-new-declarator shall have integral type
    //   with a non-negative value.
    //
    // Let's see if this is a constant < 0. If so, we reject it out of hand,
    // per CWG1464. Otherwise, if it's not a constant, we must have an
    // unparenthesized array type.
    if (!(*ArraySize)->isValueDependent()) {
      // We've already performed any required implicit conversion to integer or
      // unscoped enumeration type.
      // FIXME: Per CWG1464, we are required to check the value prior to
      // converting to size_t. This will never find a negative array size in
      // C++14 onwards, because Value is always unsigned here!
      if (Optional<llvm::APSInt> Value =
              (*ArraySize)->getIntegerConstantExpr(Context)) {
        if (Value->isSigned() && Value->isNegative()) {
          return ExprError(Diag((*ArraySize)->getBeginLoc(),
                                diag::err_typecheck_negative_array_size)
                           << (*ArraySize)->getSourceRange());
        }

        if (!AllocType->isDependentType()) {
          unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits(
              Context, AllocType, *Value);
          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
            return ExprError(
                Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
                << Value->toString(10) << (*ArraySize)->getSourceRange());
        }

        KnownArraySize = Value->getZExtValue();
      } else if (TypeIdParens.isValid()) {
        // Can't have dynamic array size when the type-id is in parentheses.
        Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
            << (*ArraySize)->getSourceRange()
            << FixItHint::CreateRemoval(TypeIdParens.getBegin())
            << FixItHint::CreateRemoval(TypeIdParens.getEnd());

        TypeIdParens = SourceRange();
      }
    }

    // Note that we do *not* convert the argument in any way.  It can
    // be signed, larger than size_t, whatever.
  }

  FunctionDecl *OperatorNew = nullptr;
  FunctionDecl *OperatorDelete = nullptr;
  unsigned Alignment =
      AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
  unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
  bool PassAlignment = getLangOpts().AlignedAllocation &&
                       Alignment > NewAlignment;

  AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
  if (!AllocType->isDependentType() &&
      !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
      FindAllocationFunctions(
          StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
          AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
          OperatorNew, OperatorDelete))
    return ExprError();

  // If this is an array allocation, compute whether the usual array
  // deallocation function for the type has a size_t parameter.
  bool UsualArrayDeleteWantsSize = false;
  if (ArraySize && !AllocType->isDependentType())
    UsualArrayDeleteWantsSize =
        doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);

  SmallVector<Expr *, 8> AllPlaceArgs;
  if (OperatorNew) {
    auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
    VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
                                                    : VariadicDoesNotApply;

    // We've already converted the placement args, just fill in any default
    // arguments. Skip the first parameter because we don't have a corresponding
    // argument. Skip the second parameter too if we're passing in the
    // alignment; we've already filled it in.
    unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
    if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
                               NumImplicitArgs, PlacementArgs, AllPlaceArgs,
                               CallType))
      return ExprError();

    if (!AllPlaceArgs.empty())
      PlacementArgs = AllPlaceArgs;

    // We would like to perform some checking on the given `operator new` call,
    // but the PlacementArgs does not contain the implicit arguments,
    // namely allocation size and maybe allocation alignment,
    // so we need to conjure them.

    QualType SizeTy = Context.getSizeType();
    unsigned SizeTyWidth = Context.getTypeSize(SizeTy);

    llvm::APInt SingleEltSize(
        SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());

    // How many bytes do we want to allocate here?
    llvm::Optional<llvm::APInt> AllocationSize;
    if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
      // For non-array operator new, we only want to allocate one element.
      AllocationSize = SingleEltSize;
    } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
      // For array operator new, only deal with static array size case.
      bool Overflow;
      AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
                           .umul_ov(SingleEltSize, Overflow);
      (void)Overflow;
      assert(
          !Overflow &&
          "Expected that all the overflows would have been handled already.");
    }

    IntegerLiteral AllocationSizeLiteral(
        Context,
        AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)),
        SizeTy, SourceLocation());
    // Otherwise, if we failed to constant-fold the allocation size, we'll
    // just give up and pass-in something opaque, that isn't a null pointer.
    OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_RValue,
                                         OK_Ordinary, /*SourceExpr=*/nullptr);

    // Let's synthesize the alignment argument in case we will need it.
    // Since we *really* want to allocate these on stack, this is slightly ugly
    // because there might not be a `std::align_val_t` type.
    EnumDecl *StdAlignValT = getStdAlignValT();
    QualType AlignValT =
        StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
    IntegerLiteral AlignmentLiteral(
        Context,
        llvm::APInt(Context.getTypeSize(SizeTy),
                    Alignment / Context.getCharWidth()),
        SizeTy, SourceLocation());
    ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
                                      CK_IntegralCast, &AlignmentLiteral,
                                      VK_RValue, FPOptionsOverride());

    // Adjust placement args by prepending conjured size and alignment exprs.
    llvm::SmallVector<Expr *, 8> CallArgs;
    CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
    CallArgs.emplace_back(AllocationSize.hasValue()
                              ? static_cast<Expr *>(&AllocationSizeLiteral)
                              : &OpaqueAllocationSize);
    if (PassAlignment)
      CallArgs.emplace_back(&DesiredAlignment);
    CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());

    DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);

    checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
              /*IsMemberFunction=*/false, StartLoc, Range, CallType);

    // Warn if the type is over-aligned and is being allocated by (unaligned)
    // global operator new.
    if (PlacementArgs.empty() && !PassAlignment &&
        (OperatorNew->isImplicit() ||
         (OperatorNew->getBeginLoc().isValid() &&
          getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
      if (Alignment > NewAlignment)
        Diag(StartLoc, diag::warn_overaligned_type)
            << AllocType
            << unsigned(Alignment / Context.getCharWidth())
            << unsigned(NewAlignment / Context.getCharWidth());
    }
  }

  // Array 'new' can't have any initializers except empty parentheses.
  // Initializer lists are also allowed, in C++11. Rely on the parser for the
  // dialect distinction.
  if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
    SourceRange InitRange(Inits[0]->getBeginLoc(),
                          Inits[NumInits - 1]->getEndLoc());
    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
    return ExprError();
  }

  // If we can perform the initialization, and we've not already done so,
  // do it now.
  if (!AllocType->isDependentType() &&
      !Expr::hasAnyTypeDependentArguments(
          llvm::makeArrayRef(Inits, NumInits))) {
    // The type we initialize is the complete type, including the array bound.
    QualType InitType;
    if (KnownArraySize)
      InitType = Context.getConstantArrayType(
          AllocType,
          llvm::APInt(Context.getTypeSize(Context.getSizeType()),
                      *KnownArraySize),
          *ArraySize, ArrayType::Normal, 0);
    else if (ArraySize)
      InitType =
          Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
    else
      InitType = AllocType;

    InitializedEntity Entity
      = InitializedEntity::InitializeNew(StartLoc, InitType);
    InitializationSequence InitSeq(*this, Entity, Kind,
                                   MultiExprArg(Inits, NumInits));
    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
                                          MultiExprArg(Inits, NumInits));
    if (FullInit.isInvalid())
      return ExprError();

    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
    // we don't want the initialized object to be destructed.
    // FIXME: We should not create these in the first place.
    if (CXXBindTemporaryExpr *Binder =
            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
      FullInit = Binder->getSubExpr();

    Initializer = FullInit.get();

    // FIXME: If we have a KnownArraySize, check that the array bound of the
    // initializer is no greater than that constant value.

    if (ArraySize && !*ArraySize) {
      auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
      if (CAT) {
        // FIXME: Track that the array size was inferred rather than explicitly
        // specified.
        ArraySize = IntegerLiteral::Create(
            Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
      } else {
        Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
            << Initializer->getSourceRange();
      }
    }
  }

  // Mark the new and delete operators as referenced.
  if (OperatorNew) {
    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
      return ExprError();
    MarkFunctionReferenced(StartLoc, OperatorNew);
  }
  if (OperatorDelete) {
    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
      return ExprError();
    MarkFunctionReferenced(StartLoc, OperatorDelete);
  }

  return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
                            PassAlignment, UsualArrayDeleteWantsSize,
                            PlacementArgs, TypeIdParens, ArraySize, initStyle,
                            Initializer, ResultType, AllocTypeInfo, Range,
                            DirectInitRange);
}

/// Checks that a type is suitable as the allocated type
/// in a new-expression.
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
                              SourceRange R) {
  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
  //   abstract class type or array thereof.
  if (AllocType->isFunctionType())
    return Diag(Loc, diag::err_bad_new_type)
      << AllocType << 0 << R;
  else if (AllocType->isReferenceType())
    return Diag(Loc, diag::err_bad_new_type)
      << AllocType << 1 << R;
  else if (!AllocType->isDependentType() &&
           RequireCompleteSizedType(
               Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
    return true;
  else if (RequireNonAbstractType(Loc, AllocType,
                                  diag::err_allocation_of_abstract_type))
    return true;
  else if (AllocType->isVariablyModifiedType())
    return Diag(Loc, diag::err_variably_modified_new_type)
             << AllocType;
  else if (AllocType.getAddressSpace() != LangAS::Default &&
           !getLangOpts().OpenCLCPlusPlus)
    return Diag(Loc, diag::err_address_space_qualified_new)
      << AllocType.getUnqualifiedType()
      << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
  else if (getLangOpts().ObjCAutoRefCount) {
    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
      QualType BaseAllocType = Context.getBaseElementType(AT);
      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
          BaseAllocType->isObjCLifetimeType())
        return Diag(Loc, diag::err_arc_new_array_without_ownership)
          << BaseAllocType;
    }
  }

  return false;
}

static bool resolveAllocationOverload(
    Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
    bool &PassAlignment, FunctionDecl *&Operator,
    OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
  OverloadCandidateSet Candidates(R.getNameLoc(),
                                  OverloadCandidateSet::CSK_Normal);
  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
       Alloc != AllocEnd; ++Alloc) {
    // Even member operator new/delete are implicitly treated as
    // static, so don't use AddMemberCandidate.
    NamedDecl *D = (*Alloc)->getUnderlyingDecl();

    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
      S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
                                     /*ExplicitTemplateArgs=*/nullptr, Args,
                                     Candidates,
                                     /*SuppressUserConversions=*/false);
      continue;
    }

    FunctionDecl *Fn = cast<FunctionDecl>(D);
    S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
                           /*SuppressUserConversions=*/false);
  }

  // Do the resolution.
  OverloadCandidateSet::iterator Best;
  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
  case OR_Success: {
    // Got one!
    FunctionDecl *FnDecl = Best->Function;
    if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
                                Best->FoundDecl) == Sema::AR_inaccessible)
      return true;

    Operator = FnDecl;
    return false;
  }

  case OR_No_Viable_Function:
    // C++17 [expr.new]p13:
    //   If no matching function is found and the allocated object type has
    //   new-extended alignment, the alignment argument is removed from the
    //   argument list, and overload resolution is performed again.
    if (PassAlignment) {
      PassAlignment = false;
      AlignArg = Args[1];
      Args.erase(Args.begin() + 1);
      return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
                                       Operator, &Candidates, AlignArg,
                                       Diagnose);
    }

    // MSVC will fall back on trying to find a matching global operator new
    // if operator new[] cannot be found.  Also, MSVC will leak by not
    // generating a call to operator delete or operator delete[], but we
    // will not replicate that bug.
    // FIXME: Find out how this interacts with the std::align_val_t fallback
    // once MSVC implements it.
    if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
        S.Context.getLangOpts().MSVCCompat) {
      R.clear();
      R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
      S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
      // FIXME: This will give bad diagnostics pointing at the wrong functions.
      return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
                                       Operator, /*Candidates=*/nullptr,
                                       /*AlignArg=*/nullptr, Diagnose);
    }

    if (Diagnose) {
      PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call)
          << R.getLookupName() << Range);

      // If we have aligned candidates, only note the align_val_t candidates
      // from AlignedCandidates and the non-align_val_t candidates from
      // Candidates.
      if (AlignedCandidates) {
        auto IsAligned = [](OverloadCandidate &C) {
          return C.Function->getNumParams() > 1 &&
                 C.Function->getParamDecl(1)->getType()->isAlignValT();
        };
        auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };

        // This was an overaligned allocation, so list the aligned candidates
        // first.
        Args.insert(Args.begin() + 1, AlignArg);
        AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "",
                                          R.getNameLoc(), IsAligned);
        Args.erase(Args.begin() + 1);
        Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(),
                                  IsUnaligned);
      } else {
        Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args);
      }
    }
    return true;

  case OR_Ambiguous:
    if (Diagnose) {
      Candidates.NoteCandidates(
          PartialDiagnosticAt(R.getNameLoc(),
                              S.PDiag(diag::err_ovl_ambiguous_call)
                                  << R.getLookupName() << Range),
          S, OCD_AmbiguousCandidates, Args);
    }
    return true;

  case OR_Deleted: {
    if (Diagnose) {
      Candidates.NoteCandidates(
          PartialDiagnosticAt(R.getNameLoc(),
                              S.PDiag(diag::err_ovl_deleted_call)
                                  << R.getLookupName() << Range),
          S, OCD_AllCandidates, Args);
    }
    return true;
  }
  }
  llvm_unreachable("Unreachable, bad result from BestViableFunction");
}

bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
                                   AllocationFunctionScope NewScope,
                                   AllocationFunctionScope DeleteScope,
                                   QualType AllocType, bool IsArray,
                                   bool &PassAlignment, MultiExprArg PlaceArgs,
                                   FunctionDecl *&OperatorNew,
                                   FunctionDecl *&OperatorDelete,
                                   bool Diagnose) {
  // --- Choosing an allocation function ---
  // C++ 5.3.4p8 - 14 & 18
  // 1) If looking in AFS_Global scope for allocation functions, only look in
  //    the global scope. Else, if AFS_Class, only look in the scope of the
  //    allocated class. If AFS_Both, look in both.
  // 2) If an array size is given, look for operator new[], else look for
  //   operator new.
  // 3) The first argument is always size_t. Append the arguments from the
  //   placement form.

  SmallVector<Expr*, 8> AllocArgs;
  AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());

  // We don't care about the actual value of these arguments.
  // FIXME: Should the Sema create the expression and embed it in the syntax
  // tree? Or should the consumer just recalculate the value?
  // FIXME: Using a dummy value will interact poorly with attribute enable_if.
  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
                      Context.getTargetInfo().getPointerWidth(0)),
                      Context.getSizeType(),
                      SourceLocation());
  AllocArgs.push_back(&Size);

  QualType AlignValT = Context.VoidTy;
  if (PassAlignment) {
    DeclareGlobalNewDelete();
    AlignValT = Context.getTypeDeclType(getStdAlignValT());
  }
  CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
  if (PassAlignment)
    AllocArgs.push_back(&Align);

  AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());

  // C++ [expr.new]p8:
  //   If the allocated type is a non-array type, the allocation
  //   function's name is operator new and the deallocation function's
  //   name is operator delete. If the allocated type is an array
  //   type, the allocation function's name is operator new[] and the
  //   deallocation function's name is operator delete[].
  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
      IsArray ? OO_Array_New : OO_New);

  QualType AllocElemType = Context.getBaseElementType(AllocType);

  // Find the allocation function.
  {
    LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);

    // C++1z [expr.new]p9:
    //   If the new-expression begins with a unary :: operator, the allocation
    //   function's name is looked up in the global scope. Otherwise, if the
    //   allocated type is a class type T or array thereof, the allocation
    //   function's name is looked up in the scope of T.
    if (AllocElemType->isRecordType() && NewScope != AFS_Global)
      LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());

    // We can see ambiguity here if the allocation function is found in
    // multiple base classes.
    if (R.isAmbiguous())
      return true;

    //   If this lookup fails to find the name, or if the allocated type is not
    //   a class type, the allocation function's name is looked up in the
    //   global scope.
    if (R.empty()) {
      if (NewScope == AFS_Class)
        return true;

      LookupQualifiedName(R, Context.getTranslationUnitDecl());
    }

    if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
      if (PlaceArgs.empty()) {
        Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
      } else {
        Diag(StartLoc, diag::err_openclcxx_placement_new);
      }
      return true;
    }

    assert(!R.empty() && "implicitly declared allocation functions not found");
    assert(!R.isAmbiguous() && "global allocation functions are ambiguous");

    // We do our own custom access checks below.
    R.suppressDiagnostics();

    if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
                                  OperatorNew, /*Candidates=*/nullptr,
                                  /*AlignArg=*/nullptr, Diagnose))
      return true;
  }

  // We don't need an operator delete if we're running under -fno-exceptions.
  if (!getLangOpts().Exceptions) {
    OperatorDelete = nullptr;
    return false;
  }

  // Note, the name of OperatorNew might have been changed from array to
  // non-array by resolveAllocationOverload.
  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
      OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
          ? OO_Array_Delete
          : OO_Delete);

  // C++ [expr.new]p19:
  //
  //   If the new-expression begins with a unary :: operator, the
  //   deallocation function's name is looked up in the global
  //   scope. Otherwise, if the allocated type is a class type T or an
  //   array thereof, the deallocation function's name is looked up in
  //   the scope of T. If this lookup fails to find the name, or if
  //   the allocated type is not a class type or array thereof, the
  //   deallocation function's name is looked up in the global scope.
  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
  if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
    auto *RD =
        cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
    LookupQualifiedName(FoundDelete, RD);
  }
  if (FoundDelete.isAmbiguous())
    return true; // FIXME: clean up expressions?

  bool FoundGlobalDelete = FoundDelete.empty();
  if (FoundDelete.empty()) {
    if (DeleteScope == AFS_Class)
      return true;

    DeclareGlobalNewDelete();
    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
  }

  FoundDelete.suppressDiagnostics();

  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;

  // Whether we're looking for a placement operator delete is dictated
  // by whether we selected a placement operator new, not by whether
  // we had explicit placement arguments.  This matters for things like
  //   struct A { void *operator new(size_t, int = 0); ... };
  //   A *a = new A()
  //
  // We don't have any definition for what a "placement allocation function"
  // is, but we assume it's any allocation function whose
  // parameter-declaration-clause is anything other than (size_t).
  //
  // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
  // This affects whether an exception from the constructor of an overaligned
  // type uses the sized or non-sized form of aligned operator delete.
  bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
                        OperatorNew->isVariadic();

  if (isPlacementNew) {
    // C++ [expr.new]p20:
    //   A declaration of a placement deallocation function matches the
    //   declaration of a placement allocation function if it has the
    //   same number of parameters and, after parameter transformations
    //   (8.3.5), all parameter types except the first are
    //   identical. [...]
    //
    // To perform this comparison, we compute the function type that
    // the deallocation function should have, and use that type both
    // for template argument deduction and for comparison purposes.
    QualType ExpectedFunctionType;
    {
      auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();

      SmallVector<QualType, 4> ArgTypes;
      ArgTypes.push_back(Context.VoidPtrTy);
      for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
        ArgTypes.push_back(Proto->getParamType(I));

      FunctionProtoType::ExtProtoInfo EPI;
      // FIXME: This is not part of the standard's rule.
      EPI.Variadic = Proto->isVariadic();

      ExpectedFunctionType
        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
    }

    for (LookupResult::iterator D = FoundDelete.begin(),
                             DEnd = FoundDelete.end();
         D != DEnd; ++D) {
      FunctionDecl *Fn = nullptr;
      if (FunctionTemplateDecl *FnTmpl =
              dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
        // Perform template argument deduction to try to match the
        // expected function type.
        TemplateDeductionInfo Info(StartLoc);
        if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
                                    Info))
          continue;
      } else
        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());

      if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
                                                  ExpectedFunctionType,
                                                  /*AdjustExcpetionSpec*/true),
                              ExpectedFunctionType))
        Matches.push_back(std::make_pair(D.getPair(), Fn));
    }

    if (getLangOpts().CUDA)
      EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
  } else {
    // C++1y [expr.new]p22:
    //   For a non-placement allocation function, the normal deallocation
    //   function lookup is used
    //
    // Per [expr.delete]p10, this lookup prefers a member operator delete
    // without a size_t argument, but prefers a non-member operator delete
    // with a size_t where possible (which it always is in this case).
    llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
    UsualDeallocFnInfo Selected = resolveDeallocationOverload(
        *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
        /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
        &BestDeallocFns);
    if (Selected)
      Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
    else {
      // If we failed to select an operator, all remaining functions are viable
      // but ambiguous.
      for (auto Fn : BestDeallocFns)
        Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
    }
  }

  // C++ [expr.new]p20:
  //   [...] If the lookup finds a single matching deallocation
  //   function, that function will be called; otherwise, no
  //   deallocation function will be called.
  if (Matches.size() == 1) {
    OperatorDelete = Matches[0].second;

    // C++1z [expr.new]p23:
    //   If the lookup finds a usual deallocation function (3.7.4.2)
    //   with a parameter of type std::size_t and that function, considered
    //   as a placement deallocation function, would have been
    //   selected as a match for the allocation function, the program
    //   is ill-formed.
    if (getLangOpts().CPlusPlus11 && isPlacementNew &&
        isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
      UsualDeallocFnInfo Info(*this,
                              DeclAccessPair::make(OperatorDelete, AS_public));
      // Core issue, per mail to core reflector, 2016-10-09:
      //   If this is a member operator delete, and there is a corresponding
      //   non-sized member operator delete, this isn't /really/ a sized
      //   deallocation function, it just happens to have a size_t parameter.
      bool IsSizedDelete = Info.HasSizeT;
      if (IsSizedDelete && !FoundGlobalDelete) {
        auto NonSizedDelete =
            resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
                                        /*WantAlign*/Info.HasAlignValT);
        if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
            NonSizedDelete.HasAlignValT == Info.HasAlignValT)
          IsSizedDelete = false;
      }

      if (IsSizedDelete) {
        SourceRange R = PlaceArgs.empty()
                            ? SourceRange()
                            : SourceRange(PlaceArgs.front()->getBeginLoc(),
                                          PlaceArgs.back()->getEndLoc());
        Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
        if (!OperatorDelete->isImplicit())
          Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
              << DeleteName;
      }
    }

    CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
                          Matches[0].first);
  } else if (!Matches.empty()) {
    // We found multiple suitable operators. Per [expr.new]p20, that means we
    // call no 'operator delete' function, but we should at least warn the user.
    // FIXME: Suppress this warning if the construction cannot throw.
    Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
      << DeleteName << AllocElemType;

    for (auto &Match : Matches)
      Diag(Match.second->getLocation(),
           diag::note_member_declared_here) << DeleteName;
  }

  return false;
}

/// DeclareGlobalNewDelete - Declare the global forms of operator new and
/// delete. These are:
/// @code
///   // C++03:
///   void* operator new(std::size_t) throw(std::bad_alloc);
///   void* operator new[](std::size_t) throw(std::bad_alloc);
///   void operator delete(void *) throw();
///   void operator delete[](void *) throw();
///   // C++11:
///   void* operator new(std::size_t);
///   void* operator new[](std::size_t);
///   void operator delete(void *) noexcept;
///   void operator delete[](void *) noexcept;
///   // C++1y:
///   void* operator new(std::size_t);
///   void* operator new[](std::size_t);
///   void operator delete(void *) noexcept;
///   void operator delete[](void *) noexcept;
///   void operator delete(void *, std::size_t) noexcept;
///   void operator delete[](void *, std::size_t) noexcept;
/// @endcode
/// Note that the placement and nothrow forms of new are *not* implicitly
/// declared. Their use requires including \<new\>.
void Sema::DeclareGlobalNewDelete() {
  if (GlobalNewDeleteDeclared)
    return;

  // The implicitly declared new and delete operators
  // are not supported in OpenCL.
  if (getLangOpts().OpenCLCPlusPlus)
    return;

  // C++ [basic.std.dynamic]p2:
  //   [...] The following allocation and deallocation functions (18.4) are
  //   implicitly declared in global scope in each translation unit of a
  //   program
  //
  //     C++03:
  //     void* operator new(std::size_t) throw(std::bad_alloc);
  //     void* operator new[](std::size_t) throw(std::bad_alloc);
  //     void  operator delete(void*) throw();
  //     void  operator delete[](void*) throw();
  //     C++11:
  //     void* operator new(std::size_t);
  //     void* operator new[](std::size_t);
  //     void  operator delete(void*) noexcept;
  //     void  operator delete[](void*) noexcept;
  //     C++1y:
  //     void* operator new(std::size_t);
  //     void* operator new[](std::size_t);
  //     void  operator delete(void*) noexcept;
  //     void  operator delete[](void*) noexcept;
  //     void  operator delete(void*, std::size_t) noexcept;
  //     void  operator delete[](void*, std::size_t) noexcept;
  //
  //   These implicit declarations introduce only the function names operator
  //   new, operator new[], operator delete, operator delete[].
  //
  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
  // "std" or "bad_alloc" as necessary to form the exception specification.
  // However, we do not make these implicit declarations visible to name
  // lookup.
  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
    // The "std::bad_alloc" class has not yet been declared, so build it
    // implicitly.
    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
                                        getOrCreateStdNamespace(),
                                        SourceLocation(), SourceLocation(),
                                      &PP.getIdentifierTable().get("bad_alloc"),
                                        nullptr);
    getStdBadAlloc()->setImplicit(true);
  }
  if (!StdAlignValT && getLangOpts().AlignedAllocation) {
    // The "std::align_val_t" enum class has not yet been declared, so build it
    // implicitly.
    auto *AlignValT = EnumDecl::Create(
        Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
        &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
    AlignValT->setIntegerType(Context.getSizeType());
    AlignValT->setPromotionType(Context.getSizeType());
    AlignValT->setImplicit(true);
    StdAlignValT = AlignValT;
  }

  GlobalNewDeleteDeclared = true;

  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
  QualType SizeT = Context.getSizeType();

  auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
                                              QualType Return, QualType Param) {
    llvm::SmallVector<QualType, 3> Params;
    Params.push_back(Param);

    // Create up to four variants of the function (sized/aligned).
    bool HasSizedVariant = getLangOpts().SizedDeallocation &&
                           (Kind == OO_Delete || Kind == OO_Array_Delete);
    bool HasAlignedVariant = getLangOpts().AlignedAllocation;

    int NumSizeVariants = (HasSizedVariant ? 2 : 1);
    int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
    for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
      if (Sized)
        Params.push_back(SizeT);

      for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
        if (Aligned)
          Params.push_back(Context.getTypeDeclType(getStdAlignValT()));

        DeclareGlobalAllocationFunction(
            Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);

        if (Aligned)
          Params.pop_back();
      }
    }
  };

  DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
  DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
  DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
  DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
}

/// DeclareGlobalAllocationFunction - Declares a single implicit global
/// allocation function if it doesn't already exist.
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
                                           QualType Return,
                                           ArrayRef<QualType> Params) {
  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();

  // Check if this function is already declared.
  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
       Alloc != AllocEnd; ++Alloc) {
    // Only look at non-template functions, as it is the predefined,
    // non-templated allocation function we are trying to declare here.
    if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
      if (Func->getNumParams() == Params.size()) {
        llvm::SmallVector<QualType, 3> FuncParams;
        for (auto *P : Func->parameters())
          FuncParams.push_back(
              Context.getCanonicalType(P->getType().getUnqualifiedType()));
        if (llvm::makeArrayRef(FuncParams) == Params) {
          // Make the function visible to name lookup, even if we found it in
          // an unimported module. It either is an implicitly-declared global
          // allocation function, or is suppressing that function.
          Func->setVisibleDespiteOwningModule();
          return;
        }
      }
    }
  }

  FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
      /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));

  QualType BadAllocType;
  bool HasBadAllocExceptionSpec
    = (Name.getCXXOverloadedOperator() == OO_New ||
       Name.getCXXOverloadedOperator() == OO_Array_New);
  if (HasBadAllocExceptionSpec) {
    if (!getLangOpts().CPlusPlus11) {
      BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
      assert(StdBadAlloc && "Must have std::bad_alloc declared");
      EPI.ExceptionSpec.Type = EST_Dynamic;
      EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
    }
  } else {
    EPI.ExceptionSpec =
        getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
  }

  auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
    QualType FnType = Context.getFunctionType(Return, Params, EPI);
    FunctionDecl *Alloc = FunctionDecl::Create(
        Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
        FnType, /*TInfo=*/nullptr, SC_None, false, true);
    Alloc->setImplicit();
    // Global allocation functions should always be visible.
    Alloc->setVisibleDespiteOwningModule();

    Alloc->addAttr(VisibilityAttr::CreateImplicit(
        Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
                     ? VisibilityAttr::Hidden
                     : VisibilityAttr::Default));

    llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
    for (QualType T : Params) {
      ParamDecls.push_back(ParmVarDecl::Create(
          Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
          /*TInfo=*/nullptr, SC_None, nullptr));
      ParamDecls.back()->setImplicit();
    }
    Alloc->setParams(ParamDecls);
    if (ExtraAttr)
      Alloc->addAttr(ExtraAttr);
    AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
    Context.getTranslationUnitDecl()->addDecl(Alloc);
    IdResolver.tryAddTopLevelDecl(Alloc, Name);
  };

  if (!LangOpts.CUDA)
    CreateAllocationFunctionDecl(nullptr);
  else {
    // Host and device get their own declaration so each can be
    // defined or re-declared independently.
    CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
    CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
  }
}

FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
                                                  bool CanProvideSize,
                                                  bool Overaligned,
                                                  DeclarationName Name) {
  DeclareGlobalNewDelete();

  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
  LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());

  // FIXME: It's possible for this to result in ambiguity, through a
  // user-declared variadic operator delete or the enable_if attribute. We
  // should probably not consider those cases to be usual deallocation
  // functions. But for now we just make an arbitrary choice in that case.
  auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
                                            Overaligned);
  assert(Result.FD && "operator delete missing from global scope?");
  return Result.FD;
}

FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
                                                          CXXRecordDecl *RD) {
  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);

  FunctionDecl *OperatorDelete = nullptr;
  if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
    return nullptr;
  if (OperatorDelete)
    return OperatorDelete;

  // If there's no class-specific operator delete, look up the global
  // non-array delete.
  return FindUsualDeallocationFunction(
      Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
      Name);
}

bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
                                    DeclarationName Name,
                                    FunctionDecl *&Operator, bool Diagnose) {
  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
  // Try to find operator delete/operator delete[] in class scope.
  LookupQualifiedName(Found, RD);

  if (Found.isAmbiguous())
    return true;

  Found.suppressDiagnostics();

  bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));

  // C++17 [expr.delete]p10:
  //   If the deallocation functions have class scope, the one without a
  //   parameter of type std::size_t is selected.
  llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
  resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
                              /*WantAlign*/ Overaligned, &Matches);

  // If we could find an overload, use it.
  if (Matches.size() == 1) {
    Operator = cast<CXXMethodDecl>(Matches[0].FD);

    // FIXME: DiagnoseUseOfDecl?
    if (Operator->isDeleted()) {
      if (Diagnose) {
        Diag(StartLoc, diag::err_deleted_function_use);
        NoteDeletedFunction(Operator);
      }
      return true;
    }

    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
                              Matches[0].Found, Diagnose) == AR_inaccessible)
      return true;

    return false;
  }

  // We found multiple suitable operators; complain about the ambiguity.
  // FIXME: The standard doesn't say to do this; it appears that the intent
  // is that this should never happen.
  if (!Matches.empty()) {
    if (Diagnose) {
      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
        << Name << RD;
      for (auto &Match : Matches)
        Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
    }
    return true;
  }

  // We did find operator delete/operator delete[] declarations, but
  // none of them were suitable.
  if (!Found.empty()) {
    if (Diagnose) {
      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
        << Name << RD;

      for (NamedDecl *D : Found)
        Diag(D->getUnderlyingDecl()->getLocation(),
             diag::note_member_declared_here) << Name;
    }
    return true;
  }

  Operator = nullptr;
  return false;
}

namespace {
/// Checks whether delete-expression, and new-expression used for
///  initializing deletee have the same array form.
class MismatchingNewDeleteDetector {
public:
  enum MismatchResult {
    /// Indicates that there is no mismatch or a mismatch cannot be proven.
    NoMismatch,
    /// Indicates that variable is initialized with mismatching form of \a new.
    VarInitMismatches,
    /// Indicates that member is initialized with mismatching form of \a new.
    MemberInitMismatches,
    /// Indicates that 1 or more constructors' definitions could not been
    /// analyzed, and they will be checked again at the end of translation unit.
    AnalyzeLater
  };

  /// \param EndOfTU True, if this is the final analysis at the end of
  /// translation unit. False, if this is the initial analysis at the point
  /// delete-expression was encountered.
  explicit MismatchingNewDeleteDetector(bool EndOfTU)
      : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
        HasUndefinedConstructors(false) {}

  /// Checks whether pointee of a delete-expression is initialized with
  /// matching form of new-expression.
  ///
  /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
  /// point where delete-expression is encountered, then a warning will be
  /// issued immediately. If return value is \c AnalyzeLater at the point where
  /// delete-expression is seen, then member will be analyzed at the end of
  /// translation unit. \c AnalyzeLater is returned iff at least one constructor
  /// couldn't be analyzed. If at least one constructor initializes the member
  /// with matching type of new, the return value is \c NoMismatch.
  MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
  /// Analyzes a class member.
  /// \param Field Class member to analyze.
  /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
  /// for deleting the \p Field.
  MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
  FieldDecl *Field;
  /// List of mismatching new-expressions used for initialization of the pointee
  llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
  /// Indicates whether delete-expression was in array form.
  bool IsArrayForm;

private:
  const bool EndOfTU;
  /// Indicates that there is at least one constructor without body.
  bool HasUndefinedConstructors;
  /// Returns \c CXXNewExpr from given initialization expression.
  /// \param E Expression used for initializing pointee in delete-expression.
  /// E can be a single-element \c InitListExpr consisting of new-expression.
  const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
  /// Returns whether member is initialized with mismatching form of
  /// \c new either by the member initializer or in-class initialization.
  ///
  /// If bodies of all constructors are not visible at the end of translation
  /// unit or at least one constructor initializes member with the matching
  /// form of \c new, mismatch cannot be proven, and this function will return
  /// \c NoMismatch.
  MismatchResult analyzeMemberExpr(const MemberExpr *ME);
  /// Returns whether variable is initialized with mismatching form of
  /// \c new.
  ///
  /// If variable is initialized with matching form of \c new or variable is not
  /// initialized with a \c new expression, this function will return true.
  /// If variable is initialized with mismatching form of \c new, returns false.
  /// \param D Variable to analyze.
  bool hasMatchingVarInit(const DeclRefExpr *D);
  /// Checks whether the constructor initializes pointee with mismatching
  /// form of \c new.
  ///
  /// Returns true, if member is initialized with matching form of \c new in
  /// member initializer list. Returns false, if member is initialized with the
  /// matching form of \c new in this constructor's initializer or given
  /// constructor isn't defined at the point where delete-expression is seen, or
  /// member isn't initialized by the constructor.
  bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
  /// Checks whether member is initialized with matching form of
  /// \c new in member initializer list.
  bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
  /// Checks whether member is initialized with mismatching form of \c new by
  /// in-class initializer.
  MismatchResult analyzeInClassInitializer();
};
}

MismatchingNewDeleteDetector::MismatchResult
MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
  NewExprs.clear();
  assert(DE && "Expected delete-expression");
  IsArrayForm = DE->isArrayForm();
  const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
  if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
    return analyzeMemberExpr(ME);
  } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
    if (!hasMatchingVarInit(D))
      return VarInitMismatches;
  }
  return NoMismatch;
}

const CXXNewExpr *
MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
  assert(E != nullptr && "Expected a valid initializer expression");
  E = E->IgnoreParenImpCasts();
  if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
    if (ILE->getNumInits() == 1)
      E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
  }

  return dyn_cast_or_null<const CXXNewExpr>(E);
}

bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
    const CXXCtorInitializer *CI) {
  const CXXNewExpr *NE = nullptr;
  if (Field == CI->getMember() &&
      (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
    if (NE->isArray() == IsArrayForm)
      return true;
    else
      NewExprs.push_back(NE);
  }
  return false;
}

bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
    const CXXConstructorDecl *CD) {
  if (CD->isImplicit())
    return false;
  const FunctionDecl *Definition = CD;
  if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
    HasUndefinedConstructors = true;
    return EndOfTU;
  }
  for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
    if (hasMatchingNewInCtorInit(CI))
      return true;
  }
  return false;
}

MismatchingNewDeleteDetector::MismatchResult
MismatchingNewDeleteDetector::analyzeInClassInitializer() {
  assert(Field != nullptr && "This should be called only for members");
  const Expr *InitExpr = Field->getInClassInitializer();
  if (!InitExpr)
    return EndOfTU ? NoMismatch : AnalyzeLater;
  if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
    if (NE->isArray() != IsArrayForm) {
      NewExprs.push_back(NE);
      return MemberInitMismatches;
    }
  }
  return NoMismatch;
}

MismatchingNewDeleteDetector::MismatchResult
MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
                                           bool DeleteWasArrayForm) {
  assert(Field != nullptr && "Analysis requires a valid class member.");
  this->Field = Field;
  IsArrayForm = DeleteWasArrayForm;
  const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
  for (const auto *CD : RD->ctors()) {
    if (hasMatchingNewInCtor(CD))
      return NoMismatch;
  }
  if (HasUndefinedConstructors)
    return EndOfTU ? NoMismatch : AnalyzeLater;
  if (!NewExprs.empty())
    return MemberInitMismatches;
  return Field->hasInClassInitializer() ? analyzeInClassInitializer()
                                        : NoMismatch;
}

MismatchingNewDeleteDetector::MismatchResult
MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
  assert(ME != nullptr && "Expected a member expression");
  if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
    return analyzeField(F, IsArrayForm);
  return NoMismatch;
}

bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
  const CXXNewExpr *NE = nullptr;
  if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
    if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
        NE->isArray() != IsArrayForm) {
      NewExprs.push_back(NE);
    }
  }
  return NewExprs.empty();
}

static void
DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
                            const MismatchingNewDeleteDetector &Detector) {
  SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
  FixItHint H;
  if (!Detector.IsArrayForm)
    H = FixItHint::CreateInsertion(EndOfDelete, "[]");
  else {
    SourceLocation RSquare = Lexer::findLocationAfterToken(
        DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
        SemaRef.getLangOpts(), true);
    if (RSquare.isValid())
      H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
  }
  SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
      << Detector.IsArrayForm << H;

  for (const auto *NE : Detector.NewExprs)
    SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
        << Detector.IsArrayForm;
}

void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
  if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
    return;
  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
  switch (Detector.analyzeDeleteExpr(DE)) {
  case MismatchingNewDeleteDetector::VarInitMismatches:
  case MismatchingNewDeleteDetector::MemberInitMismatches: {
    DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
    break;
  }
  case MismatchingNewDeleteDetector::AnalyzeLater: {
    DeleteExprs[Detector.Field].push_back(
        std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
    break;
  }
  case MismatchingNewDeleteDetector::NoMismatch:
    break;
  }
}

void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
                                     bool DeleteWasArrayForm) {
  MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
  switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
  case MismatchingNewDeleteDetector::VarInitMismatches:
    llvm_unreachable("This analysis should have been done for class members.");
  case MismatchingNewDeleteDetector::AnalyzeLater:
    llvm_unreachable("Analysis cannot be postponed any point beyond end of "
                     "translation unit.");
  case MismatchingNewDeleteDetector::MemberInitMismatches:
    DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
    break;
  case MismatchingNewDeleteDetector::NoMismatch:
    break;
  }
}

/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
/// @code ::delete ptr; @endcode
/// or
/// @code delete [] ptr; @endcode
ExprResult
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
                     bool ArrayForm, Expr *ExE) {
  // C++ [expr.delete]p1:
  //   The operand shall have a pointer type, or a class type having a single
  //   non-explicit conversion function to a pointer type. The result has type
  //   void.
  //
  // DR599 amends "pointer type" to "pointer to object type" in both cases.

  ExprResult Ex = ExE;
  FunctionDecl *OperatorDelete = nullptr;
  bool ArrayFormAsWritten = ArrayForm;
  bool UsualArrayDeleteWantsSize = false;

  if (!Ex.get()->isTypeDependent()) {
    // Perform lvalue-to-rvalue cast, if needed.
    Ex = DefaultLvalueConversion(Ex.get());
    if (Ex.isInvalid())
      return ExprError();

    QualType Type = Ex.get()->getType();

    class DeleteConverter : public ContextualImplicitConverter {
    public:
      DeleteConverter() : ContextualImplicitConverter(false, true) {}

      bool match(QualType ConvType) override {
        // FIXME: If we have an operator T* and an operator void*, we must pick
        // the operator T*.
        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
            return true;
        return false;
      }

      SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
                                            QualType T) override {
        return S.Diag(Loc, diag::err_delete_operand) << T;
      }

      SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
                                               QualType T) override {
        return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
      }

      SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
                                                 QualType T,
                                                 QualType ConvTy) override {
        return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
      }

      SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
                                             QualType ConvTy) override {
        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
          << ConvTy;
      }

      SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
                                              QualType T) override {
        return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
      }

      SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
                                          QualType ConvTy) override {
        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
          << ConvTy;
      }

      SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
                                               QualType T,
                                               QualType ConvTy) override {
        llvm_unreachable("conversion functions are permitted");
      }
    } Converter;

    Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
    if (Ex.isInvalid())
      return ExprError();
    Type = Ex.get()->getType();
    if (!Converter.match(Type))
      // FIXME: PerformContextualImplicitConversion should return ExprError
      //        itself in this case.
      return ExprError();

    QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
    QualType PointeeElem = Context.getBaseElementType(Pointee);

    if (Pointee.getAddressSpace() != LangAS::Default &&
        !getLangOpts().OpenCLCPlusPlus)
      return Diag(Ex.get()->getBeginLoc(),
                  diag::err_address_space_qualified_delete)
             << Pointee.getUnqualifiedType()
             << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();

    CXXRecordDecl *PointeeRD = nullptr;
    if (Pointee->isVoidType() && !isSFINAEContext()) {
      // The C++ standard bans deleting a pointer to a non-object type, which
      // effectively bans deletion of "void*". However, most compilers support
      // this, so we treat it as a warning unless we're in a SFINAE context.
      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
        << Type << Ex.get()->getSourceRange();
    } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
               Pointee->isSizelessType()) {
      return ExprError(Diag(StartLoc, diag::err_delete_operand)
        << Type << Ex.get()->getSourceRange());
    } else if (!Pointee->isDependentType()) {
      // FIXME: This can result in errors if the definition was imported from a
      // module but is hidden.
      if (!RequireCompleteType(StartLoc, Pointee,
                               diag::warn_delete_incomplete, Ex.get())) {
        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
      }
    }

    if (Pointee->isArrayType() && !ArrayForm) {
      Diag(StartLoc, diag::warn_delete_array_type)
          << Type << Ex.get()->getSourceRange()
          << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
      ArrayForm = true;
    }

    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
                                      ArrayForm ? OO_Array_Delete : OO_Delete);

    if (PointeeRD) {
      if (!UseGlobal &&
          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
                                   OperatorDelete))
        return ExprError();

      // If we're allocating an array of records, check whether the
      // usual operator delete[] has a size_t parameter.
      if (ArrayForm) {
        // If the user specifically asked to use the global allocator,
        // we'll need to do the lookup into the class.
        if (UseGlobal)
          UsualArrayDeleteWantsSize =
            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);

        // Otherwise, the usual operator delete[] should be the
        // function we just found.
        else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
          UsualArrayDeleteWantsSize =
            UsualDeallocFnInfo(*this,
                               DeclAccessPair::make(OperatorDelete, AS_public))
              .HasSizeT;
      }

      if (!PointeeRD->hasIrrelevantDestructor())
        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
          MarkFunctionReferenced(StartLoc,
                                    const_cast<CXXDestructorDecl*>(Dtor));
          if (DiagnoseUseOfDecl(Dtor, StartLoc))
            return ExprError();
        }

      CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
                           /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
                           /*WarnOnNonAbstractTypes=*/!ArrayForm,
                           SourceLocation());
    }

    if (!OperatorDelete) {
      if (getLangOpts().OpenCLCPlusPlus) {
        Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
        return ExprError();
      }

      bool IsComplete = isCompleteType(StartLoc, Pointee);
      bool CanProvideSize =
          IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
                         Pointee.isDestructedType());
      bool Overaligned = hasNewExtendedAlignment(*this, Pointee);

      // Look for a global declaration.
      OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
                                                     Overaligned, DeleteName);
    }

    MarkFunctionReferenced(StartLoc, OperatorDelete);

    // Check access and ambiguity of destructor if we're going to call it.
    // Note that this is required even for a virtual delete.
    bool IsVirtualDelete = false;
    if (PointeeRD) {
      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
        CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
                              PDiag(diag::err_access_dtor) << PointeeElem);
        IsVirtualDelete = Dtor->isVirtual();
      }
    }

    DiagnoseUseOfDecl(OperatorDelete, StartLoc);

    // Convert the operand to the type of the first parameter of operator
    // delete. This is only necessary if we selected a destroying operator
    // delete that we are going to call (non-virtually); converting to void*
    // is trivial and left to AST consumers to handle.
    QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
    if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
      Qualifiers Qs = Pointee.getQualifiers();
      if (Qs.hasCVRQualifiers()) {
        // Qualifiers are irrelevant to this conversion; we're only looking
        // for access and ambiguity.
        Qs.removeCVRQualifiers();
        QualType Unqual = Context.getPointerType(
            Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
        Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
      }
      Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
      if (Ex.isInvalid())
        return ExprError();
    }
  }

  CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
      Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
      UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
  AnalyzeDeleteExprMismatch(Result);
  return Result;
}

static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
                                            bool IsDelete,
                                            FunctionDecl *&Operator) {

  DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
      IsDelete ? OO_Delete : OO_New);

  LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
  S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
  assert(!R.empty() && "implicitly declared allocation functions not found");
  assert(!R.isAmbiguous() && "global allocation functions are ambiguous");

  // We do our own custom access checks below.
  R.suppressDiagnostics();

  SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
  OverloadCandidateSet Candidates(R.getNameLoc(),
                                  OverloadCandidateSet::CSK_Normal);
  for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
       FnOvl != FnOvlEnd; ++FnOvl) {
    // Even member operator new/delete are implicitly treated as
    // static, so don't use AddMemberCandidate.
    NamedDecl *D = (*FnOvl)->getUnderlyingDecl();

    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
      S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
                                     /*ExplicitTemplateArgs=*/nullptr, Args,
                                     Candidates,
                                     /*SuppressUserConversions=*/false);
      continue;
    }

    FunctionDecl *Fn = cast<FunctionDecl>(D);
    S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
                           /*SuppressUserConversions=*/false);
  }

  SourceRange Range = TheCall->getSourceRange();

  // Do the resolution.
  OverloadCandidateSet::iterator Best;
  switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
  case OR_Success: {
    // Got one!
    FunctionDecl *FnDecl = Best->Function;
    assert(R.getNamingClass() == nullptr &&
           "class members should not be considered");

    if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
      S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
          << (IsDelete ? 1 : 0) << Range;
      S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
          << R.getLookupName() << FnDecl->getSourceRange();
      return true;
    }

    Operator = FnDecl;
    return false;
  }

  case OR_No_Viable_Function:
    Candidates.NoteCandidates(
        PartialDiagnosticAt(R.getNameLoc(),
                            S.PDiag(diag::err_ovl_no_viable_function_in_call)
                                << R.getLookupName() << Range),
        S, OCD_AllCandidates, Args);
    return true;

  case OR_Ambiguous:
    Candidates.NoteCandidates(
        PartialDiagnosticAt(R.getNameLoc(),
                            S.PDiag(diag::err_ovl_ambiguous_call)
                                << R.getLookupName() << Range),
        S, OCD_AmbiguousCandidates, Args);
    return true;

  case OR_Deleted: {
    Candidates.NoteCandidates(
        PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
                                                << R.getLookupName() << Range),
        S, OCD_AllCandidates, Args);
    return true;
  }
  }
  llvm_unreachable("Unreachable, bad result from BestViableFunction");
}

ExprResult
Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
                                             bool IsDelete) {
  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
  if (!getLangOpts().CPlusPlus) {
    Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
        << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
        << "C++";
    return ExprError();
  }
  // CodeGen assumes it can find the global new and delete to call,
  // so ensure that they are declared.
  DeclareGlobalNewDelete();

  FunctionDecl *OperatorNewOrDelete = nullptr;
  if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
                                      OperatorNewOrDelete))
    return ExprError();
  assert(OperatorNewOrDelete && "should be found");

  DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
  MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);

  TheCall->setType(OperatorNewOrDelete->getReturnType());
  for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
    QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
    InitializedEntity Entity =
        InitializedEntity::InitializeParameter(Context, ParamTy, false);
    ExprResult Arg = PerformCopyInitialization(
        Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
    if (Arg.isInvalid())
      return ExprError();
    TheCall->setArg(i, Arg.get());
  }
  auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
  assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
         "Callee expected to be implicit cast to a builtin function pointer");
  Callee->setType(OperatorNewOrDelete->getType());

  return TheCallResult;
}

void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
                                bool IsDelete, bool CallCanBeVirtual,
                                bool WarnOnNonAbstractTypes,
                                SourceLocation DtorLoc) {
  if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
    return;

  // C++ [expr.delete]p3:
  //   In the first alternative (delete object), if the static type of the
  //   object to be deleted is different from its dynamic type, the static
  //   type shall be a base class of the dynamic type of the object to be
  //   deleted and the static type shall have a virtual destructor or the
  //   behavior is undefined.
  //
  const CXXRecordDecl *PointeeRD = dtor->getParent();
  // Note: a final class cannot be derived from, no issue there
  if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
    return;

  // If the superclass is in a system header, there's nothing that can be done.
  // The `delete` (where we emit the warning) can be in a system header,
  // what matters for this warning is where the deleted type is defined.
  if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
    return;

  QualType ClassType = dtor->getThisType()->getPointeeType();
  if (PointeeRD->isAbstract()) {
    // If the class is abstract, we warn by default, because we're
    // sure the code has undefined behavior.
    Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
                                                           << ClassType;
  } else if (WarnOnNonAbstractTypes) {
    // Otherwise, if this is not an array delete, it's a bit suspect,
    // but not necessarily wrong.
    Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
                                                  << ClassType;
  }
  if (!IsDelete) {
    std::string TypeStr;
    ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
    Diag(DtorLoc, diag::note_delete_non_virtual)
        << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
  }
}

Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
                                                   SourceLocation StmtLoc,
                                                   ConditionKind CK) {
  ExprResult E =
      CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
  if (E.isInvalid())
    return ConditionError();
  return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
                         CK == ConditionKind::ConstexprIf);
}

/// Check the use of the given variable as a C++ condition in an if,
/// while, do-while, or switch statement.
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
                                        SourceLocation StmtLoc,
                                        ConditionKind CK) {
  if (ConditionVar->isInvalidDecl())
    return ExprError();

  QualType T = ConditionVar->getType();

  // C++ [stmt.select]p2:
  //   The declarator shall not specify a function or an array.
  if (T->isFunctionType())
    return ExprError(Diag(ConditionVar->getLocation(),
                          diag::err_invalid_use_of_function_type)
                       << ConditionVar->getSourceRange());
  else if (T->isArrayType())
    return ExprError(Diag(ConditionVar->getLocation(),
                          diag::err_invalid_use_of_array_type)
                     << ConditionVar->getSourceRange());

  ExprResult Condition = BuildDeclRefExpr(
      ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
      ConditionVar->getLocation());

  switch (CK) {
  case ConditionKind::Boolean:
    return CheckBooleanCondition(StmtLoc, Condition.get());

  case ConditionKind::ConstexprIf:
    return CheckBooleanCondition(StmtLoc, Condition.get(), true);

  case ConditionKind::Switch:
    return CheckSwitchCondition(StmtLoc, Condition.get());
  }

  llvm_unreachable("unexpected condition kind");
}

/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
  // C++ 6.4p4:
  // The value of a condition that is an initialized declaration in a statement
  // other than a switch statement is the value of the declared variable
  // implicitly converted to type bool. If that conversion is ill-formed, the
  // program is ill-formed.
  // The value of a condition that is an expression is the value of the
  // expression, implicitly converted to bool.
  //
  // FIXME: Return this value to the caller so they don't need to recompute it.
  llvm::APSInt Value(/*BitWidth*/1);
  return (IsConstexpr && !CondExpr->isValueDependent())
             ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
                                                CCEK_ConstexprIf)
             : PerformContextuallyConvertToBool(CondExpr);
}

/// Helper function to determine whether this is the (deprecated) C++
/// conversion from a string literal to a pointer to non-const char or
/// non-const wchar_t (for narrow and wide string literals,
/// respectively).
bool
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
  // Look inside the implicit cast, if it exists.
  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
    From = Cast->getSubExpr();

  // A string literal (2.13.4) that is not a wide string literal can
  // be converted to an rvalue of type "pointer to char"; a wide
  // string literal can be converted to an rvalue of type "pointer
  // to wchar_t" (C++ 4.2p2).
  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
      if (const BuiltinType *ToPointeeType
          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
        // This conversion is considered only when there is an
        // explicit appropriate pointer target type (C++ 4.2p2).
        if (!ToPtrType->getPointeeType().hasQualifiers()) {
          switch (StrLit->getKind()) {
            case StringLiteral::UTF8:
            case StringLiteral::UTF16:
            case StringLiteral::UTF32:
              // We don't allow UTF literals to be implicitly converted
              break;
            case StringLiteral::Ascii:
              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
                      ToPointeeType->getKind() == BuiltinType::Char_S);
            case StringLiteral::Wide:
              return Context.typesAreCompatible(Context.getWideCharType(),
                                                QualType(ToPointeeType, 0));
          }
        }
      }

  return false;
}

static ExprResult BuildCXXCastArgument(Sema &S,
                                       SourceLocation CastLoc,
                                       QualType Ty,
                                       CastKind Kind,
                                       CXXMethodDecl *Method,
                                       DeclAccessPair FoundDecl,
                                       bool HadMultipleCandidates,
                                       Expr *From) {
  switch (Kind) {
  default: llvm_unreachable("Unhandled cast kind!");
  case CK_ConstructorConversion: {
    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
    SmallVector<Expr*, 8> ConstructorArgs;

    if (S.RequireNonAbstractType(CastLoc, Ty,
                                 diag::err_allocation_of_abstract_type))
      return ExprError();

    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
      return ExprError();

    S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
                             InitializedEntity::InitializeTemporary(Ty));
    if (S.DiagnoseUseOfDecl(Method, CastLoc))
      return ExprError();

    ExprResult Result = S.BuildCXXConstructExpr(
        CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
        ConstructorArgs, HadMultipleCandidates,
        /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
        CXXConstructExpr::CK_Complete, SourceRange());
    if (Result.isInvalid())
      return ExprError();

    return S.MaybeBindToTemporary(Result.getAs<Expr>());
  }

  case CK_UserDefinedConversion: {
    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");

    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
    if (S.DiagnoseUseOfDecl(Method, CastLoc))
      return ExprError();

    // Create an implicit call expr that calls it.
    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
                                                 HadMultipleCandidates);
    if (Result.isInvalid())
      return ExprError();
    // Record usage of conversion in an implicit cast.
    Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
                                      CK_UserDefinedConversion, Result.get(),
                                      nullptr, Result.get()->getValueKind(),
                                      S.CurFPFeatureOverrides());

    return S.MaybeBindToTemporary(Result.get());
  }
  }
}

/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType using the pre-computed implicit
/// conversion sequence ICS. Returns the converted
/// expression. Action is the kind of conversion we're performing,
/// used in the error message.
ExprResult
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
                                const ImplicitConversionSequence &ICS,
                                AssignmentAction Action,
                                CheckedConversionKind CCK) {
  // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
  if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
    return From;

  switch (ICS.getKind()) {
  case ImplicitConversionSequence::StandardConversion: {
    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
                                               Action, CCK);
    if (Res.isInvalid())
      return ExprError();
    From = Res.get();
    break;
  }

  case ImplicitConversionSequence::UserDefinedConversion: {

      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
      CastKind CastKind;
      QualType BeforeToType;
      assert(FD && "no conversion function for user-defined conversion seq");
      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
        CastKind = CK_UserDefinedConversion;

        // If the user-defined conversion is specified by a conversion function,
        // the initial standard conversion sequence converts the source type to
        // the implicit object parameter of the conversion function.
        BeforeToType = Context.getTagDeclType(Conv->getParent());
      } else {
        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
        CastKind = CK_ConstructorConversion;
        // Do no conversion if dealing with ... for the first conversion.
        if (!ICS.UserDefined.EllipsisConversion) {
          // If the user-defined conversion is specified by a constructor, the
          // initial standard conversion sequence converts the source type to
          // the type required by the argument of the constructor
          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
        }
      }
      // Watch out for ellipsis conversion.
      if (!ICS.UserDefined.EllipsisConversion) {
        ExprResult Res =
          PerformImplicitConversion(From, BeforeToType,
                                    ICS.UserDefined.Before, AA_Converting,
                                    CCK);
        if (Res.isInvalid())
          return ExprError();
        From = Res.get();
      }

      ExprResult CastArg = BuildCXXCastArgument(
          *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
          cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
          ICS.UserDefined.HadMultipleCandidates, From);

      if (CastArg.isInvalid())
        return ExprError();

      From = CastArg.get();

      // C++ [over.match.oper]p7:
      //   [...] the second standard conversion sequence of a user-defined
      //   conversion sequence is not applied.
      if (CCK == CCK_ForBuiltinOverloadedOp)
        return From;

      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
                                       AA_Converting, CCK);
  }

  case ImplicitConversionSequence::AmbiguousConversion:
    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
                          PDiag(diag::err_typecheck_ambiguous_condition)
                            << From->getSourceRange());
    return ExprError();

  case ImplicitConversionSequence::EllipsisConversion:
    llvm_unreachable("Cannot perform an ellipsis conversion");

  case ImplicitConversionSequence::BadConversion:
    Sema::AssignConvertType ConvTy =
        CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
    bool Diagnosed = DiagnoseAssignmentResult(
        ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
        ToType, From->getType(), From, Action);
    assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
    return ExprError();
  }

  // Everything went well.
  return From;
}

/// PerformImplicitConversion - Perform an implicit conversion of the
/// expression From to the type ToType by following the standard
/// conversion sequence SCS. Returns the converted
/// expression. Flavor is the context in which we're performing this
/// conversion, for use in error messages.
ExprResult
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
                                const StandardConversionSequence& SCS,
                                AssignmentAction Action,
                                CheckedConversionKind CCK) {
  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);

  // Overall FIXME: we are recomputing too many types here and doing far too
  // much extra work. What this means is that we need to keep track of more
  // information that is computed when we try the implicit conversion initially,
  // so that we don't need to recompute anything here.
  QualType FromType = From->getType();

  if (SCS.CopyConstructor) {
    // FIXME: When can ToType be a reference type?
    assert(!ToType->isReferenceType());
    if (SCS.Second == ICK_Derived_To_Base) {
      SmallVector<Expr*, 8> ConstructorArgs;
      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
                                  ConstructorArgs))
        return ExprError();
      return BuildCXXConstructExpr(
          /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
          SCS.FoundCopyConstructor, SCS.CopyConstructor,
          ConstructorArgs, /*HadMultipleCandidates*/ false,
          /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
          CXXConstructExpr::CK_Complete, SourceRange());
    }
    return BuildCXXConstructExpr(
        /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
        SCS.FoundCopyConstructor, SCS.CopyConstructor,
        From, /*HadMultipleCandidates*/ false,
        /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
        CXXConstructExpr::CK_Complete, SourceRange());
  }

  // Resolve overloaded function references.
  if (Context.hasSameType(FromType, Context.OverloadTy)) {
    DeclAccessPair Found;
    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
                                                          true, Found);
    if (!Fn)
      return ExprError();

    if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
      return ExprError();

    From = FixOverloadedFunctionReference(From, Found, Fn);
    FromType = From->getType();
  }

  // If we're converting to an atomic type, first convert to the corresponding
  // non-atomic type.
  QualType ToAtomicType;
  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
    ToAtomicType = ToType;
    ToType = ToAtomic->getValueType();
  }

  QualType InitialFromType = FromType;
  // Perform the first implicit conversion.
  switch (SCS.First) {
  case ICK_Identity:
    if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
      FromType = FromAtomic->getValueType().getUnqualifiedType();
      From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
                                      From, /*BasePath=*/nullptr, VK_RValue,
                                      FPOptionsOverride());
    }
    break;

  case ICK_Lvalue_To_Rvalue: {
    assert(From->getObjectKind() != OK_ObjCProperty);
    ExprResult FromRes = DefaultLvalueConversion(From);
    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
    From = FromRes.get();
    FromType = From->getType();
    break;
  }

  case ICK_Array_To_Pointer:
    FromType = Context.getArrayDecayedType(FromType);
    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_Function_To_Pointer:
    FromType = Context.getPointerType(FromType);
    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  default:
    llvm_unreachable("Improper first standard conversion");
  }

  // Perform the second implicit conversion
  switch (SCS.Second) {
  case ICK_Identity:
    // C++ [except.spec]p5:
    //   [For] assignment to and initialization of pointers to functions,
    //   pointers to member functions, and references to functions: the
    //   target entity shall allow at least the exceptions allowed by the
    //   source value in the assignment or initialization.
    switch (Action) {
    case AA_Assigning:
    case AA_Initializing:
      // Note, function argument passing and returning are initialization.
    case AA_Passing:
    case AA_Returning:
    case AA_Sending:
    case AA_Passing_CFAudited:
      if (CheckExceptionSpecCompatibility(From, ToType))
        return ExprError();
      break;

    case AA_Casting:
    case AA_Converting:
      // Casts and implicit conversions are not initialization, so are not
      // checked for exception specification mismatches.
      break;
    }
    // Nothing else to do.
    break;

  case ICK_Integral_Promotion:
  case ICK_Integral_Conversion:
    if (ToType->isBooleanType()) {
      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
             SCS.Second == ICK_Integral_Promotion &&
             "only enums with fixed underlying type can promote to bool");
      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
    } else {
      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
    }
    break;

  case ICK_Floating_Promotion:
  case ICK_Floating_Conversion:
    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_Complex_Promotion:
  case ICK_Complex_Conversion: {
    QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
    QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
    CastKind CK;
    if (FromEl->isRealFloatingType()) {
      if (ToEl->isRealFloatingType())
        CK = CK_FloatingComplexCast;
      else
        CK = CK_FloatingComplexToIntegralComplex;
    } else if (ToEl->isRealFloatingType()) {
      CK = CK_IntegralComplexToFloatingComplex;
    } else {
      CK = CK_IntegralComplexCast;
    }
    From = ImpCastExprToType(From, ToType, CK,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;
  }

  case ICK_Floating_Integral:
    if (ToType->isRealFloatingType())
      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
    else
      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_Compatible_Conversion:
    From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
                             /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_Writeback_Conversion:
  case ICK_Pointer_Conversion: {
    if (SCS.IncompatibleObjC && Action != AA_Casting) {
      // Diagnose incompatible Objective-C conversions
      if (Action == AA_Initializing || Action == AA_Assigning)
        Diag(From->getBeginLoc(),
             diag::ext_typecheck_convert_incompatible_pointer)
            << ToType << From->getType() << Action << From->getSourceRange()
            << 0;
      else
        Diag(From->getBeginLoc(),
             diag::ext_typecheck_convert_incompatible_pointer)
            << From->getType() << ToType << Action << From->getSourceRange()
            << 0;

      if (From->getType()->isObjCObjectPointerType() &&
          ToType->isObjCObjectPointerType())
        EmitRelatedResultTypeNote(From);
    } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
               !CheckObjCARCUnavailableWeakConversion(ToType,
                                                      From->getType())) {
      if (Action == AA_Initializing)
        Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
      else
        Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
            << (Action == AA_Casting) << From->getType() << ToType
            << From->getSourceRange();
    }

    // Defer address space conversion to the third conversion.
    QualType FromPteeType = From->getType()->getPointeeType();
    QualType ToPteeType = ToType->getPointeeType();
    QualType NewToType = ToType;
    if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
        FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
      NewToType = Context.removeAddrSpaceQualType(ToPteeType);
      NewToType = Context.getAddrSpaceQualType(NewToType,
                                               FromPteeType.getAddressSpace());
      if (ToType->isObjCObjectPointerType())
        NewToType = Context.getObjCObjectPointerType(NewToType);
      else if (ToType->isBlockPointerType())
        NewToType = Context.getBlockPointerType(NewToType);
      else
        NewToType = Context.getPointerType(NewToType);
    }

    CastKind Kind;
    CXXCastPath BasePath;
    if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
      return ExprError();

    // Make sure we extend blocks if necessary.
    // FIXME: doing this here is really ugly.
    if (Kind == CK_BlockPointerToObjCPointerCast) {
      ExprResult E = From;
      (void) PrepareCastToObjCObjectPointer(E);
      From = E.get();
    }
    if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
      CheckObjCConversion(SourceRange(), NewToType, From, CCK);
    From = ImpCastExprToType(From, NewToType, Kind, VK_RValue, &BasePath, CCK)
             .get();
    break;
  }

  case ICK_Pointer_Member: {
    CastKind Kind;
    CXXCastPath BasePath;
    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
      return ExprError();
    if (CheckExceptionSpecCompatibility(From, ToType))
      return ExprError();

    // We may not have been able to figure out what this member pointer resolved
    // to up until this exact point.  Attempt to lock-in it's inheritance model.
    if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
      (void)isCompleteType(From->getExprLoc(), From->getType());
      (void)isCompleteType(From->getExprLoc(), ToType);
    }

    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
             .get();
    break;
  }

  case ICK_Boolean_Conversion:
    // Perform half-to-boolean conversion via float.
    if (From->getType()->isHalfType()) {
      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
      FromType = Context.FloatTy;
    }

    From = ImpCastExprToType(From, Context.BoolTy,
                             ScalarTypeToBooleanCastKind(FromType),
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_Derived_To_Base: {
    CXXCastPath BasePath;
    if (CheckDerivedToBaseConversion(
            From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
            From->getSourceRange(), &BasePath, CStyle))
      return ExprError();

    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
                      CK_DerivedToBase, From->getValueKind(),
                      &BasePath, CCK).get();
    break;
  }

  case ICK_Vector_Conversion:
    From = ImpCastExprToType(From, ToType, CK_BitCast,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_SVE_Vector_Conversion:
    From = ImpCastExprToType(From, ToType, CK_BitCast, VK_RValue,
                             /*BasePath=*/nullptr, CCK)
               .get();
    break;

  case ICK_Vector_Splat: {
    // Vector splat from any arithmetic type to a vector.
    Expr *Elem = prepareVectorSplat(ToType, From).get();
    From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
                             /*BasePath=*/nullptr, CCK).get();
    break;
  }

  case ICK_Complex_Real:
    // Case 1.  x -> _Complex y
    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
      QualType ElType = ToComplex->getElementType();
      bool isFloatingComplex = ElType->isRealFloatingType();

      // x -> y
      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
        // do nothing
      } else if (From->getType()->isRealFloatingType()) {
        From = ImpCastExprToType(From, ElType,
                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
      } else {
        assert(From->getType()->isIntegerType());
        From = ImpCastExprToType(From, ElType,
                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
      }
      // y -> _Complex y
      From = ImpCastExprToType(From, ToType,
                   isFloatingComplex ? CK_FloatingRealToComplex
                                     : CK_IntegralRealToComplex).get();

    // Case 2.  _Complex x -> y
    } else {
      auto *FromComplex = From->getType()->castAs<ComplexType>();
      QualType ElType = FromComplex->getElementType();
      bool isFloatingComplex = ElType->isRealFloatingType();

      // _Complex x -> x
      From = ImpCastExprToType(From, ElType,
                   isFloatingComplex ? CK_FloatingComplexToReal
                                     : CK_IntegralComplexToReal,
                               VK_RValue, /*BasePath=*/nullptr, CCK).get();

      // x -> y
      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
        // do nothing
      } else if (ToType->isRealFloatingType()) {
        From = ImpCastExprToType(From, ToType,
                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
      } else {
        assert(ToType->isIntegerType());
        From = ImpCastExprToType(From, ToType,
                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
      }
    }
    break;

  case ICK_Block_Pointer_Conversion: {
    LangAS AddrSpaceL =
        ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
    LangAS AddrSpaceR =
        FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
    assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
           "Invalid cast");
    CastKind Kind =
        AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;
  }

  case ICK_TransparentUnionConversion: {
    ExprResult FromRes = From;
    Sema::AssignConvertType ConvTy =
      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
    if (FromRes.isInvalid())
      return ExprError();
    From = FromRes.get();
    assert ((ConvTy == Sema::Compatible) &&
            "Improper transparent union conversion");
    (void)ConvTy;
    break;
  }

  case ICK_Zero_Event_Conversion:
  case ICK_Zero_Queue_Conversion:
    From = ImpCastExprToType(From, ToType,
                             CK_ZeroToOCLOpaqueType,
                             From->getValueKind()).get();
    break;

  case ICK_Lvalue_To_Rvalue:
  case ICK_Array_To_Pointer:
  case ICK_Function_To_Pointer:
  case ICK_Function_Conversion:
  case ICK_Qualification:
  case ICK_Num_Conversion_Kinds:
  case ICK_C_Only_Conversion:
  case ICK_Incompatible_Pointer_Conversion:
    llvm_unreachable("Improper second standard conversion");
  }

  switch (SCS.Third) {
  case ICK_Identity:
    // Nothing to do.
    break;

  case ICK_Function_Conversion:
    // If both sides are functions (or pointers/references to them), there could
    // be incompatible exception declarations.
    if (CheckExceptionSpecCompatibility(From, ToType))
      return ExprError();

    From = ImpCastExprToType(From, ToType, CK_NoOp,
                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
    break;

  case ICK_Qualification: {
    ExprValueKind VK = From->getValueKind();
    CastKind CK = CK_NoOp;

    if (ToType->isReferenceType() &&
        ToType->getPointeeType().getAddressSpace() !=
            From->getType().getAddressSpace())
      CK = CK_AddressSpaceConversion;

    if (ToType->isPointerType() &&
        ToType->getPointeeType().getAddressSpace() !=
            From->getType()->getPointeeType().getAddressSpace())
      CK = CK_AddressSpaceConversion;

    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
                             /*BasePath=*/nullptr, CCK)
               .get();

    if (SCS.DeprecatedStringLiteralToCharPtr &&
        !getLangOpts().WritableStrings) {
      Diag(From->getBeginLoc(),
           getLangOpts().CPlusPlus11
               ? diag::ext_deprecated_string_literal_conversion
               : diag::warn_deprecated_string_literal_conversion)
          << ToType.getNonReferenceType();
    }

    break;
  }

  default:
    llvm_unreachable("Improper third standard conversion");
  }

  // If this conversion sequence involved a scalar -> atomic conversion, perform
  // that conversion now.
  if (!ToAtomicType.isNull()) {
    assert(Context.hasSameType(
        ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
    From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
                             VK_RValue, nullptr, CCK).get();
  }

  // Materialize a temporary if we're implicitly converting to a reference
  // type. This is not required by the C++ rules but is necessary to maintain
  // AST invariants.
  if (ToType->isReferenceType() && From->isRValue()) {
    ExprResult Res = TemporaryMaterializationConversion(From);
    if (Res.isInvalid())
      return ExprError();
    From = Res.get();
  }

  // If this conversion sequence succeeded and involved implicitly converting a
  // _Nullable type to a _Nonnull one, complain.
  if (!isCast(CCK))
    diagnoseNullableToNonnullConversion(ToType, InitialFromType,
                                        From->getBeginLoc());

  return From;
}

/// Check the completeness of a type in a unary type trait.
///
/// If the particular type trait requires a complete type, tries to complete
/// it. If completing the type fails, a diagnostic is emitted and false
/// returned. If completing the type succeeds or no completion was required,
/// returns true.
static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
                                                SourceLocation Loc,
                                                QualType ArgTy) {
  // C++0x [meta.unary.prop]p3:
  //   For all of the class templates X declared in this Clause, instantiating
  //   that template with a template argument that is a class template
  //   specialization may result in the implicit instantiation of the template
  //   argument if and only if the semantics of X require that the argument
  //   must be a complete type.
  // We apply this rule to all the type trait expressions used to implement
  // these class templates. We also try to follow any GCC documented behavior
  // in these expressions to ensure portability of standard libraries.
  switch (UTT) {
  default: llvm_unreachable("not a UTT");
    // is_complete_type somewhat obviously cannot require a complete type.
  case UTT_IsCompleteType:
    // Fall-through

    // These traits are modeled on the type predicates in C++0x
    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
    // requiring a complete type, as whether or not they return true cannot be
    // impacted by the completeness of the type.
  case UTT_IsVoid:
  case UTT_IsIntegral:
  case UTT_IsFloatingPoint:
  case UTT_IsArray:
  case UTT_IsPointer:
  case UTT_IsLvalueReference:
  case UTT_IsRvalueReference:
  case UTT_IsMemberFunctionPointer:
  case UTT_IsMemberObjectPointer:
  case UTT_IsEnum:
  case UTT_IsUnion:
  case UTT_IsClass:
  case UTT_IsFunction:
  case UTT_IsReference:
  case UTT_IsArithmetic:
  case UTT_IsFundamental:
  case UTT_IsObject:
  case UTT_IsScalar:
  case UTT_IsCompound:
  case UTT_IsMemberPointer:
    // Fall-through

    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
    // which requires some of its traits to have the complete type. However,
    // the completeness of the type cannot impact these traits' semantics, and
    // so they don't require it. This matches the comments on these traits in
    // Table 49.
  case UTT_IsConst:
  case UTT_IsVolatile:
  case UTT_IsSigned:
  case UTT_IsUnsigned:

  // This type trait always returns false, checking the type is moot.
  case UTT_IsInterfaceClass:
    return true;

  // C++14 [meta.unary.prop]:
  //   If T is a non-union class type, T shall be a complete type.
  case UTT_IsEmpty:
  case UTT_IsPolymorphic:
  case UTT_IsAbstract:
    if (const auto *RD = ArgTy->getAsCXXRecordDecl())
      if (!RD->isUnion())
        return !S.RequireCompleteType(
            Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
    return true;

  // C++14 [meta.unary.prop]:
  //   If T is a class type, T shall be a complete type.
  case UTT_IsFinal:
  case UTT_IsSealed:
    if (ArgTy->getAsCXXRecordDecl())
      return !S.RequireCompleteType(
          Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
    return true;

  // C++1z [meta.unary.prop]:
  //   remove_all_extents_t<T> shall be a complete type or cv void.
  case UTT_IsAggregate:
  case UTT_IsTrivial:
  case UTT_IsTriviallyCopyable:
  case UTT_IsStandardLayout:
  case UTT_IsPOD:
  case UTT_IsLiteral:
  // Per the GCC type traits documentation, T shall be a complete type, cv void,
  // or an array of unknown bound. But GCC actually imposes the same constraints
  // as above.
  case UTT_HasNothrowAssign:
  case UTT_HasNothrowMoveAssign:
  case UTT_HasNothrowConstructor:
  case UTT_HasNothrowCopy:
  case UTT_HasTrivialAssign:
  case UTT_HasTrivialMoveAssign:
  case UTT_HasTrivialDefaultConstructor:
  case UTT_HasTrivialMoveConstructor:
  case UTT_HasTrivialCopy:
  case UTT_HasTrivialDestructor:
  case UTT_HasVirtualDestructor:
    ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
    LLVM_FALLTHROUGH;

  // C++1z [meta.unary.prop]:
  //   T shall be a complete type, cv void, or an array of unknown bound.
  case UTT_IsDestructible:
  case UTT_IsNothrowDestructible:
  case UTT_IsTriviallyDestructible:
  case UTT_HasUniqueObjectRepresentations:
    if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
      return true;

    return !S.RequireCompleteType(
        Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
  }
}

static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
                               bool (CXXRecordDecl::*HasTrivial)() const,
                               bool (CXXRecordDecl::*HasNonTrivial)() const,
                               bool (CXXMethodDecl::*IsDesiredOp)() const)
{
  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
    return true;

  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
  DeclarationNameInfo NameInfo(Name, KeyLoc);
  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
  if (Self.LookupQualifiedName(Res, RD)) {
    bool FoundOperator = false;
    Res.suppressDiagnostics();
    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
         Op != OpEnd; ++Op) {
      if (isa<FunctionTemplateDecl>(*Op))
        continue;

      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
      if((Operator->*IsDesiredOp)()) {
        FoundOperator = true;
        auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
        if (!CPT || !CPT->isNothrow())
          return false;
      }
    }
    return FoundOperator;
  }
  return false;
}

static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
                                   SourceLocation KeyLoc, QualType T) {
  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");

  ASTContext &C = Self.Context;
  switch(UTT) {
  default: llvm_unreachable("not a UTT");
    // Type trait expressions corresponding to the primary type category
    // predicates in C++0x [meta.unary.cat].
  case UTT_IsVoid:
    return T->isVoidType();
  case UTT_IsIntegral:
    return T->isIntegralType(C);
  case UTT_IsFloatingPoint:
    return T->isFloatingType();
  case UTT_IsArray:
    return T->isArrayType();
  case UTT_IsPointer:
    return T->isAnyPointerType();
  case UTT_IsLvalueReference:
    return T->isLValueReferenceType();
  case UTT_IsRvalueReference:
    return T->isRValueReferenceType();
  case UTT_IsMemberFunctionPointer:
    return T->isMemberFunctionPointerType();
  case UTT_IsMemberObjectPointer:
    return T->isMemberDataPointerType();
  case UTT_IsEnum:
    return T->isEnumeralType();
  case UTT_IsUnion:
    return T->isUnionType();
  case UTT_IsClass:
    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
  case UTT_IsFunction:
    return T->isFunctionType();

    // Type trait expressions which correspond to the convenient composition
    // predicates in C++0x [meta.unary.comp].
  case UTT_IsReference:
    return T->isReferenceType();
  case UTT_IsArithmetic:
    return T->isArithmeticType() && !T->isEnumeralType();
  case UTT_IsFundamental:
    return T->isFundamentalType();
  case UTT_IsObject:
    return T->isObjectType();
  case UTT_IsScalar:
    // Note: semantic analysis depends on Objective-C lifetime types to be
    // considered scalar types. However, such types do not actually behave
    // like scalar types at run time (since they may require retain/release
    // operations), so we report them as non-scalar.
    if (T->isObjCLifetimeType()) {
      switch (T.getObjCLifetime()) {
      case Qualifiers::OCL_None:
      case Qualifiers::OCL_ExplicitNone:
        return true;

      case Qualifiers::OCL_Strong:
      case Qualifiers::OCL_Weak:
      case Qualifiers::OCL_Autoreleasing:
        return false;
      }
    }

    return T->isScalarType();
  case UTT_IsCompound:
    return T->isCompoundType();
  case UTT_IsMemberPointer:
    return T->isMemberPointerType();

    // Type trait expressions which correspond to the type property predicates
    // in C++0x [meta.unary.prop].
  case UTT_IsConst:
    return T.isConstQualified();
  case UTT_IsVolatile:
    return T.isVolatileQualified();
  case UTT_IsTrivial:
    return T.isTrivialType(C);
  case UTT_IsTriviallyCopyable:
    return T.isTriviallyCopyableType(C);
  case UTT_IsStandardLayout:
    return T->isStandardLayoutType();
  case UTT_IsPOD:
    return T.isPODType(C);
  case UTT_IsLiteral:
    return T->isLiteralType(C);
  case UTT_IsEmpty:
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      return !RD->isUnion() && RD->isEmpty();
    return false;
  case UTT_IsPolymorphic:
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      return !RD->isUnion() && RD->isPolymorphic();
    return false;
  case UTT_IsAbstract:
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      return !RD->isUnion() && RD->isAbstract();
    return false;
  case UTT_IsAggregate:
    // Report vector extensions and complex types as aggregates because they
    // support aggregate initialization. GCC mirrors this behavior for vectors
    // but not _Complex.
    return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
           T->isAnyComplexType();
  // __is_interface_class only returns true when CL is invoked in /CLR mode and
  // even then only when it is used with the 'interface struct ...' syntax
  // Clang doesn't support /CLR which makes this type trait moot.
  case UTT_IsInterfaceClass:
    return false;
  case UTT_IsFinal:
  case UTT_IsSealed:
    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      return RD->hasAttr<FinalAttr>();
    return false;
  case UTT_IsSigned:
    // Enum types should always return false.
    // Floating points should always return true.
    return !T->isEnumeralType() && (T->isFloatingType() || T->isSignedIntegerType());
  case UTT_IsUnsigned:
    return T->isUnsignedIntegerType();

    // Type trait expressions which query classes regarding their construction,
    // destruction, and copying. Rather than being based directly on the
    // related type predicates in the standard, they are specified by both
    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
    // specifications.
    //
    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
    //
    // Note that these builtins do not behave as documented in g++: if a class
    // has both a trivial and a non-trivial special member of a particular kind,
    // they return false! For now, we emulate this behavior.
    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
    // does not correctly compute triviality in the presence of multiple special
    // members of the same kind. Revisit this once the g++ bug is fixed.
  case UTT_HasTrivialDefaultConstructor:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
    //   If __is_pod (type) is true then the trait is true, else if type is
    //   a cv class or union type (or array thereof) with a trivial default
    //   constructor ([class.ctor]) then the trait is true, else it is false.
    if (T.isPODType(C))
      return true;
    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
      return RD->hasTrivialDefaultConstructor() &&
             !RD->hasNonTrivialDefaultConstructor();
    return false;
  case UTT_HasTrivialMoveConstructor:
    //  This trait is implemented by MSVC 2012 and needed to parse the
    //  standard library headers. Specifically this is used as the logic
    //  behind std::is_trivially_move_constructible (20.9.4.3).
    if (T.isPODType(C))
      return true;
    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
    return false;
  case UTT_HasTrivialCopy:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
    //   If __is_pod (type) is true or type is a reference type then
    //   the trait is true, else if type is a cv class or union type
    //   with a trivial copy constructor ([class.copy]) then the trait
    //   is true, else it is false.
    if (T.isPODType(C) || T->isReferenceType())
      return true;
    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      return RD->hasTrivialCopyConstructor() &&
             !RD->hasNonTrivialCopyConstructor();
    return false;
  case UTT_HasTrivialMoveAssign:
    //  This trait is implemented by MSVC 2012 and needed to parse the
    //  standard library headers. Specifically it is used as the logic
    //  behind std::is_trivially_move_assignable (20.9.4.3)
    if (T.isPODType(C))
      return true;
    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
    return false;
  case UTT_HasTrivialAssign:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
    //   If type is const qualified or is a reference type then the
    //   trait is false. Otherwise if __is_pod (type) is true then the
    //   trait is true, else if type is a cv class or union type with
    //   a trivial copy assignment ([class.copy]) then the trait is
    //   true, else it is false.
    // Note: the const and reference restrictions are interesting,
    // given that const and reference members don't prevent a class
    // from having a trivial copy assignment operator (but do cause
    // errors if the copy assignment operator is actually used, q.v.
    // [class.copy]p12).

    if (T.isConstQualified())
      return false;
    if (T.isPODType(C))
      return true;
    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      return RD->hasTrivialCopyAssignment() &&
             !RD->hasNonTrivialCopyAssignment();
    return false;
  case UTT_IsDestructible:
  case UTT_IsTriviallyDestructible:
  case UTT_IsNothrowDestructible:
    // C++14 [meta.unary.prop]:
    //   For reference types, is_destructible<T>::value is true.
    if (T->isReferenceType())
      return true;

    // Objective-C++ ARC: autorelease types don't require destruction.
    if (T->isObjCLifetimeType() &&
        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
      return true;

    // C++14 [meta.unary.prop]:
    //   For incomplete types and function types, is_destructible<T>::value is
    //   false.
    if (T->isIncompleteType() || T->isFunctionType())
      return false;

    // A type that requires destruction (via a non-trivial destructor or ARC
    // lifetime semantics) is not trivially-destructible.
    if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
      return false;

    // C++14 [meta.unary.prop]:
    //   For object types and given U equal to remove_all_extents_t<T>, if the
    //   expression std::declval<U&>().~U() is well-formed when treated as an
    //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
    if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
      CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
      if (!Destructor)
        return false;
      //  C++14 [dcl.fct.def.delete]p2:
      //    A program that refers to a deleted function implicitly or
      //    explicitly, other than to declare it, is ill-formed.
      if (Destructor->isDeleted())
        return false;
      if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
        return false;
      if (UTT == UTT_IsNothrowDestructible) {
        auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
        if (!CPT || !CPT->isNothrow())
          return false;
      }
    }
    return true;

  case UTT_HasTrivialDestructor:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
    //   If __is_pod (type) is true or type is a reference type
    //   then the trait is true, else if type is a cv class or union
    //   type (or array thereof) with a trivial destructor
    //   ([class.dtor]) then the trait is true, else it is
    //   false.
    if (T.isPODType(C) || T->isReferenceType())
      return true;

    // Objective-C++ ARC: autorelease types don't require destruction.
    if (T->isObjCLifetimeType() &&
        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
      return true;

    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
      return RD->hasTrivialDestructor();
    return false;
  // TODO: Propagate nothrowness for implicitly declared special members.
  case UTT_HasNothrowAssign:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
    //   If type is const qualified or is a reference type then the
    //   trait is false. Otherwise if __has_trivial_assign (type)
    //   is true then the trait is true, else if type is a cv class
    //   or union type with copy assignment operators that are known
    //   not to throw an exception then the trait is true, else it is
    //   false.
    if (C.getBaseElementType(T).isConstQualified())
      return false;
    if (T->isReferenceType())
      return false;
    if (T.isPODType(C) || T->isObjCLifetimeType())
      return true;

    if (const RecordType *RT = T->getAs<RecordType>())
      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
                                &CXXRecordDecl::hasTrivialCopyAssignment,
                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
                                &CXXMethodDecl::isCopyAssignmentOperator);
    return false;
  case UTT_HasNothrowMoveAssign:
    //  This trait is implemented by MSVC 2012 and needed to parse the
    //  standard library headers. Specifically this is used as the logic
    //  behind std::is_nothrow_move_assignable (20.9.4.3).
    if (T.isPODType(C))
      return true;

    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
                                &CXXRecordDecl::hasTrivialMoveAssignment,
                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
                                &CXXMethodDecl::isMoveAssignmentOperator);
    return false;
  case UTT_HasNothrowCopy:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
    //   If __has_trivial_copy (type) is true then the trait is true, else
    //   if type is a cv class or union type with copy constructors that are
    //   known not to throw an exception then the trait is true, else it is
    //   false.
    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
      return true;
    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
      if (RD->hasTrivialCopyConstructor() &&
          !RD->hasNonTrivialCopyConstructor())
        return true;

      bool FoundConstructor = false;
      unsigned FoundTQs;
      for (const auto *ND : Self.LookupConstructors(RD)) {
        // A template constructor is never a copy constructor.
        // FIXME: However, it may actually be selected at the actual overload
        // resolution point.
        if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
          continue;
        // UsingDecl itself is not a constructor
        if (isa<UsingDecl>(ND))
          continue;
        auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
        if (Constructor->isCopyConstructor(FoundTQs)) {
          FoundConstructor = true;
          auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
          if (!CPT)
            return false;
          // TODO: check whether evaluating default arguments can throw.
          // For now, we'll be conservative and assume that they can throw.
          if (!CPT->isNothrow() || CPT->getNumParams() > 1)
            return false;
        }
      }

      return FoundConstructor;
    }
    return false;
  case UTT_HasNothrowConstructor:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
    //   If __has_trivial_constructor (type) is true then the trait is
    //   true, else if type is a cv class or union type (or array
    //   thereof) with a default constructor that is known not to
    //   throw an exception then the trait is true, else it is false.
    if (T.isPODType(C) || T->isObjCLifetimeType())
      return true;
    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
      if (RD->hasTrivialDefaultConstructor() &&
          !RD->hasNonTrivialDefaultConstructor())
        return true;

      bool FoundConstructor = false;
      for (const auto *ND : Self.LookupConstructors(RD)) {
        // FIXME: In C++0x, a constructor template can be a default constructor.
        if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
          continue;
        // UsingDecl itself is not a constructor
        if (isa<UsingDecl>(ND))
          continue;
        auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
        if (Constructor->isDefaultConstructor()) {
          FoundConstructor = true;
          auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
          if (!CPT)
            return false;
          // FIXME: check whether evaluating default arguments can throw.
          // For now, we'll be conservative and assume that they can throw.
          if (!CPT->isNothrow() || CPT->getNumParams() > 0)
            return false;
        }
      }
      return FoundConstructor;
    }
    return false;
  case UTT_HasVirtualDestructor:
    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
    //   If type is a class type with a virtual destructor ([class.dtor])
    //   then the trait is true, else it is false.
    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
        return Destructor->isVirtual();
    return false;

    // These type trait expressions are modeled on the specifications for the
    // Embarcadero C++0x type trait functions:
    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
  case UTT_IsCompleteType:
    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
    //   Returns True if and only if T is a complete type at the point of the
    //   function call.
    return !T->isIncompleteType();
  case UTT_HasUniqueObjectRepresentations:
    return C.hasUniqueObjectRepresentations(T);
  }
}

static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
                                    QualType RhsT, SourceLocation KeyLoc);

static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
                              ArrayRef<TypeSourceInfo *> Args,
                              SourceLocation RParenLoc) {
  if (Kind <= UTT_Last)
    return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());

  // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
  // traits to avoid duplication.
  if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
    return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
                                   Args[1]->getType(), RParenLoc);

  switch (Kind) {
  case clang::BTT_ReferenceBindsToTemporary:
  case clang::TT_IsConstructible:
  case clang::TT_IsNothrowConstructible:
  case clang::TT_IsTriviallyConstructible: {
    // C++11 [meta.unary.prop]:
    //   is_trivially_constructible is defined as:
    //
    //     is_constructible<T, Args...>::value is true and the variable
    //     definition for is_constructible, as defined below, is known to call
    //     no operation that is not trivial.
    //
    //   The predicate condition for a template specialization
    //   is_constructible<T, Args...> shall be satisfied if and only if the
    //   following variable definition would be well-formed for some invented
    //   variable t:
    //
    //     T t(create<Args>()...);
    assert(!Args.empty());

    // Precondition: T and all types in the parameter pack Args shall be
    // complete types, (possibly cv-qualified) void, or arrays of
    // unknown bound.
    for (const auto *TSI : Args) {
      QualType ArgTy = TSI->getType();
      if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
        continue;

      if (S.RequireCompleteType(KWLoc, ArgTy,
          diag::err_incomplete_type_used_in_type_trait_expr))
        return false;
    }

    // Make sure the first argument is not incomplete nor a function type.
    QualType T = Args[0]->getType();
    if (T->isIncompleteType() || T->isFunctionType())
      return false;

    // Make sure the first argument is not an abstract type.
    CXXRecordDecl *RD = T->getAsCXXRecordDecl();
    if (RD && RD->isAbstract())
      return false;

    llvm::BumpPtrAllocator OpaqueExprAllocator;
    SmallVector<Expr *, 2> ArgExprs;
    ArgExprs.reserve(Args.size() - 1);
    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
      QualType ArgTy = Args[I]->getType();
      if (ArgTy->isObjectType() || ArgTy->isFunctionType())
        ArgTy = S.Context.getRValueReferenceType(ArgTy);
      ArgExprs.push_back(
          new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
              OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
                              ArgTy.getNonLValueExprType(S.Context),
                              Expr::getValueKindForType(ArgTy)));
    }

    // Perform the initialization in an unevaluated context within a SFINAE
    // trap at translation unit scope.
    EnterExpressionEvaluationContext Unevaluated(
        S, Sema::ExpressionEvaluationContext::Unevaluated);
    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
                                                                 RParenLoc));
    InitializationSequence Init(S, To, InitKind, ArgExprs);
    if (Init.Failed())
      return false;

    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
      return false;

    if (Kind == clang::TT_IsConstructible)
      return true;

    if (Kind == clang::BTT_ReferenceBindsToTemporary) {
      if (!T->isReferenceType())
        return false;

      return !Init.isDirectReferenceBinding();
    }

    if (Kind == clang::TT_IsNothrowConstructible)
      return S.canThrow(Result.get()) == CT_Cannot;

    if (Kind == clang::TT_IsTriviallyConstructible) {
      // Under Objective-C ARC and Weak, if the destination has non-trivial
      // Objective-C lifetime, this is a non-trivial construction.
      if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
        return false;

      // The initialization succeeded; now make sure there are no non-trivial
      // calls.
      return !Result.get()->hasNonTrivialCall(S.Context);
    }

    llvm_unreachable("unhandled type trait");
    return false;
  }
    default: llvm_unreachable("not a TT");
  }

  return false;
}

ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
                                ArrayRef<TypeSourceInfo *> Args,
                                SourceLocation RParenLoc) {
  QualType ResultType = Context.getLogicalOperationType();

  if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
                               *this, Kind, KWLoc, Args[0]->getType()))
    return ExprError();

  bool Dependent = false;
  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
    if (Args[I]->getType()->isDependentType()) {
      Dependent = true;
      break;
    }
  }

  bool Result = false;
  if (!Dependent)
    Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);

  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
                               RParenLoc, Result);
}

ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
                                ArrayRef<ParsedType> Args,
                                SourceLocation RParenLoc) {
  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
  ConvertedArgs.reserve(Args.size());

  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
    TypeSourceInfo *TInfo;
    QualType T = GetTypeFromParser(Args[I], &TInfo);
    if (!TInfo)
      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);

    ConvertedArgs.push_back(TInfo);
  }

  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
}

static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
                                    QualType RhsT, SourceLocation KeyLoc) {
  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
         "Cannot evaluate traits of dependent types");

  switch(BTT) {
  case BTT_IsBaseOf: {
    // C++0x [meta.rel]p2
    // Base is a base class of Derived without regard to cv-qualifiers or
    // Base and Derived are not unions and name the same class type without
    // regard to cv-qualifiers.

    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
    if (!rhsRecord || !lhsRecord) {
      const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
      const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
      if (!LHSObjTy || !RHSObjTy)
        return false;

      ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
      ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
      if (!BaseInterface || !DerivedInterface)
        return false;

      if (Self.RequireCompleteType(
              KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
        return false;

      return BaseInterface->isSuperClassOf(DerivedInterface);
    }

    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
             == (lhsRecord == rhsRecord));

    // Unions are never base classes, and never have base classes.
    // It doesn't matter if they are complete or not. See PR#41843
    if (lhsRecord && lhsRecord->getDecl()->isUnion())
      return false;
    if (rhsRecord && rhsRecord->getDecl()->isUnion())
      return false;

    if (lhsRecord == rhsRecord)
      return true;

    // C++0x [meta.rel]p2:
    //   If Base and Derived are class types and are different types
    //   (ignoring possible cv-qualifiers) then Derived shall be a
    //   complete type.
    if (Self.RequireCompleteType(KeyLoc, RhsT,
                          diag::err_incomplete_type_used_in_type_trait_expr))
      return false;

    return cast<CXXRecordDecl>(rhsRecord->getDecl())
      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
  }
  case BTT_IsSame:
    return Self.Context.hasSameType(LhsT, RhsT);
  case BTT_TypeCompatible: {
    // GCC ignores cv-qualifiers on arrays for this builtin.
    Qualifiers LhsQuals, RhsQuals;
    QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
    QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
    return Self.Context.typesAreCompatible(Lhs, Rhs);
  }
  case BTT_IsConvertible:
  case BTT_IsConvertibleTo: {
    // C++0x [meta.rel]p4:
    //   Given the following function prototype:
    //
    //     template <class T>
    //       typename add_rvalue_reference<T>::type create();
    //
    //   the predicate condition for a template specialization
    //   is_convertible<From, To> shall be satisfied if and only if
    //   the return expression in the following code would be
    //   well-formed, including any implicit conversions to the return
    //   type of the function:
    //
    //     To test() {
    //       return create<From>();
    //     }
    //
    //   Access checking is performed as if in a context unrelated to To and
    //   From. Only the validity of the immediate context of the expression
    //   of the return-statement (including conversions to the return type)
    //   is considered.
    //
    // We model the initialization as a copy-initialization of a temporary
    // of the appropriate type, which for this expression is identical to the
    // return statement (since NRVO doesn't apply).

    // Functions aren't allowed to return function or array types.
    if (RhsT->isFunctionType() || RhsT->isArrayType())
      return false;

    // A return statement in a void function must have void type.
    if (RhsT->isVoidType())
      return LhsT->isVoidType();

    // A function definition requires a complete, non-abstract return type.
    if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
      return false;

    // Compute the result of add_rvalue_reference.
    if (LhsT->isObjectType() || LhsT->isFunctionType())
      LhsT = Self.Context.getRValueReferenceType(LhsT);

    // Build a fake source and destination for initialization.
    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
                         Expr::getValueKindForType(LhsT));
    Expr *FromPtr = &From;
    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
                                                           SourceLocation()));

    // Perform the initialization in an unevaluated context within a SFINAE
    // trap at translation unit scope.
    EnterExpressionEvaluationContext Unevaluated(
        Self, Sema::ExpressionEvaluationContext::Unevaluated);
    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
    InitializationSequence Init(Self, To, Kind, FromPtr);
    if (Init.Failed())
      return false;

    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
  }

  case BTT_IsAssignable:
  case BTT_IsNothrowAssignable:
  case BTT_IsTriviallyAssignable: {
    // C++11 [meta.unary.prop]p3:
    //   is_trivially_assignable is defined as:
    //     is_assignable<T, U>::value is true and the assignment, as defined by
    //     is_assignable, is known to call no operation that is not trivial
    //
    //   is_assignable is defined as:
    //     The expression declval<T>() = declval<U>() is well-formed when
    //     treated as an unevaluated operand (Clause 5).
    //
    //   For both, T and U shall be complete types, (possibly cv-qualified)
    //   void, or arrays of unknown bound.
    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
        Self.RequireCompleteType(KeyLoc, LhsT,
          diag::err_incomplete_type_used_in_type_trait_expr))
      return false;
    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
        Self.RequireCompleteType(KeyLoc, RhsT,
          diag::err_incomplete_type_used_in_type_trait_expr))
      return false;

    // cv void is never assignable.
    if (LhsT->isVoidType() || RhsT->isVoidType())
      return false;

    // Build expressions that emulate the effect of declval<T>() and
    // declval<U>().
    if (LhsT->isObjectType() || LhsT->isFunctionType())
      LhsT = Self.Context.getRValueReferenceType(LhsT);
    if (RhsT->isObjectType() || RhsT->isFunctionType())
      RhsT = Self.Context.getRValueReferenceType(RhsT);
    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
                        Expr::getValueKindForType(LhsT));
    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
                        Expr::getValueKindForType(RhsT));

    // Attempt the assignment in an unevaluated context within a SFINAE
    // trap at translation unit scope.
    EnterExpressionEvaluationContext Unevaluated(
        Self, Sema::ExpressionEvaluationContext::Unevaluated);
    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
    ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
                                        &Rhs);
    if (Result.isInvalid())
      return false;

    // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
    Self.CheckUnusedVolatileAssignment(Result.get());

    if (SFINAE.hasErrorOccurred())
      return false;

    if (BTT == BTT_IsAssignable)
      return true;

    if (BTT == BTT_IsNothrowAssignable)
      return Self.canThrow(Result.get()) == CT_Cannot;

    if (BTT == BTT_IsTriviallyAssignable) {
      // Under Objective-C ARC and Weak, if the destination has non-trivial
      // Objective-C lifetime, this is a non-trivial assignment.
      if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
        return false;

      return !Result.get()->hasNonTrivialCall(Self.Context);
    }

    llvm_unreachable("unhandled type trait");
    return false;
  }
    default: llvm_unreachable("not a BTT");
  }
  llvm_unreachable("Unknown type trait or not implemented");
}

ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
                                     SourceLocation KWLoc,
                                     ParsedType Ty,
                                     Expr* DimExpr,
                                     SourceLocation RParen) {
  TypeSourceInfo *TSInfo;
  QualType T = GetTypeFromParser(Ty, &TSInfo);
  if (!TSInfo)
    TSInfo = Context.getTrivialTypeSourceInfo(T);

  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
}

static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
                                           QualType T, Expr *DimExpr,
                                           SourceLocation KeyLoc) {
  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");

  switch(ATT) {
  case ATT_ArrayRank:
    if (T->isArrayType()) {
      unsigned Dim = 0;
      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
        ++Dim;
        T = AT->getElementType();
      }
      return Dim;
    }
    return 0;

  case ATT_ArrayExtent: {
    llvm::APSInt Value;
    uint64_t Dim;
    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
          diag::err_dimension_expr_not_constant_integer,
          false).isInvalid())
      return 0;
    if (Value.isSigned() && Value.isNegative()) {
      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
        << DimExpr->getSourceRange();
      return 0;
    }
    Dim = Value.getLimitedValue();

    if (T->isArrayType()) {
      unsigned D = 0;
      bool Matched = false;
      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
        if (Dim == D) {
          Matched = true;
          break;
        }
        ++D;
        T = AT->getElementType();
      }

      if (Matched && T->isArrayType()) {
        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
          return CAT->getSize().getLimitedValue();
      }
    }
    return 0;
  }
  }
  llvm_unreachable("Unknown type trait or not implemented");
}

ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
                                     SourceLocation KWLoc,
                                     TypeSourceInfo *TSInfo,
                                     Expr* DimExpr,
                                     SourceLocation RParen) {
  QualType T = TSInfo->getType();

  // FIXME: This should likely be tracked as an APInt to remove any host
  // assumptions about the width of size_t on the target.
  uint64_t Value = 0;
  if (!T->isDependentType())
    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);

  // While the specification for these traits from the Embarcadero C++
  // compiler's documentation says the return type is 'unsigned int', Clang
  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
  // compiler, there is no difference. On several other platforms this is an
  // important distinction.
  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
                                          RParen, Context.getSizeType());
}

ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
                                      SourceLocation KWLoc,
                                      Expr *Queried,
                                      SourceLocation RParen) {
  // If error parsing the expression, ignore.
  if (!Queried)
    return ExprError();

  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);

  return Result;
}

static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
  switch (ET) {
  case ET_IsLValueExpr: return E->isLValue();
  case ET_IsRValueExpr: return E->isRValue();
  }
  llvm_unreachable("Expression trait not covered by switch");
}

ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
                                      SourceLocation KWLoc,
                                      Expr *Queried,
                                      SourceLocation RParen) {
  if (Queried->isTypeDependent()) {
    // Delay type-checking for type-dependent expressions.
  } else if (Queried->getType()->isPlaceholderType()) {
    ExprResult PE = CheckPlaceholderExpr(Queried);
    if (PE.isInvalid()) return ExprError();
    return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
  }

  bool Value = EvaluateExpressionTrait(ET, Queried);

  return new (Context)
      ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
}

QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
                                            ExprValueKind &VK,
                                            SourceLocation Loc,
                                            bool isIndirect) {
  assert(!LHS.get()->getType()->isPlaceholderType() &&
         !RHS.get()->getType()->isPlaceholderType() &&
         "placeholders should have been weeded out by now");

  // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
  // temporary materialization conversion otherwise.
  if (isIndirect)
    LHS = DefaultLvalueConversion(LHS.get());
  else if (LHS.get()->isRValue())
    LHS = TemporaryMaterializationConversion(LHS.get());
  if (LHS.isInvalid())
    return QualType();

  // The RHS always undergoes lvalue conversions.
  RHS = DefaultLvalueConversion(RHS.get());
  if (RHS.isInvalid()) return QualType();

  const char *OpSpelling = isIndirect ? "->*" : ".*";
  // C++ 5.5p2
  //   The binary operator .* [p3: ->*] binds its second operand, which shall
  //   be of type "pointer to member of T" (where T is a completely-defined
  //   class type) [...]
  QualType RHSType = RHS.get()->getType();
  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
  if (!MemPtr) {
    Diag(Loc, diag::err_bad_memptr_rhs)
      << OpSpelling << RHSType << RHS.get()->getSourceRange();
    return QualType();
  }

  QualType Class(MemPtr->getClass(), 0);

  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
  // member pointer points must be completely-defined. However, there is no
  // reason for this semantic distinction, and the rule is not enforced by
  // other compilers. Therefore, we do not check this property, as it is
  // likely to be considered a defect.

  // C++ 5.5p2
  //   [...] to its first operand, which shall be of class T or of a class of
  //   which T is an unambiguous and accessible base class. [p3: a pointer to
  //   such a class]
  QualType LHSType = LHS.get()->getType();
  if (isIndirect) {
    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
      LHSType = Ptr->getPointeeType();
    else {
      Diag(Loc, diag::err_bad_memptr_lhs)
        << OpSpelling << 1 << LHSType
        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
      return QualType();
    }
  }

  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
    // If we want to check the hierarchy, we need a complete type.
    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
                            OpSpelling, (int)isIndirect)) {
      return QualType();
    }

    if (!IsDerivedFrom(Loc, LHSType, Class)) {
      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
        << (int)isIndirect << LHS.get()->getType();
      return QualType();
    }

    CXXCastPath BasePath;
    if (CheckDerivedToBaseConversion(
            LHSType, Class, Loc,
            SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
            &BasePath))
      return QualType();

    // Cast LHS to type of use.
    QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
    if (isIndirect)
      UseType = Context.getPointerType(UseType);
    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
    LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
                            &BasePath);
  }

  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
    // Diagnose use of pointer-to-member type which when used as
    // the functional cast in a pointer-to-member expression.
    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
     return QualType();
  }

  // C++ 5.5p2
  //   The result is an object or a function of the type specified by the
  //   second operand.
  // The cv qualifiers are the union of those in the pointer and the left side,
  // in accordance with 5.5p5 and 5.2.5.
  QualType Result = MemPtr->getPointeeType();
  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());

  // C++0x [expr.mptr.oper]p6:
  //   In a .* expression whose object expression is an rvalue, the program is
  //   ill-formed if the second operand is a pointer to member function with
  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
  //   expression is an lvalue, the program is ill-formed if the second operand
  //   is a pointer to member function with ref-qualifier &&.
  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
    switch (Proto->getRefQualifier()) {
    case RQ_None:
      // Do nothing
      break;

    case RQ_LValue:
      if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
        // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
        // is (exactly) 'const'.
        if (Proto->isConst() && !Proto->isVolatile())
          Diag(Loc, getLangOpts().CPlusPlus20
                        ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
                        : diag::ext_pointer_to_const_ref_member_on_rvalue);
        else
          Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
              << RHSType << 1 << LHS.get()->getSourceRange();
      }
      break;

    case RQ_RValue:
      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
          << RHSType << 0 << LHS.get()->getSourceRange();
      break;
    }
  }

  // C++ [expr.mptr.oper]p6:
  //   The result of a .* expression whose second operand is a pointer
  //   to a data member is of the same value category as its
  //   first operand. The result of a .* expression whose second
  //   operand is a pointer to a member function is a prvalue. The
  //   result of an ->* expression is an lvalue if its second operand
  //   is a pointer to data member and a prvalue otherwise.
  if (Result->isFunctionType()) {
    VK = VK_RValue;
    return Context.BoundMemberTy;
  } else if (isIndirect) {
    VK = VK_LValue;
  } else {
    VK = LHS.get()->getValueKind();
  }

  return Result;
}

/// Try to convert a type to another according to C++11 5.16p3.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, the two operands are attempted to be
/// converted to each other. This function does the conversion in one direction.
/// It returns true if the program is ill-formed and has already been diagnosed
/// as such.
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
                                SourceLocation QuestionLoc,
                                bool &HaveConversion,
                                QualType &ToType) {
  HaveConversion = false;
  ToType = To->getType();

  InitializationKind Kind =
      InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
  // C++11 5.16p3
  //   The process for determining whether an operand expression E1 of type T1
  //   can be converted to match an operand expression E2 of type T2 is defined
  //   as follows:
  //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
  //      implicitly converted to type "lvalue reference to T2", subject to the
  //      constraint that in the conversion the reference must bind directly to
  //      an lvalue.
  //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
  //      implicitly converted to the type "rvalue reference to R2", subject to
  //      the constraint that the reference must bind directly.
  if (To->isLValue() || To->isXValue()) {
    QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
                                : Self.Context.getRValueReferenceType(ToType);

    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);

    InitializationSequence InitSeq(Self, Entity, Kind, From);
    if (InitSeq.isDirectReferenceBinding()) {
      ToType = T;
      HaveConversion = true;
      return false;
    }

    if (InitSeq.isAmbiguous())
      return InitSeq.Diagnose(Self, Entity, Kind, From);
  }

  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
  //      -- if E1 and E2 have class type, and the underlying class types are
  //         the same or one is a base class of the other:
  QualType FTy = From->getType();
  QualType TTy = To->getType();
  const RecordType *FRec = FTy->getAs<RecordType>();
  const RecordType *TRec = TTy->getAs<RecordType>();
  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
                       Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
  if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
                       Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
    //         E1 can be converted to match E2 if the class of T2 is the
    //         same type as, or a base class of, the class of T1, and
    //         [cv2 > cv1].
    if (FRec == TRec || FDerivedFromT) {
      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
        InitializationSequence InitSeq(Self, Entity, Kind, From);
        if (InitSeq) {
          HaveConversion = true;
          return false;
        }

        if (InitSeq.isAmbiguous())
          return InitSeq.Diagnose(Self, Entity, Kind, From);
      }
    }

    return false;
  }

  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
  //        implicitly converted to the type that expression E2 would have
  //        if E2 were converted to an rvalue (or the type it has, if E2 is
  //        an rvalue).
  //
  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
  // to the array-to-pointer or function-to-pointer conversions.
  TTy = TTy.getNonLValueExprType(Self.Context);

  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
  InitializationSequence InitSeq(Self, Entity, Kind, From);
  HaveConversion = !InitSeq.Failed();
  ToType = TTy;
  if (InitSeq.isAmbiguous())
    return InitSeq.Diagnose(Self, Entity, Kind, From);

  return false;
}

/// Try to find a common type for two according to C++0x 5.16p5.
///
/// This is part of the parameter validation for the ? operator. If either
/// value operand is a class type, overload resolution is used to find a
/// conversion to a common type.
static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
                                    SourceLocation QuestionLoc) {
  Expr *Args[2] = { LHS.get(), RHS.get() };
  OverloadCandidateSet CandidateSet(QuestionLoc,
                                    OverloadCandidateSet::CSK_Operator);
  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
                                    CandidateSet);

  OverloadCandidateSet::iterator Best;
  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
    case OR_Success: {
      // We found a match. Perform the conversions on the arguments and move on.
      ExprResult LHSRes = Self.PerformImplicitConversion(
          LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
          Sema::AA_Converting);
      if (LHSRes.isInvalid())
        break;
      LHS = LHSRes;

      ExprResult RHSRes = Self.PerformImplicitConversion(
          RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
          Sema::AA_Converting);
      if (RHSRes.isInvalid())
        break;
      RHS = RHSRes;
      if (Best->Function)
        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
      return false;
    }

    case OR_No_Viable_Function:

      // Emit a better diagnostic if one of the expressions is a null pointer
      // constant and the other is a pointer type. In this case, the user most
      // likely forgot to take the address of the other expression.
      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
        return true;

      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
        << LHS.get()->getType() << RHS.get()->getType()
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      return true;

    case OR_Ambiguous:
      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
        << LHS.get()->getType() << RHS.get()->getType()
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      // FIXME: Print the possible common types by printing the return types of
      // the viable candidates.
      break;

    case OR_Deleted:
      llvm_unreachable("Conditional operator has only built-in overloads");
  }
  return true;
}

/// Perform an "extended" implicit conversion as returned by
/// TryClassUnification.
static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
  InitializationKind Kind =
      InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
  Expr *Arg = E.get();
  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
  if (Result.isInvalid())
    return true;

  E = Result;
  return false;
}

// Check the condition operand of ?: to see if it is valid for the GCC
// extension.
static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
                                                 QualType CondTy) {
  if (!CondTy->isVectorType() || CondTy->isExtVectorType())
    return false;
  const QualType EltTy =
      cast<VectorType>(CondTy.getCanonicalType())->getElementType();

  assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&
         "Vectors cant be boolean or enum types");
  return EltTy->isIntegralType(Ctx);
}

QualType Sema::CheckGNUVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
                                              ExprResult &RHS,
                                              SourceLocation QuestionLoc) {
  LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());

  QualType CondType = Cond.get()->getType();
  const auto *CondVT = CondType->castAs<VectorType>();
  QualType CondElementTy = CondVT->getElementType();
  unsigned CondElementCount = CondVT->getNumElements();
  QualType LHSType = LHS.get()->getType();
  const auto *LHSVT = LHSType->getAs<VectorType>();
  QualType RHSType = RHS.get()->getType();
  const auto *RHSVT = RHSType->getAs<VectorType>();

  QualType ResultType;

  // FIXME: In the future we should define what the Extvector conditional
  // operator looks like.
  if (LHSVT && isa<ExtVectorType>(LHSVT)) {
    Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
        << /*isExtVector*/ true << LHSType;
    return {};
  }

  if (RHSVT && isa<ExtVectorType>(RHSVT)) {
    Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
        << /*isExtVector*/ true << RHSType;
    return {};
  }

  if (LHSVT && RHSVT) {
    // If both are vector types, they must be the same type.
    if (!Context.hasSameType(LHSType, RHSType)) {
      Diag(QuestionLoc, diag::err_conditional_vector_mismatched_vectors)
          << LHSType << RHSType;
      return {};
    }
    ResultType = LHSType;
  } else if (LHSVT || RHSVT) {
    ResultType = CheckVectorOperands(
        LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
        /*AllowBoolConversions*/ false);
    if (ResultType.isNull())
      return {};
  } else {
    // Both are scalar.
    QualType ResultElementTy;
    LHSType = LHSType.getCanonicalType().getUnqualifiedType();
    RHSType = RHSType.getCanonicalType().getUnqualifiedType();

    if (Context.hasSameType(LHSType, RHSType))
      ResultElementTy = LHSType;
    else
      ResultElementTy =
          UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);

    if (ResultElementTy->isEnumeralType()) {
      Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
          << /*isExtVector*/ false << ResultElementTy;
      return {};
    }
    ResultType = Context.getVectorType(
        ResultElementTy, CondType->castAs<VectorType>()->getNumElements(),
        VectorType::GenericVector);

    LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
    RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
  }

  assert(!ResultType.isNull() && ResultType->isVectorType() &&
         "Result should have been a vector type");
  auto *ResultVectorTy = ResultType->castAs<VectorType>();
  QualType ResultElementTy = ResultVectorTy->getElementType();
  unsigned ResultElementCount = ResultVectorTy->getNumElements();

  if (ResultElementCount != CondElementCount) {
    Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
                                                         << ResultType;
    return {};
  }

  if (Context.getTypeSize(ResultElementTy) !=
      Context.getTypeSize(CondElementTy)) {
    Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
                                                                 << ResultType;
    return {};
  }

  return ResultType;
}

/// Check the operands of ?: under C++ semantics.
///
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
/// extension. In this case, LHS == Cond. (But they're not aliases.)
///
/// This function also implements GCC's vector extension for conditionals.
///  GCC's vector extension permits the use of a?b:c where the type of
///  a is that of a integer vector with the same number of elements and
///  size as the vectors of b and c. If one of either b or c is a scalar
///  it is implicitly converted to match the type of the vector.
///  Otherwise the expression is ill-formed. If both b and c are scalars,
///  then b and c are checked and converted to the type of a if possible.
///  Unlike the OpenCL ?: operator, the expression is evaluated as
///  (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
                                           ExprResult &RHS, ExprValueKind &VK,
                                           ExprObjectKind &OK,
                                           SourceLocation QuestionLoc) {
  // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
  // pointers.

  // Assume r-value.
  VK = VK_RValue;
  OK = OK_Ordinary;
  bool IsVectorConditional =
      isValidVectorForConditionalCondition(Context, Cond.get()->getType());

  // C++11 [expr.cond]p1
  //   The first expression is contextually converted to bool.
  if (!Cond.get()->isTypeDependent()) {
    ExprResult CondRes = IsVectorConditional
                             ? DefaultFunctionArrayLvalueConversion(Cond.get())
                             : CheckCXXBooleanCondition(Cond.get());
    if (CondRes.isInvalid())
      return QualType();
    Cond = CondRes;
  } else {
    // To implement C++, the first expression typically doesn't alter the result
    // type of the conditional, however the GCC compatible vector extension
    // changes the result type to be that of the conditional. Since we cannot
    // know if this is a vector extension here, delay the conversion of the
    // LHS/RHS below until later.
    return Context.DependentTy;
  }


  // Either of the arguments dependent?
  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
    return Context.DependentTy;

  // C++11 [expr.cond]p2
  //   If either the second or the third operand has type (cv) void, ...
  QualType LTy = LHS.get()->getType();
  QualType RTy = RHS.get()->getType();
  bool LVoid = LTy->isVoidType();
  bool RVoid = RTy->isVoidType();
  if (LVoid || RVoid) {
    //   ... one of the following shall hold:
    //   -- The second or the third operand (but not both) is a (possibly
    //      parenthesized) throw-expression; the result is of the type
    //      and value category of the other.
    bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
    bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());

    // Void expressions aren't legal in the vector-conditional expressions.
    if (IsVectorConditional) {
      SourceRange DiagLoc =
          LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
      bool IsThrow = LVoid ? LThrow : RThrow;
      Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
          << DiagLoc << IsThrow;
      return QualType();
    }

    if (LThrow != RThrow) {
      Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
      VK = NonThrow->getValueKind();
      // DR (no number yet): the result is a bit-field if the
      // non-throw-expression operand is a bit-field.
      OK = NonThrow->getObjectKind();
      return NonThrow->getType();
    }

    //   -- Both the second and third operands have type void; the result is of
    //      type void and is a prvalue.
    if (LVoid && RVoid)
      return Context.VoidTy;

    // Neither holds, error.
    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
    return QualType();
  }

  // Neither is void.
  if (IsVectorConditional)
    return CheckGNUVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);

  // C++11 [expr.cond]p3
  //   Otherwise, if the second and third operand have different types, and
  //   either has (cv) class type [...] an attempt is made to convert each of
  //   those operands to the type of the other.
  if (!Context.hasSameType(LTy, RTy) &&
      (LTy->isRecordType() || RTy->isRecordType())) {
    // These return true if a single direction is already ambiguous.
    QualType L2RType, R2LType;
    bool HaveL2R, HaveR2L;
    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
      return QualType();
    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
      return QualType();

    //   If both can be converted, [...] the program is ill-formed.
    if (HaveL2R && HaveR2L) {
      Diag(QuestionLoc, diag::err_conditional_ambiguous)
        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      return QualType();
    }

    //   If exactly one conversion is possible, that conversion is applied to
    //   the chosen operand and the converted operands are used in place of the
    //   original operands for the remainder of this section.
    if (HaveL2R) {
      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
        return QualType();
      LTy = LHS.get()->getType();
    } else if (HaveR2L) {
      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
        return QualType();
      RTy = RHS.get()->getType();
    }
  }

  // C++11 [expr.cond]p3
  //   if both are glvalues of the same value category and the same type except
  //   for cv-qualification, an attempt is made to convert each of those
  //   operands to the type of the other.
  // FIXME:
  //   Resolving a defect in P0012R1: we extend this to cover all cases where
  //   one of the operands is reference-compatible with the other, in order
  //   to support conditionals between functions differing in noexcept. This
  //   will similarly cover difference in array bounds after P0388R4.
  // FIXME: If LTy and RTy have a composite pointer type, should we convert to
  //   that instead?
  ExprValueKind LVK = LHS.get()->getValueKind();
  ExprValueKind RVK = RHS.get()->getValueKind();
  if (!Context.hasSameType(LTy, RTy) &&
      LVK == RVK && LVK != VK_RValue) {
    // DerivedToBase was already handled by the class-specific case above.
    // FIXME: Should we allow ObjC conversions here?
    const ReferenceConversions AllowedConversions =
        ReferenceConversions::Qualification |
        ReferenceConversions::NestedQualification |
        ReferenceConversions::Function;

    ReferenceConversions RefConv;
    if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
            Ref_Compatible &&
        !(RefConv & ~AllowedConversions) &&
        // [...] subject to the constraint that the reference must bind
        // directly [...]
        !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
      RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
      RTy = RHS.get()->getType();
    } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
                   Ref_Compatible &&
               !(RefConv & ~AllowedConversions) &&
               !LHS.get()->refersToBitField() &&
               !LHS.get()->refersToVectorElement()) {
      LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
      LTy = LHS.get()->getType();
    }
  }

  // C++11 [expr.cond]p4
  //   If the second and third operands are glvalues of the same value
  //   category and have the same type, the result is of that type and
  //   value category and it is a bit-field if the second or the third
  //   operand is a bit-field, or if both are bit-fields.
  // We only extend this to bitfields, not to the crazy other kinds of
  // l-values.
  bool Same = Context.hasSameType(LTy, RTy);
  if (Same && LVK == RVK && LVK != VK_RValue &&
      LHS.get()->isOrdinaryOrBitFieldObject() &&
      RHS.get()->isOrdinaryOrBitFieldObject()) {
    VK = LHS.get()->getValueKind();
    if (LHS.get()->getObjectKind() == OK_BitField ||
        RHS.get()->getObjectKind() == OK_BitField)
      OK = OK_BitField;

    // If we have function pointer types, unify them anyway to unify their
    // exception specifications, if any.
    if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
      Qualifiers Qs = LTy.getQualifiers();
      LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
                                     /*ConvertArgs*/false);
      LTy = Context.getQualifiedType(LTy, Qs);

      assert(!LTy.isNull() && "failed to find composite pointer type for "
                              "canonically equivalent function ptr types");
      assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
    }

    return LTy;
  }

  // C++11 [expr.cond]p5
  //   Otherwise, the result is a prvalue. If the second and third operands
  //   do not have the same type, and either has (cv) class type, ...
  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
    //   ... overload resolution is used to determine the conversions (if any)
    //   to be applied to the operands. If the overload resolution fails, the
    //   program is ill-formed.
    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
      return QualType();
  }

  // C++11 [expr.cond]p6
  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
  //   conversions are performed on the second and third operands.
  LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
  if (LHS.isInvalid() || RHS.isInvalid())
    return QualType();
  LTy = LHS.get()->getType();
  RTy = RHS.get()->getType();

  //   After those conversions, one of the following shall hold:
  //   -- The second and third operands have the same type; the result
  //      is of that type. If the operands have class type, the result
  //      is a prvalue temporary of the result type, which is
  //      copy-initialized from either the second operand or the third
  //      operand depending on the value of the first operand.
  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
    if (LTy->isRecordType()) {
      // The operands have class type. Make a temporary copy.
      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);

      ExprResult LHSCopy = PerformCopyInitialization(Entity,
                                                     SourceLocation(),
                                                     LHS);
      if (LHSCopy.isInvalid())
        return QualType();

      ExprResult RHSCopy = PerformCopyInitialization(Entity,
                                                     SourceLocation(),
                                                     RHS);
      if (RHSCopy.isInvalid())
        return QualType();

      LHS = LHSCopy;
      RHS = RHSCopy;
    }

    // If we have function pointer types, unify them anyway to unify their
    // exception specifications, if any.
    if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
      LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
      assert(!LTy.isNull() && "failed to find composite pointer type for "
                              "canonically equivalent function ptr types");
    }

    return LTy;
  }

  // Extension: conditional operator involving vector types.
  if (LTy->isVectorType() || RTy->isVectorType())
    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
                               /*AllowBothBool*/true,
                               /*AllowBoolConversions*/false);

  //   -- The second and third operands have arithmetic or enumeration type;
  //      the usual arithmetic conversions are performed to bring them to a
  //      common type, and the result is of that type.
  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
    QualType ResTy =
        UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
    if (LHS.isInvalid() || RHS.isInvalid())
      return QualType();
    if (ResTy.isNull()) {
      Diag(QuestionLoc,
           diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
      return QualType();
    }

    LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
    RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));

    return ResTy;
  }

  //   -- The second and third operands have pointer type, or one has pointer
  //      type and the other is a null pointer constant, or both are null
  //      pointer constants, at least one of which is non-integral; pointer
  //      conversions and qualification conversions are performed to bring them
  //      to their composite pointer type. The result is of the composite
  //      pointer type.
  //   -- The second and third operands have pointer to member type, or one has
  //      pointer to member type and the other is a null pointer constant;
  //      pointer to member conversions and qualification conversions are
  //      performed to bring them to a common type, whose cv-qualification
  //      shall match the cv-qualification of either the second or the third
  //      operand. The result is of the common type.
  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
  if (!Composite.isNull())
    return Composite;

  // Similarly, attempt to find composite type of two objective-c pointers.
  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
  if (!Composite.isNull())
    return Composite;

  // Check if we are using a null with a non-pointer type.
  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
    return QualType();

  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
    << LHS.get()->getType() << RHS.get()->getType()
    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
  return QualType();
}

static FunctionProtoType::ExceptionSpecInfo
mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
                    FunctionProtoType::ExceptionSpecInfo ESI2,
                    SmallVectorImpl<QualType> &ExceptionTypeStorage) {
  ExceptionSpecificationType EST1 = ESI1.Type;
  ExceptionSpecificationType EST2 = ESI2.Type;

  // If either of them can throw anything, that is the result.
  if (EST1 == EST_None) return ESI1;
  if (EST2 == EST_None) return ESI2;
  if (EST1 == EST_MSAny) return ESI1;
  if (EST2 == EST_MSAny) return ESI2;
  if (EST1 == EST_NoexceptFalse) return ESI1;
  if (EST2 == EST_NoexceptFalse) return ESI2;

  // If either of them is non-throwing, the result is the other.
  if (EST1 == EST_NoThrow) return ESI2;
  if (EST2 == EST_NoThrow) return ESI1;
  if (EST1 == EST_DynamicNone) return ESI2;
  if (EST2 == EST_DynamicNone) return ESI1;
  if (EST1 == EST_BasicNoexcept) return ESI2;
  if (EST2 == EST_BasicNoexcept) return ESI1;
  if (EST1 == EST_NoexceptTrue) return ESI2;
  if (EST2 == EST_NoexceptTrue) return ESI1;

  // If we're left with value-dependent computed noexcept expressions, we're
  // stuck. Before C++17, we can just drop the exception specification entirely,
  // since it's not actually part of the canonical type. And this should never
  // happen in C++17, because it would mean we were computing the composite
  // pointer type of dependent types, which should never happen.
  if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
    assert(!S.getLangOpts().CPlusPlus17 &&
           "computing composite pointer type of dependent types");
    return FunctionProtoType::ExceptionSpecInfo();
  }

  // Switch over the possibilities so that people adding new values know to
  // update this function.
  switch (EST1) {
  case EST_None:
  case EST_DynamicNone:
  case EST_MSAny:
  case EST_BasicNoexcept:
  case EST_DependentNoexcept:
  case EST_NoexceptFalse:
  case EST_NoexceptTrue:
  case EST_NoThrow:
    llvm_unreachable("handled above");

  case EST_Dynamic: {
    // This is the fun case: both exception specifications are dynamic. Form
    // the union of the two lists.
    assert(EST2 == EST_Dynamic && "other cases should already be handled");
    llvm::SmallPtrSet<QualType, 8> Found;
    for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
      for (QualType E : Exceptions)
        if (Found.insert(S.Context.getCanonicalType(E)).second)
          ExceptionTypeStorage.push_back(E);

    FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
    Result.Exceptions = ExceptionTypeStorage;
    return Result;
  }

  case EST_Unevaluated:
  case EST_Uninstantiated:
  case EST_Unparsed:
    llvm_unreachable("shouldn't see unresolved exception specifications here");
  }

  llvm_unreachable("invalid ExceptionSpecificationType");
}

/// Find a merged pointer type and convert the two expressions to it.
///
/// This finds the composite pointer type for \p E1 and \p E2 according to
/// C++2a [expr.type]p3. It converts both expressions to this type and returns
/// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
/// is \c true).
///
/// \param Loc The location of the operator requiring these two expressions to
/// be converted to the composite pointer type.
///
/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
QualType Sema::FindCompositePointerType(SourceLocation Loc,
                                        Expr *&E1, Expr *&E2,
                                        bool ConvertArgs) {
  assert(getLangOpts().CPlusPlus && "This function assumes C++");

  // C++1z [expr]p14:
  //   The composite pointer type of two operands p1 and p2 having types T1
  //   and T2
  QualType T1 = E1->getType(), T2 = E2->getType();

  //   where at least one is a pointer or pointer to member type or
  //   std::nullptr_t is:
  bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
                         T1->isNullPtrType();
  bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
                         T2->isNullPtrType();
  if (!T1IsPointerLike && !T2IsPointerLike)
    return QualType();

  //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
  // This can't actually happen, following the standard, but we also use this
  // to implement the end of [expr.conv], which hits this case.
  //
  //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
  if (T1IsPointerLike &&
      E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    if (ConvertArgs)
      E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
                                         ? CK_NullToMemberPointer
                                         : CK_NullToPointer).get();
    return T1;
  }
  if (T2IsPointerLike &&
      E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
    if (ConvertArgs)
      E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
                                         ? CK_NullToMemberPointer
                                         : CK_NullToPointer).get();
    return T2;
  }

  // Now both have to be pointers or member pointers.
  if (!T1IsPointerLike || !T2IsPointerLike)
    return QualType();
  assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
         "nullptr_t should be a null pointer constant");

  struct Step {
    enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
    // Qualifiers to apply under the step kind.
    Qualifiers Quals;
    /// The class for a pointer-to-member; a constant array type with a bound
    /// (if any) for an array.
    const Type *ClassOrBound;

    Step(Kind K, const Type *ClassOrBound = nullptr)
        : K(K), Quals(), ClassOrBound(ClassOrBound) {}
    QualType rebuild(ASTContext &Ctx, QualType T) const {
      T = Ctx.getQualifiedType(T, Quals);
      switch (K) {
      case Pointer:
        return Ctx.getPointerType(T);
      case MemberPointer:
        return Ctx.getMemberPointerType(T, ClassOrBound);
      case ObjCPointer:
        return Ctx.getObjCObjectPointerType(T);
      case Array:
        if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
          return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
                                          ArrayType::Normal, 0);
        else
          return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
      }
      llvm_unreachable("unknown step kind");
    }
  };

  SmallVector<Step, 8> Steps;

  //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
  //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
  //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
  //    respectively;
  //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
  //    to member of C2 of type cv2 U2" for some non-function type U, where
  //    C1 is reference-related to C2 or C2 is reference-related to C1, the
  //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
  //    respectively;
  //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
  //    T2;
  //
  // Dismantle T1 and T2 to simultaneously determine whether they are similar
  // and to prepare to form the cv-combined type if so.
  QualType Composite1 = T1;
  QualType Composite2 = T2;
  unsigned NeedConstBefore = 0;
  while (true) {
    assert(!Composite1.isNull() && !Composite2.isNull());

    Qualifiers Q1, Q2;
    Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
    Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);

    // Top-level qualifiers are ignored. Merge at all lower levels.
    if (!Steps.empty()) {
      // Find the qualifier union: (approximately) the unique minimal set of
      // qualifiers that is compatible with both types.
      Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
                                                  Q2.getCVRUQualifiers());

      // Under one level of pointer or pointer-to-member, we can change to an
      // unambiguous compatible address space.
      if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
        Quals.setAddressSpace(Q1.getAddressSpace());
      } else if (Steps.size() == 1) {
        bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
        bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
        if (MaybeQ1 == MaybeQ2)
          return QualType(); // No unique best address space.
        Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
                                      : Q2.getAddressSpace());
      } else {
        return QualType();
      }

      // FIXME: In C, we merge __strong and none to __strong at the top level.
      if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
        Quals.setObjCGCAttr(Q1.getObjCGCAttr());
      else
        return QualType();

      // Mismatched lifetime qualifiers never compatibly include each other.
      if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
        Quals.setObjCLifetime(Q1.getObjCLifetime());
      else
        return QualType();

      Steps.back().Quals = Quals;
      if (Q1 != Quals || Q2 != Quals)
        NeedConstBefore = Steps.size() - 1;
    }

    // FIXME: Can we unify the following with UnwrapSimilarTypes?
    const PointerType *Ptr1, *Ptr2;
    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
        (Ptr2 = Composite2->getAs<PointerType>())) {
      Composite1 = Ptr1->getPointeeType();
      Composite2 = Ptr2->getPointeeType();
      Steps.emplace_back(Step::Pointer);
      continue;
    }

    const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
    if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
        (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
      Composite1 = ObjPtr1->getPointeeType();
      Composite2 = ObjPtr2->getPointeeType();
      Steps.emplace_back(Step::ObjCPointer);
      continue;
    }

    const MemberPointerType *MemPtr1, *MemPtr2;
    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
      Composite1 = MemPtr1->getPointeeType();
      Composite2 = MemPtr2->getPointeeType();

      // At the top level, we can perform a base-to-derived pointer-to-member
      // conversion:
      //
      //  - [...] where C1 is reference-related to C2 or C2 is
      //    reference-related to C1
      //
      // (Note that the only kinds of reference-relatedness in scope here are
      // "same type or derived from".) At any other level, the class must
      // exactly match.
      const Type *Class = nullptr;
      QualType Cls1(MemPtr1->getClass(), 0);
      QualType Cls2(MemPtr2->getClass(), 0);
      if (Context.hasSameType(Cls1, Cls2))
        Class = MemPtr1->getClass();
      else if (Steps.empty())
        Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
                IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
      if (!Class)
        return QualType();

      Steps.emplace_back(Step::MemberPointer, Class);
      continue;
    }

    // Special case: at the top level, we can decompose an Objective-C pointer
    // and a 'cv void *'. Unify the qualifiers.
    if (Steps.empty() && ((Composite1->isVoidPointerType() &&
                           Composite2->isObjCObjectPointerType()) ||
                          (Composite1->isObjCObjectPointerType() &&
                           Composite2->isVoidPointerType()))) {
      Composite1 = Composite1->getPointeeType();
      Composite2 = Composite2->getPointeeType();
      Steps.emplace_back(Step::Pointer);
      continue;
    }

    // FIXME: arrays

    // FIXME: block pointer types?

    // Cannot unwrap any more types.
    break;
  }

  //  - if T1 or T2 is "pointer to noexcept function" and the other type is
  //    "pointer to function", where the function types are otherwise the same,
  //    "pointer to function";
  //  - if T1 or T2 is "pointer to member of C1 of type function", the other
  //    type is "pointer to member of C2 of type noexcept function", and C1
  //    is reference-related to C2 or C2 is reference-related to C1, where
  //    the function types are otherwise the same, "pointer to member of C2 of
  //    type function" or "pointer to member of C1 of type function",
  //    respectively;
  //
  // We also support 'noreturn' here, so as a Clang extension we generalize the
  // above to:
  //
  //  - [Clang] If T1 and T2 are both of type "pointer to function" or
  //    "pointer to member function" and the pointee types can be unified
  //    by a function pointer conversion, that conversion is applied
  //    before checking the following rules.
  //
  // We've already unwrapped down to the function types, and we want to merge
  // rather than just convert, so do this ourselves rather than calling
  // IsFunctionConversion.
  //
  // FIXME: In order to match the standard wording as closely as possible, we
  // currently only do this under a single level of pointers. Ideally, we would
  // allow this in general, and set NeedConstBefore to the relevant depth on
  // the side(s) where we changed anything. If we permit that, we should also
  // consider this conversion when determining type similarity and model it as
  // a qualification conversion.
  if (Steps.size() == 1) {
    if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
      if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
        FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
        FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();

        // The result is noreturn if both operands are.
        bool Noreturn =
            EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
        EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
        EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);

        // The result is nothrow if both operands are.
        SmallVector<QualType, 8> ExceptionTypeStorage;
        EPI1.ExceptionSpec = EPI2.ExceptionSpec =
            mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
                                ExceptionTypeStorage);

        Composite1 = Context.getFunctionType(FPT1->getReturnType(),
                                             FPT1->getParamTypes(), EPI1);
        Composite2 = Context.getFunctionType(FPT2->getReturnType(),
                                             FPT2->getParamTypes(), EPI2);
      }
    }
  }

  // There are some more conversions we can perform under exactly one pointer.
  if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
      !Context.hasSameType(Composite1, Composite2)) {
    //  - if T1 or T2 is "pointer to cv1 void" and the other type is
    //    "pointer to cv2 T", where T is an object type or void,
    //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
    if (Composite1->isVoidType() && Composite2->isObjectType())
      Composite2 = Composite1;
    else if (Composite2->isVoidType() && Composite1->isObjectType())
      Composite1 = Composite2;
    //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
    //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
    //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
    //    T1, respectively;
    //
    // The "similar type" handling covers all of this except for the "T1 is a
    // base class of T2" case in the definition of reference-related.
    else if (IsDerivedFrom(Loc, Composite1, Composite2))
      Composite1 = Composite2;
    else if (IsDerivedFrom(Loc, Composite2, Composite1))
      Composite2 = Composite1;
  }

  // At this point, either the inner types are the same or we have failed to
  // find a composite pointer type.
  if (!Context.hasSameType(Composite1, Composite2))
    return QualType();

  // Per C++ [conv.qual]p3, add 'const' to every level before the last
  // differing qualifier.
  for (unsigned I = 0; I != NeedConstBefore; ++I)
    Steps[I].Quals.addConst();

  // Rebuild the composite type.
  QualType Composite = Composite1;
  for (auto &S : llvm::reverse(Steps))
    Composite = S.rebuild(Context, Composite);

  if (ConvertArgs) {
    // Convert the expressions to the composite pointer type.
    InitializedEntity Entity =
        InitializedEntity::InitializeTemporary(Composite);
    InitializationKind Kind =
        InitializationKind::CreateCopy(Loc, SourceLocation());

    InitializationSequence E1ToC(*this, Entity, Kind, E1);
    if (!E1ToC)
      return QualType();

    InitializationSequence E2ToC(*this, Entity, Kind, E2);
    if (!E2ToC)
      return QualType();

    // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
    ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
    if (E1Result.isInvalid())
      return QualType();
    E1 = E1Result.get();

    ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
    if (E2Result.isInvalid())
      return QualType();
    E2 = E2Result.get();
  }

  return Composite;
}

ExprResult Sema::MaybeBindToTemporary(Expr *E) {
  if (!E)
    return ExprError();

  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");

  // If the result is a glvalue, we shouldn't bind it.
  if (!E->isRValue())
    return E;

  // In ARC, calls that return a retainable type can return retained,
  // in which case we have to insert a consuming cast.
  if (getLangOpts().ObjCAutoRefCount &&
      E->getType()->isObjCRetainableType()) {

    bool ReturnsRetained;

    // For actual calls, we compute this by examining the type of the
    // called value.
    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
      Expr *Callee = Call->getCallee()->IgnoreParens();
      QualType T = Callee->getType();

      if (T == Context.BoundMemberTy) {
        // Handle pointer-to-members.
        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
          T = BinOp->getRHS()->getType();
        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
          T = Mem->getMemberDecl()->getType();
      }

      if (const PointerType *Ptr = T->getAs<PointerType>())
        T = Ptr->getPointeeType();
      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
        T = Ptr->getPointeeType();
      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
        T = MemPtr->getPointeeType();

      auto *FTy = T->castAs<FunctionType>();
      ReturnsRetained = FTy->getExtInfo().getProducesResult();

    // ActOnStmtExpr arranges things so that StmtExprs of retainable
    // type always produce a +1 object.
    } else if (isa<StmtExpr>(E)) {
      ReturnsRetained = true;

    // We hit this case with the lambda conversion-to-block optimization;
    // we don't want any extra casts here.
    } else if (isa<CastExpr>(E) &&
               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
      return E;

    // For message sends and property references, we try to find an
    // actual method.  FIXME: we should infer retention by selector in
    // cases where we don't have an actual method.
    } else {
      ObjCMethodDecl *D = nullptr;
      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
        D = Send->getMethodDecl();
      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
        D = BoxedExpr->getBoxingMethod();
      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
        // Don't do reclaims if we're using the zero-element array
        // constant.
        if (ArrayLit->getNumElements() == 0 &&
            Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
          return E;

        D = ArrayLit->getArrayWithObjectsMethod();
      } else if (ObjCDictionaryLiteral *DictLit
                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
        // Don't do reclaims if we're using the zero-element dictionary
        // constant.
        if (DictLit->getNumElements() == 0 &&
            Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
          return E;

        D = DictLit->getDictWithObjectsMethod();
      }

      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());

      // Don't do reclaims on performSelector calls; despite their
      // return type, the invoked method doesn't necessarily actually
      // return an object.
      if (!ReturnsRetained &&
          D && D->getMethodFamily() == OMF_performSelector)
        return E;
    }

    // Don't reclaim an object of Class type.
    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
      return E;

    Cleanup.setExprNeedsCleanups(true);

    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
                                   : CK_ARCReclaimReturnedObject);
    return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
                                    VK_RValue, FPOptionsOverride());
  }

  if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
    Cleanup.setExprNeedsCleanups(true);

  if (!getLangOpts().CPlusPlus)
    return E;

  // Search for the base element type (cf. ASTContext::getBaseElementType) with
  // a fast path for the common case that the type is directly a RecordType.
  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
  const RecordType *RT = nullptr;
  while (!RT) {
    switch (T->getTypeClass()) {
    case Type::Record:
      RT = cast<RecordType>(T);
      break;
    case Type::ConstantArray:
    case Type::IncompleteArray:
    case Type::VariableArray:
    case Type::DependentSizedArray:
      T = cast<ArrayType>(T)->getElementType().getTypePtr();
      break;
    default:
      return E;
    }
  }

  // That should be enough to guarantee that this type is complete, if we're
  // not processing a decltype expression.
  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
  if (RD->isInvalidDecl() || RD->isDependentContext())
    return E;

  bool IsDecltype = ExprEvalContexts.back().ExprContext ==
                    ExpressionEvaluationContextRecord::EK_Decltype;
  CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);

  if (Destructor) {
    MarkFunctionReferenced(E->getExprLoc(), Destructor);
    CheckDestructorAccess(E->getExprLoc(), Destructor,
                          PDiag(diag::err_access_dtor_temp)
                            << E->getType());
    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
      return ExprError();

    // If destructor is trivial, we can avoid the extra copy.
    if (Destructor->isTrivial())
      return E;

    // We need a cleanup, but we don't need to remember the temporary.
    Cleanup.setExprNeedsCleanups(true);
  }

  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);

  if (IsDecltype)
    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);

  return Bind;
}

ExprResult
Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
  if (SubExpr.isInvalid())
    return ExprError();

  return MaybeCreateExprWithCleanups(SubExpr.get());
}

Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
  assert(SubExpr && "subexpression can't be null!");

  CleanupVarDeclMarking();

  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
  assert(ExprCleanupObjects.size() >= FirstCleanup);
  assert(Cleanup.exprNeedsCleanups() ||
         ExprCleanupObjects.size() == FirstCleanup);
  if (!Cleanup.exprNeedsCleanups())
    return SubExpr;

  auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
                                     ExprCleanupObjects.size() - FirstCleanup);

  auto *E = ExprWithCleanups::Create(
      Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
  DiscardCleanupsInEvaluationContext();

  return E;
}

Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
  assert(SubStmt && "sub-statement can't be null!");

  CleanupVarDeclMarking();

  if (!Cleanup.exprNeedsCleanups())
    return SubStmt;

  // FIXME: In order to attach the temporaries, wrap the statement into
  // a StmtExpr; currently this is only used for asm statements.
  // This is hacky, either create a new CXXStmtWithTemporaries statement or
  // a new AsmStmtWithTemporaries.
  CompoundStmt *CompStmt = CompoundStmt::Create(
      Context, SubStmt, SourceLocation(), SourceLocation());
  Expr *E = new (Context)
      StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
               /*FIXME TemplateDepth=*/0);
  return MaybeCreateExprWithCleanups(E);
}

/// Process the expression contained within a decltype. For such expressions,
/// certain semantic checks on temporaries are delayed until this point, and
/// are omitted for the 'topmost' call in the decltype expression. If the
/// topmost call bound a temporary, strip that temporary off the expression.
ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
  assert(ExprEvalContexts.back().ExprContext ==
             ExpressionEvaluationContextRecord::EK_Decltype &&
         "not in a decltype expression");

  ExprResult Result = CheckPlaceholderExpr(E);
  if (Result.isInvalid())
    return ExprError();
  E = Result.get();

  // C++11 [expr.call]p11:
  //   If a function call is a prvalue of object type,
  // -- if the function call is either
  //   -- the operand of a decltype-specifier, or
  //   -- the right operand of a comma operator that is the operand of a
  //      decltype-specifier,
  //   a temporary object is not introduced for the prvalue.

  // Recursively rebuild ParenExprs and comma expressions to strip out the
  // outermost CXXBindTemporaryExpr, if any.
  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
    if (SubExpr.isInvalid())
      return ExprError();
    if (SubExpr.get() == PE->getSubExpr())
      return E;
    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
  }
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
    if (BO->getOpcode() == BO_Comma) {
      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
      if (RHS.isInvalid())
        return ExprError();
      if (RHS.get() == BO->getRHS())
        return E;
      return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
                                    BO->getType(), BO->getValueKind(),
                                    BO->getObjectKind(), BO->getOperatorLoc(),
                                    BO->getFPFeatures(getLangOpts()));
    }
  }

  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
  CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
                              : nullptr;
  if (TopCall)
    E = TopCall;
  else
    TopBind = nullptr;

  // Disable the special decltype handling now.
  ExprEvalContexts.back().ExprContext =
      ExpressionEvaluationContextRecord::EK_Other;

  Result = CheckUnevaluatedOperand(E);
  if (Result.isInvalid())
    return ExprError();
  E = Result.get();

  // In MS mode, don't perform any extra checking of call return types within a
  // decltype expression.
  if (getLangOpts().MSVCCompat)
    return E;

  // Perform the semantic checks we delayed until this point.
  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
       I != N; ++I) {
    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
    if (Call == TopCall)
      continue;

    if (CheckCallReturnType(Call->getCallReturnType(Context),
                            Call->getBeginLoc(), Call, Call->getDirectCallee()))
      return ExprError();
  }

  // Now all relevant types are complete, check the destructors are accessible
  // and non-deleted, and annotate them on the temporaries.
  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
       I != N; ++I) {
    CXXBindTemporaryExpr *Bind =
      ExprEvalContexts.back().DelayedDecltypeBinds[I];
    if (Bind == TopBind)
      continue;

    CXXTemporary *Temp = Bind->getTemporary();

    CXXRecordDecl *RD =
      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
    CXXDestructorDecl *Destructor = LookupDestructor(RD);
    Temp->setDestructor(Destructor);

    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
                          PDiag(diag::err_access_dtor_temp)
                            << Bind->getType());
    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
      return ExprError();

    // We need a cleanup, but we don't need to remember the temporary.
    Cleanup.setExprNeedsCleanups(true);
  }

  // Possibly strip off the top CXXBindTemporaryExpr.
  return E;
}

/// Note a set of 'operator->' functions that were used for a member access.
static void noteOperatorArrows(Sema &S,
                               ArrayRef<FunctionDecl *> OperatorArrows) {
  unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
  // FIXME: Make this configurable?
  unsigned Limit = 9;
  if (OperatorArrows.size() > Limit) {
    // Produce Limit-1 normal notes and one 'skipping' note.
    SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
    SkipCount = OperatorArrows.size() - (Limit - 1);
  }

  for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
    if (I == SkipStart) {
      S.Diag(OperatorArrows[I]->getLocation(),
             diag::note_operator_arrows_suppressed)
          << SkipCount;
      I += SkipCount;
    } else {
      S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
          << OperatorArrows[I]->getCallResultType();
      ++I;
    }
  }
}

ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
                                              SourceLocation OpLoc,
                                              tok::TokenKind OpKind,
                                              ParsedType &ObjectType,
                                              bool &MayBePseudoDestructor) {
  // Since this might be a postfix expression, get rid of ParenListExprs.
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
  if (Result.isInvalid()) return ExprError();
  Base = Result.get();

  Result = CheckPlaceholderExpr(Base);
  if (Result.isInvalid()) return ExprError();
  Base = Result.get();

  QualType BaseType = Base->getType();
  MayBePseudoDestructor = false;
  if (BaseType->isDependentType()) {
    // If we have a pointer to a dependent type and are using the -> operator,
    // the object type is the type that the pointer points to. We might still
    // have enough information about that type to do something useful.
    if (OpKind == tok::arrow)
      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
        BaseType = Ptr->getPointeeType();

    ObjectType = ParsedType::make(BaseType);
    MayBePseudoDestructor = true;
    return Base;
  }

  // C++ [over.match.oper]p8:
  //   [...] When operator->returns, the operator-> is applied  to the value
  //   returned, with the original second operand.
  if (OpKind == tok::arrow) {
    QualType StartingType = BaseType;
    bool NoArrowOperatorFound = false;
    bool FirstIteration = true;
    FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
    // The set of types we've considered so far.
    llvm::SmallPtrSet<CanQualType,8> CTypes;
    SmallVector<FunctionDecl*, 8> OperatorArrows;
    CTypes.insert(Context.getCanonicalType(BaseType));

    while (BaseType->isRecordType()) {
      if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
        Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
          << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
        noteOperatorArrows(*this, OperatorArrows);
        Diag(OpLoc, diag::note_operator_arrow_depth)
          << getLangOpts().ArrowDepth;
        return ExprError();
      }

      Result = BuildOverloadedArrowExpr(
          S, Base, OpLoc,
          // When in a template specialization and on the first loop iteration,
          // potentially give the default diagnostic (with the fixit in a
          // separate note) instead of having the error reported back to here
          // and giving a diagnostic with a fixit attached to the error itself.
          (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
              ? nullptr
              : &NoArrowOperatorFound);
      if (Result.isInvalid()) {
        if (NoArrowOperatorFound) {
          if (FirstIteration) {
            Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
              << BaseType << 1 << Base->getSourceRange()
              << FixItHint::CreateReplacement(OpLoc, ".");
            OpKind = tok::period;
            break;
          }
          Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
            << BaseType << Base->getSourceRange();
          CallExpr *CE = dyn_cast<CallExpr>(Base);
          if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
            Diag(CD->getBeginLoc(),
                 diag::note_member_reference_arrow_from_operator_arrow);
          }
        }
        return ExprError();
      }
      Base = Result.get();
      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
        OperatorArrows.push_back(OpCall->getDirectCallee());
      BaseType = Base->getType();
      CanQualType CBaseType = Context.getCanonicalType(BaseType);
      if (!CTypes.insert(CBaseType).second) {
        Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
        noteOperatorArrows(*this, OperatorArrows);
        return ExprError();
      }
      FirstIteration = false;
    }

    if (OpKind == tok::arrow) {
      if (BaseType->isPointerType())
        BaseType = BaseType->getPointeeType();
      else if (auto *AT = Context.getAsArrayType(BaseType))
        BaseType = AT->getElementType();
    }
  }

  // Objective-C properties allow "." access on Objective-C pointer types,
  // so adjust the base type to the object type itself.
  if (BaseType->isObjCObjectPointerType())
    BaseType = BaseType->getPointeeType();

  // C++ [basic.lookup.classref]p2:
  //   [...] If the type of the object expression is of pointer to scalar
  //   type, the unqualified-id is looked up in the context of the complete
  //   postfix-expression.
  //
  // This also indicates that we could be parsing a pseudo-destructor-name.
  // Note that Objective-C class and object types can be pseudo-destructor
  // expressions or normal member (ivar or property) access expressions, and
  // it's legal for the type to be incomplete if this is a pseudo-destructor
  // call.  We'll do more incomplete-type checks later in the lookup process,
  // so just skip this check for ObjC types.
  if (!BaseType->isRecordType()) {
    ObjectType = ParsedType::make(BaseType);
    MayBePseudoDestructor = true;
    return Base;
  }

  // The object type must be complete (or dependent), or
  // C++11 [expr.prim.general]p3:
  //   Unlike the object expression in other contexts, *this is not required to
  //   be of complete type for purposes of class member access (5.2.5) outside
  //   the member function body.
  if (!BaseType->isDependentType() &&
      !isThisOutsideMemberFunctionBody(BaseType) &&
      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
    return ExprError();

  // C++ [basic.lookup.classref]p2:
  //   If the id-expression in a class member access (5.2.5) is an
  //   unqualified-id, and the type of the object expression is of a class
  //   type C (or of pointer to a class type C), the unqualified-id is looked
  //   up in the scope of class C. [...]
  ObjectType = ParsedType::make(BaseType);
  return Base;
}

static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
  if (Base->hasPlaceholderType()) {
    ExprResult result = S.CheckPlaceholderExpr(Base);
    if (result.isInvalid()) return true;
    Base = result.get();
  }
  ObjectType = Base->getType();

  // C++ [expr.pseudo]p2:
  //   The left-hand side of the dot operator shall be of scalar type. The
  //   left-hand side of the arrow operator shall be of pointer to scalar type.
  //   This scalar type is the object type.
  // Note that this is rather different from the normal handling for the
  // arrow operator.
  if (OpKind == tok::arrow) {
    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
      ObjectType = Ptr->getPointeeType();
    } else if (!Base->isTypeDependent()) {
      // The user wrote "p->" when they probably meant "p."; fix it.
      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
        << ObjectType << true
        << FixItHint::CreateReplacement(OpLoc, ".");
      if (S.isSFINAEContext())
        return true;

      OpKind = tok::period;
    }
  }

  return false;
}

/// Check if it's ok to try and recover dot pseudo destructor calls on
/// pointer objects.
static bool
canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
                                                   QualType DestructedType) {
  // If this is a record type, check if its destructor is callable.
  if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
    if (RD->hasDefinition())
      if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
        return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
    return false;
  }

  // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
  return DestructedType->isDependentType() || DestructedType->isScalarType() ||
         DestructedType->isVectorType();
}

ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
                                           SourceLocation OpLoc,
                                           tok::TokenKind OpKind,
                                           const CXXScopeSpec &SS,
                                           TypeSourceInfo *ScopeTypeInfo,
                                           SourceLocation CCLoc,
                                           SourceLocation TildeLoc,
                                         PseudoDestructorTypeStorage Destructed) {
  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();

  QualType ObjectType;
  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
    return ExprError();

  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
      !ObjectType->isVectorType()) {
    if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
    else {
      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
        << ObjectType << Base->getSourceRange();
      return ExprError();
    }
  }

  // C++ [expr.pseudo]p2:
  //   [...] The cv-unqualified versions of the object type and of the type
  //   designated by the pseudo-destructor-name shall be the same type.
  if (DestructedTypeInfo) {
    QualType DestructedType = DestructedTypeInfo->getType();
    SourceLocation DestructedTypeStart
      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
        // Detect dot pseudo destructor calls on pointer objects, e.g.:
        //   Foo *foo;
        //   foo.~Foo();
        if (OpKind == tok::period && ObjectType->isPointerType() &&
            Context.hasSameUnqualifiedType(DestructedType,
                                           ObjectType->getPointeeType())) {
          auto Diagnostic =
              Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
              << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();

          // Issue a fixit only when the destructor is valid.
          if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
                  *this, DestructedType))
            Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");

          // Recover by setting the object type to the destructed type and the
          // operator to '->'.
          ObjectType = DestructedType;
          OpKind = tok::arrow;
        } else {
          Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
              << ObjectType << DestructedType << Base->getSourceRange()
              << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();

          // Recover by setting the destructed type to the object type.
          DestructedType = ObjectType;
          DestructedTypeInfo =
              Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
          Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
        }
      } else if (DestructedType.getObjCLifetime() !=
                                                ObjectType.getObjCLifetime()) {

        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
          // Okay: just pretend that the user provided the correctly-qualified
          // type.
        } else {
          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
            << ObjectType << DestructedType << Base->getSourceRange()
            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
        }

        // Recover by setting the destructed type to the object type.
        DestructedType = ObjectType;
        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
                                                           DestructedTypeStart);
        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
      }
    }
  }

  // C++ [expr.pseudo]p2:
  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
  //   form
  //
  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
  //
  //   shall designate the same scalar type.
  if (ScopeTypeInfo) {
    QualType ScopeType = ScopeTypeInfo->getType();
    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {

      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
           diag::err_pseudo_dtor_type_mismatch)
        << ObjectType << ScopeType << Base->getSourceRange()
        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();

      ScopeType = QualType();
      ScopeTypeInfo = nullptr;
    }
  }

  Expr *Result
    = new (Context) CXXPseudoDestructorExpr(Context, Base,
                                            OpKind == tok::arrow, OpLoc,
                                            SS.getWithLocInContext(Context),
                                            ScopeTypeInfo,
                                            CCLoc,
                                            TildeLoc,
                                            Destructed);

  return Result;
}

ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
                                           SourceLocation OpLoc,
                                           tok::TokenKind OpKind,
                                           CXXScopeSpec &SS,
                                           UnqualifiedId &FirstTypeName,
                                           SourceLocation CCLoc,
                                           SourceLocation TildeLoc,
                                           UnqualifiedId &SecondTypeName) {
  assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
          FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
         "Invalid first type name in pseudo-destructor");
  assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
          SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
         "Invalid second type name in pseudo-destructor");

  QualType ObjectType;
  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
    return ExprError();

  // Compute the object type that we should use for name lookup purposes. Only
  // record types and dependent types matter.
  ParsedType ObjectTypePtrForLookup;
  if (!SS.isSet()) {
    if (ObjectType->isRecordType())
      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
    else if (ObjectType->isDependentType())
      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
  }

  // Convert the name of the type being destructed (following the ~) into a
  // type (with source-location information).
  QualType DestructedType;
  TypeSourceInfo *DestructedTypeInfo = nullptr;
  PseudoDestructorTypeStorage Destructed;
  if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
    ParsedType T = getTypeName(*SecondTypeName.Identifier,
                               SecondTypeName.StartLocation,
                               S, &SS, true, false, ObjectTypePtrForLookup,
                               /*IsCtorOrDtorName*/true);
    if (!T &&
        ((SS.isSet() && !computeDeclContext(SS, false)) ||
         (!SS.isSet() && ObjectType->isDependentType()))) {
      // The name of the type being destroyed is a dependent name, and we
      // couldn't find anything useful in scope. Just store the identifier and
      // it's location, and we'll perform (qualified) name lookup again at
      // template instantiation time.
      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
                                               SecondTypeName.StartLocation);
    } else if (!T) {
      Diag(SecondTypeName.StartLocation,
           diag::err_pseudo_dtor_destructor_non_type)
        << SecondTypeName.Identifier << ObjectType;
      if (isSFINAEContext())
        return ExprError();

      // Recover by assuming we had the right type all along.
      DestructedType = ObjectType;
    } else
      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
  } else {
    // Resolve the template-id to a type.
    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
                                       TemplateId->NumArgs);
    TypeResult T = ActOnTemplateIdType(S,
                                       SS,
                                       TemplateId->TemplateKWLoc,
                                       TemplateId->Template,
                                       TemplateId->Name,
                                       TemplateId->TemplateNameLoc,
                                       TemplateId->LAngleLoc,
                                       TemplateArgsPtr,
                                       TemplateId->RAngleLoc,
                                       /*IsCtorOrDtorName*/true);
    if (T.isInvalid() || !T.get()) {
      // Recover by assuming we had the right type all along.
      DestructedType = ObjectType;
    } else
      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
  }

  // If we've performed some kind of recovery, (re-)build the type source
  // information.
  if (!DestructedType.isNull()) {
    if (!DestructedTypeInfo)
      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
                                                  SecondTypeName.StartLocation);
    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
  }

  // Convert the name of the scope type (the type prior to '::') into a type.
  TypeSourceInfo *ScopeTypeInfo = nullptr;
  QualType ScopeType;
  if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
      FirstTypeName.Identifier) {
    if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
      ParsedType T = getTypeName(*FirstTypeName.Identifier,
                                 FirstTypeName.StartLocation,
                                 S, &SS, true, false, ObjectTypePtrForLookup,
                                 /*IsCtorOrDtorName*/true);
      if (!T) {
        Diag(FirstTypeName.StartLocation,
             diag::err_pseudo_dtor_destructor_non_type)
          << FirstTypeName.Identifier << ObjectType;

        if (isSFINAEContext())
          return ExprError();

        // Just drop this type. It's unnecessary anyway.
        ScopeType = QualType();
      } else
        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
    } else {
      // Resolve the template-id to a type.
      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
                                         TemplateId->NumArgs);
      TypeResult T = ActOnTemplateIdType(S,
                                         SS,
                                         TemplateId->TemplateKWLoc,
                                         TemplateId->Template,
                                         TemplateId->Name,
                                         TemplateId->TemplateNameLoc,
                                         TemplateId->LAngleLoc,
                                         TemplateArgsPtr,
                                         TemplateId->RAngleLoc,
                                         /*IsCtorOrDtorName*/true);
      if (T.isInvalid() || !T.get()) {
        // Recover by dropping this type.
        ScopeType = QualType();
      } else
        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
    }
  }

  if (!ScopeType.isNull() && !ScopeTypeInfo)
    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
                                                  FirstTypeName.StartLocation);


  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
                                   ScopeTypeInfo, CCLoc, TildeLoc,
                                   Destructed);
}

ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
                                           SourceLocation OpLoc,
                                           tok::TokenKind OpKind,
                                           SourceLocation TildeLoc,
                                           const DeclSpec& DS) {
  QualType ObjectType;
  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
    return ExprError();

  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
                                 false);

  TypeLocBuilder TLB;
  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);

  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
                                   nullptr, SourceLocation(), TildeLoc,
                                   Destructed);
}

ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
                                        CXXConversionDecl *Method,
                                        bool HadMultipleCandidates) {
  // Convert the expression to match the conversion function's implicit object
  // parameter.
  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
                                          FoundDecl, Method);
  if (Exp.isInvalid())
    return true;

  if (Method->getParent()->isLambda() &&
      Method->getConversionType()->isBlockPointerType()) {
    // This is a lambda conversion to block pointer; check if the argument
    // was a LambdaExpr.
    Expr *SubE = E;
    CastExpr *CE = dyn_cast<CastExpr>(SubE);
    if (CE && CE->getCastKind() == CK_NoOp)
      SubE = CE->getSubExpr();
    SubE = SubE->IgnoreParens();
    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
      SubE = BE->getSubExpr();
    if (isa<LambdaExpr>(SubE)) {
      // For the conversion to block pointer on a lambda expression, we
      // construct a special BlockLiteral instead; this doesn't really make
      // a difference in ARC, but outside of ARC the resulting block literal
      // follows the normal lifetime rules for block literals instead of being
      // autoreleased.
      PushExpressionEvaluationContext(
          ExpressionEvaluationContext::PotentiallyEvaluated);
      ExprResult BlockExp = BuildBlockForLambdaConversion(
          Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
      PopExpressionEvaluationContext();

      // FIXME: This note should be produced by a CodeSynthesisContext.
      if (BlockExp.isInvalid())
        Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
      return BlockExp;
    }
  }

  MemberExpr *ME =
      BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
                      NestedNameSpecifierLoc(), SourceLocation(), Method,
                      DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
                      HadMultipleCandidates, DeclarationNameInfo(),
                      Context.BoundMemberTy, VK_RValue, OK_Ordinary);

  QualType ResultType = Method->getReturnType();
  ExprValueKind VK = Expr::getValueKindForType(ResultType);
  ResultType = ResultType.getNonLValueExprType(Context);

  CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
      Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
      CurFPFeatureOverrides());

  if (CheckFunctionCall(Method, CE,
                        Method->getType()->castAs<FunctionProtoType>()))
    return ExprError();

  return CE;
}

ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
                                      SourceLocation RParen) {
  // If the operand is an unresolved lookup expression, the expression is ill-
  // formed per [over.over]p1, because overloaded function names cannot be used
  // without arguments except in explicit contexts.
  ExprResult R = CheckPlaceholderExpr(Operand);
  if (R.isInvalid())
    return R;

  R = CheckUnevaluatedOperand(R.get());
  if (R.isInvalid())
    return ExprError();

  Operand = R.get();

  if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
    // The expression operand for noexcept is in an unevaluated expression
    // context, so side effects could result in unintended consequences.
    Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
  }

  CanThrowResult CanThrow = canThrow(Operand);
  return new (Context)
      CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
}

ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
                                   Expr *Operand, SourceLocation RParen) {
  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
}

/// Perform the conversions required for an expression used in a
/// context that ignores the result.
ExprResult Sema::IgnoredValueConversions(Expr *E) {
  if (E->hasPlaceholderType()) {
    ExprResult result = CheckPlaceholderExpr(E);
    if (result.isInvalid()) return E;
    E = result.get();
  }

  // C99 6.3.2.1:
  //   [Except in specific positions,] an lvalue that does not have
  //   array type is converted to the value stored in the
  //   designated object (and is no longer an lvalue).
  if (E->isRValue()) {
    // In C, function designators (i.e. expressions of function type)
    // are r-values, but we still want to do function-to-pointer decay
    // on them.  This is both technically correct and convenient for
    // some clients.
    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
      return DefaultFunctionArrayConversion(E);

    return E;
  }

  if (getLangOpts().CPlusPlus) {
    // The C++11 standard defines the notion of a discarded-value expression;
    // normally, we don't need to do anything to handle it, but if it is a
    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
    // conversion.
    if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
      ExprResult Res = DefaultLvalueConversion(E);
      if (Res.isInvalid())
        return E;
      E = Res.get();
    } else {
      // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
      // it occurs as a discarded-value expression.
      CheckUnusedVolatileAssignment(E);
    }

    // C++1z:
    //   If the expression is a prvalue after this optional conversion, the
    //   temporary materialization conversion is applied.
    //
    // We skip this step: IR generation is able to synthesize the storage for
    // itself in the aggregate case, and adding the extra node to the AST is
    // just clutter.
    // FIXME: We don't emit lifetime markers for the temporaries due to this.
    // FIXME: Do any other AST consumers care about this?
    return E;
  }

  // GCC seems to also exclude expressions of incomplete enum type.
  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
    if (!T->getDecl()->isComplete()) {
      // FIXME: stupid workaround for a codegen bug!
      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
      return E;
    }
  }

  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
  if (Res.isInvalid())
    return E;
  E = Res.get();

  if (!E->getType()->isVoidType())
    RequireCompleteType(E->getExprLoc(), E->getType(),
                        diag::err_incomplete_type);
  return E;
}

ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
  // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
  // it occurs as an unevaluated operand.
  CheckUnusedVolatileAssignment(E);

  return E;
}

// If we can unambiguously determine whether Var can never be used
// in a constant expression, return true.
//  - if the variable and its initializer are non-dependent, then
//    we can unambiguously check if the variable is a constant expression.
//  - if the initializer is not value dependent - we can determine whether
//    it can be used to initialize a constant expression.  If Init can not
//    be used to initialize a constant expression we conclude that Var can
//    never be a constant expression.
//  - FXIME: if the initializer is dependent, we can still do some analysis and
//    identify certain cases unambiguously as non-const by using a Visitor:
//      - such as those that involve odr-use of a ParmVarDecl, involve a new
//        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
    ASTContext &Context) {
  if (isa<ParmVarDecl>(Var)) return true;
  const VarDecl *DefVD = nullptr;

  // If there is no initializer - this can not be a constant expression.
  if (!Var->getAnyInitializer(DefVD)) return true;
  assert(DefVD);
  if (DefVD->isWeak()) return false;
  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();

  Expr *Init = cast<Expr>(Eval->Value);

  if (Var->getType()->isDependentType() || Init->isValueDependent()) {
    // FIXME: Teach the constant evaluator to deal with the non-dependent parts
    // of value-dependent expressions, and use it here to determine whether the
    // initializer is a potential constant expression.
    return false;
  }

  return !Var->isUsableInConstantExpressions(Context);
}

/// Check if the current lambda has any potential captures
/// that must be captured by any of its enclosing lambdas that are ready to
/// capture. If there is a lambda that can capture a nested
/// potential-capture, go ahead and do so.  Also, check to see if any
/// variables are uncaptureable or do not involve an odr-use so do not
/// need to be captured.

static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
    Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {

  assert(!S.isUnevaluatedContext());
  assert(S.CurContext->isDependentContext());
#ifndef NDEBUG
  DeclContext *DC = S.CurContext;
  while (DC && isa<CapturedDecl>(DC))
    DC = DC->getParent();
  assert(
      CurrentLSI->CallOperator == DC &&
      "The current call operator must be synchronized with Sema's CurContext");
#endif // NDEBUG

  const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();

  // All the potentially captureable variables in the current nested
  // lambda (within a generic outer lambda), must be captured by an
  // outer lambda that is enclosed within a non-dependent context.
  CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
    // If the variable is clearly identified as non-odr-used and the full
    // expression is not instantiation dependent, only then do we not
    // need to check enclosing lambda's for speculative captures.
    // For e.g.:
    // Even though 'x' is not odr-used, it should be captured.
    // int test() {
    //   const int x = 10;
    //   auto L = [=](auto a) {
    //     (void) +x + a;
    //   };
    // }
    if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
        !IsFullExprInstantiationDependent)
      return;

    // If we have a capture-capable lambda for the variable, go ahead and
    // capture the variable in that lambda (and all its enclosing lambdas).
    if (const Optional<unsigned> Index =
            getStackIndexOfNearestEnclosingCaptureCapableLambda(
                S.FunctionScopes, Var, S))
      S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
                                          Index.getValue());
    const bool IsVarNeverAConstantExpression =
        VariableCanNeverBeAConstantExpression(Var, S.Context);
    if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
      // This full expression is not instantiation dependent or the variable
      // can not be used in a constant expression - which means
      // this variable must be odr-used here, so diagnose a
      // capture violation early, if the variable is un-captureable.
      // This is purely for diagnosing errors early.  Otherwise, this
      // error would get diagnosed when the lambda becomes capture ready.
      QualType CaptureType, DeclRefType;
      SourceLocation ExprLoc = VarExpr->getExprLoc();
      if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
                          /*EllipsisLoc*/ SourceLocation(),
                          /*BuildAndDiagnose*/false, CaptureType,
                          DeclRefType, nullptr)) {
        // We will never be able to capture this variable, and we need
        // to be able to in any and all instantiations, so diagnose it.
        S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
                          /*EllipsisLoc*/ SourceLocation(),
                          /*BuildAndDiagnose*/true, CaptureType,
                          DeclRefType, nullptr);
      }
    }
  });

  // Check if 'this' needs to be captured.
  if (CurrentLSI->hasPotentialThisCapture()) {
    // If we have a capture-capable lambda for 'this', go ahead and capture
    // 'this' in that lambda (and all its enclosing lambdas).
    if (const Optional<unsigned> Index =
            getStackIndexOfNearestEnclosingCaptureCapableLambda(
                S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
      S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
                            /*Explicit*/ false, /*BuildAndDiagnose*/ true,
                            &FunctionScopeIndexOfCapturableLambda);
    }
  }

  // Reset all the potential captures at the end of each full-expression.
  CurrentLSI->clearPotentialCaptures();
}

static ExprResult attemptRecovery(Sema &SemaRef,
                                  const TypoCorrectionConsumer &Consumer,
                                  const TypoCorrection &TC) {
  LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
                 Consumer.getLookupResult().getLookupKind());
  const CXXScopeSpec *SS = Consumer.getSS();
  CXXScopeSpec NewSS;

  // Use an approprate CXXScopeSpec for building the expr.
  if (auto *NNS = TC.getCorrectionSpecifier())
    NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
  else if (SS && !TC.WillReplaceSpecifier())
    NewSS = *SS;

  if (auto *ND = TC.getFoundDecl()) {
    R.setLookupName(ND->getDeclName());
    R.addDecl(ND);
    if (ND->isCXXClassMember()) {
      // Figure out the correct naming class to add to the LookupResult.
      CXXRecordDecl *Record = nullptr;
      if (auto *NNS = TC.getCorrectionSpecifier())
        Record = NNS->getAsType()->getAsCXXRecordDecl();
      if (!Record)
        Record =
            dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
      if (Record)
        R.setNamingClass(Record);

      // Detect and handle the case where the decl might be an implicit
      // member.
      bool MightBeImplicitMember;
      if (!Consumer.isAddressOfOperand())
        MightBeImplicitMember = true;
      else if (!NewSS.isEmpty())
        MightBeImplicitMember = false;
      else if (R.isOverloadedResult())
        MightBeImplicitMember = false;
      else if (R.isUnresolvableResult())
        MightBeImplicitMember = true;
      else
        MightBeImplicitMember = isa<FieldDecl>(ND) ||
                                isa<IndirectFieldDecl>(ND) ||
                                isa<MSPropertyDecl>(ND);

      if (MightBeImplicitMember)
        return SemaRef.BuildPossibleImplicitMemberExpr(
            NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
            /*TemplateArgs*/ nullptr, /*S*/ nullptr);
    } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
      return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
                                        Ivar->getIdentifier());
    }
  }

  return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
                                          /*AcceptInvalidDecl*/ true);
}

namespace {
class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
  llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;

public:
  explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
      : TypoExprs(TypoExprs) {}
  bool VisitTypoExpr(TypoExpr *TE) {
    TypoExprs.insert(TE);
    return true;
  }
};

class TransformTypos : public TreeTransform<TransformTypos> {
  typedef TreeTransform<TransformTypos> BaseTransform;

  VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
                     // process of being initialized.
  llvm::function_ref<ExprResult(Expr *)> ExprFilter;
  llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
  llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
  llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;

  /// Emit diagnostics for all of the TypoExprs encountered.
  ///
  /// If the TypoExprs were successfully corrected, then the diagnostics should
  /// suggest the corrections. Otherwise the diagnostics will not suggest
  /// anything (having been passed an empty TypoCorrection).
  ///
  /// If we've failed to correct due to ambiguous corrections, we need to
  /// be sure to pass empty corrections and replacements. Otherwise it's
  /// possible that the Consumer has a TypoCorrection that failed to ambiguity
  /// and we don't want to report those diagnostics.
  void EmitAllDiagnostics(bool IsAmbiguous) {
    for (TypoExpr *TE : TypoExprs) {
      auto &State = SemaRef.getTypoExprState(TE);
      if (State.DiagHandler) {
        TypoCorrection TC = IsAmbiguous
            ? TypoCorrection() : State.Consumer->getCurrentCorrection();
        ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];

        // Extract the NamedDecl from the transformed TypoExpr and add it to the
        // TypoCorrection, replacing the existing decls. This ensures the right
        // NamedDecl is used in diagnostics e.g. in the case where overload
        // resolution was used to select one from several possible decls that
        // had been stored in the TypoCorrection.
        if (auto *ND = getDeclFromExpr(
                Replacement.isInvalid() ? nullptr : Replacement.get()))
          TC.setCorrectionDecl(ND);

        State.DiagHandler(TC);
      }
      SemaRef.clearDelayedTypo(TE);
    }
  }

  /// Try to advance the typo correction state of the first unfinished TypoExpr.
  /// We allow advancement of the correction stream by removing it from the
  /// TransformCache which allows `TransformTypoExpr` to advance during the
  /// next transformation attempt.
  ///
  /// Any substitution attempts for the previous TypoExprs (which must have been
  /// finished) will need to be retried since it's possible that they will now
  /// be invalid given the latest advancement.
  ///
  /// We need to be sure that we're making progress - it's possible that the
  /// tree is so malformed that the transform never makes it to the
  /// `TransformTypoExpr`.
  ///
  /// Returns true if there are any untried correction combinations.
  bool CheckAndAdvanceTypoExprCorrectionStreams() {
    for (auto TE : TypoExprs) {
      auto &State = SemaRef.getTypoExprState(TE);
      TransformCache.erase(TE);
      if (!State.Consumer->hasMadeAnyCorrectionProgress())
        return false;
      if (!State.Consumer->finished())
        return true;
      State.Consumer->resetCorrectionStream();
    }
    return false;
  }

  NamedDecl *getDeclFromExpr(Expr *E) {
    if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
      E = OverloadResolution[OE];

    if (!E)
      return nullptr;
    if (auto *DRE = dyn_cast<DeclRefExpr>(E))
      return DRE->getFoundDecl();
    if (auto *ME = dyn_cast<MemberExpr>(E))
      return ME->getFoundDecl();
    // FIXME: Add any other expr types that could be be seen by the delayed typo
    // correction TreeTransform for which the corresponding TypoCorrection could
    // contain multiple decls.
    return nullptr;
  }

  ExprResult TryTransform(Expr *E) {
    Sema::SFINAETrap Trap(SemaRef);
    ExprResult Res = TransformExpr(E);
    if (Trap.hasErrorOccurred() || Res.isInvalid())
      return ExprError();

    return ExprFilter(Res.get());
  }

  // Since correcting typos may intoduce new TypoExprs, this function
  // checks for new TypoExprs and recurses if it finds any. Note that it will
  // only succeed if it is able to correct all typos in the given expression.
  ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
    if (Res.isInvalid()) {
      return Res;
    }
    // Check to see if any new TypoExprs were created. If so, we need to recurse
    // to check their validity.
    Expr *FixedExpr = Res.get();

    auto SavedTypoExprs = std::move(TypoExprs);
    auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
    TypoExprs.clear();
    AmbiguousTypoExprs.clear();

    FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
    if (!TypoExprs.empty()) {
      // Recurse to handle newly created TypoExprs. If we're not able to
      // handle them, discard these TypoExprs.
      ExprResult RecurResult =
          RecursiveTransformLoop(FixedExpr, IsAmbiguous);
      if (RecurResult.isInvalid()) {
        Res = ExprError();
        // Recursive corrections didn't work, wipe them away and don't add
        // them to the TypoExprs set. Remove them from Sema's TypoExpr list
        // since we don't want to clear them twice. Note: it's possible the
        // TypoExprs were created recursively and thus won't be in our
        // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
        auto &SemaTypoExprs = SemaRef.TypoExprs;
        for (auto TE : TypoExprs) {
          TransformCache.erase(TE);
          SemaRef.clearDelayedTypo(TE);

          auto SI = find(SemaTypoExprs, TE);
          if (SI != SemaTypoExprs.end()) {
            SemaTypoExprs.erase(SI);
          }
        }
      } else {
        // TypoExpr is valid: add newly created TypoExprs since we were
        // able to correct them.
        Res = RecurResult;
        SavedTypoExprs.set_union(TypoExprs);
      }
    }

    TypoExprs = std::move(SavedTypoExprs);
    AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);

    return Res;
  }

  // Try to transform the given expression, looping through the correction
  // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
  //
  // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
  // true and this method immediately will return an `ExprError`.
  ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
    ExprResult Res;
    auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
    SemaRef.TypoExprs.clear();

    while (true) {
      Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);

      // Recursion encountered an ambiguous correction. This means that our
      // correction itself is ambiguous, so stop now.
      if (IsAmbiguous)
        break;

      // If the transform is still valid after checking for any new typos,
      // it's good to go.
      if (!Res.isInvalid())
        break;

      // The transform was invalid, see if we have any TypoExprs with untried
      // correction candidates.
      if (!CheckAndAdvanceTypoExprCorrectionStreams())
        break;
    }

    // If we found a valid result, double check to make sure it's not ambiguous.
    if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
      auto SavedTransformCache =
          llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);

      // Ensure none of the TypoExprs have multiple typo correction candidates
      // with the same edit length that pass all the checks and filters.
      while (!AmbiguousTypoExprs.empty()) {
        auto TE  = AmbiguousTypoExprs.back();

        // TryTransform itself can create new Typos, adding them to the TypoExpr map
        // and invalidating our TypoExprState, so always fetch it instead of storing.
        SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();

        TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
        TypoCorrection Next;
        do {
          // Fetch the next correction by erasing the typo from the cache and calling
          // `TryTransform` which will iterate through corrections in
          // `TransformTypoExpr`.
          TransformCache.erase(TE);
          ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);

          if (!AmbigRes.isInvalid() || IsAmbiguous) {
            SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
            SavedTransformCache.erase(TE);
            Res = ExprError();
            IsAmbiguous = true;
            break;
          }
        } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
                 Next.getEditDistance(false) == TC.getEditDistance(false));

        if (IsAmbiguous)
          break;

        AmbiguousTypoExprs.remove(TE);
        SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
      }
      TransformCache = std::move(SavedTransformCache);
    }

    // Wipe away any newly created TypoExprs that we don't know about. Since we
    // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
    // possible if a `TypoExpr` is created during a transformation but then
    // fails before we can discover it.
    auto &SemaTypoExprs = SemaRef.TypoExprs;
    for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
      auto TE = *Iterator;
      auto FI = find(TypoExprs, TE);
      if (FI != TypoExprs.end()) {
        Iterator++;
        continue;
      }
      SemaRef.clearDelayedTypo(TE);
      Iterator = SemaTypoExprs.erase(Iterator);
    }
    SemaRef.TypoExprs = std::move(SavedTypoExprs);

    return Res;
  }

public:
  TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
      : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}

  ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
                                   MultiExprArg Args,
                                   SourceLocation RParenLoc,
                                   Expr *ExecConfig = nullptr) {
    auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
                                                 RParenLoc, ExecConfig);
    if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
      if (Result.isUsable()) {
        Expr *ResultCall = Result.get();
        if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
          ResultCall = BE->getSubExpr();
        if (auto *CE = dyn_cast<CallExpr>(ResultCall))
          OverloadResolution[OE] = CE->getCallee();
      }
    }
    return Result;
  }

  ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }

  ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }

  ExprResult Transform(Expr *E) {
    bool IsAmbiguous = false;
    ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);

    if (!Res.isUsable())
      FindTypoExprs(TypoExprs).TraverseStmt(E);

    EmitAllDiagnostics(IsAmbiguous);

    return Res;
  }

  ExprResult TransformTypoExpr(TypoExpr *E) {
    // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
    // cached transformation result if there is one and the TypoExpr isn't the
    // first one that was encountered.
    auto &CacheEntry = TransformCache[E];
    if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
      return CacheEntry;
    }

    auto &State = SemaRef.getTypoExprState(E);
    assert(State.Consumer && "Cannot transform a cleared TypoExpr");

    // For the first TypoExpr and an uncached TypoExpr, find the next likely
    // typo correction and return it.
    while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
      if (InitDecl && TC.getFoundDecl() == InitDecl)
        continue;
      // FIXME: If we would typo-correct to an invalid declaration, it's
      // probably best to just suppress all errors from this typo correction.
      ExprResult NE = State.RecoveryHandler ?
          State.RecoveryHandler(SemaRef, E, TC) :
          attemptRecovery(SemaRef, *State.Consumer, TC);
      if (!NE.isInvalid()) {
        // Check whether there may be a second viable correction with the same
        // edit distance; if so, remember this TypoExpr may have an ambiguous
        // correction so it can be more thoroughly vetted later.
        TypoCorrection Next;
        if ((Next = State.Consumer->peekNextCorrection()) &&
            Next.getEditDistance(false) == TC.getEditDistance(false)) {
          AmbiguousTypoExprs.insert(E);
        } else {
          AmbiguousTypoExprs.remove(E);
        }
        assert(!NE.isUnset() &&
               "Typo was transformed into a valid-but-null ExprResult");
        return CacheEntry = NE;
      }
    }
    return CacheEntry = ExprError();
  }
};
}

ExprResult
Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
                                bool RecoverUncorrectedTypos,
                                llvm::function_ref<ExprResult(Expr *)> Filter) {
  // If the current evaluation context indicates there are uncorrected typos
  // and the current expression isn't guaranteed to not have typos, try to
  // resolve any TypoExpr nodes that might be in the expression.
  if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
      (E->isTypeDependent() || E->isValueDependent() ||
       E->isInstantiationDependent())) {
    auto TyposResolved = DelayedTypos.size();
    auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
    TyposResolved -= DelayedTypos.size();
    if (Result.isInvalid() || Result.get() != E) {
      ExprEvalContexts.back().NumTypos -= TyposResolved;
      if (Result.isInvalid() && RecoverUncorrectedTypos) {
        struct TyposReplace : TreeTransform<TyposReplace> {
          TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
          ExprResult TransformTypoExpr(clang::TypoExpr *E) {
            return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
                                                    E->getEndLoc(), {});
          }
        } TT(*this);
        return TT.TransformExpr(E);
      }
      return Result;
    }
    assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
  }
  return E;
}

ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
                                     bool DiscardedValue,
                                     bool IsConstexpr) {
  ExprResult FullExpr = FE;

  if (!FullExpr.get())
    return ExprError();

  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
    return ExprError();

  if (DiscardedValue) {
    // Top-level expressions default to 'id' when we're in a debugger.
    if (getLangOpts().DebuggerCastResultToId &&
        FullExpr.get()->getType() == Context.UnknownAnyTy) {
      FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
      if (FullExpr.isInvalid())
        return ExprError();
    }

    FullExpr = CheckPlaceholderExpr(FullExpr.get());
    if (FullExpr.isInvalid())
      return ExprError();

    FullExpr = IgnoredValueConversions(FullExpr.get());
    if (FullExpr.isInvalid())
      return ExprError();

    DiagnoseUnusedExprResult(FullExpr.get());
  }

  FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
                                       /*RecoverUncorrectedTypos=*/true);
  if (FullExpr.isInvalid())
    return ExprError();

  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);

  // At the end of this full expression (which could be a deeply nested
  // lambda), if there is a potential capture within the nested lambda,
  // have the outer capture-able lambda try and capture it.
  // Consider the following code:
  // void f(int, int);
  // void f(const int&, double);
  // void foo() {
  //  const int x = 10, y = 20;
  //  auto L = [=](auto a) {
  //      auto M = [=](auto b) {
  //         f(x, b); <-- requires x to be captured by L and M
  //         f(y, a); <-- requires y to be captured by L, but not all Ms
  //      };
  //   };
  // }

  // FIXME: Also consider what happens for something like this that involves
  // the gnu-extension statement-expressions or even lambda-init-captures:
  //   void f() {
  //     const int n = 0;
  //     auto L =  [&](auto a) {
  //       +n + ({ 0; a; });
  //     };
  //   }
  //
  // Here, we see +n, and then the full-expression 0; ends, so we don't
  // capture n (and instead remove it from our list of potential captures),
  // and then the full-expression +n + ({ 0; }); ends, but it's too late
  // for us to see that we need to capture n after all.

  LambdaScopeInfo *const CurrentLSI =
      getCurLambda(/*IgnoreCapturedRegions=*/true);
  // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
  // even if CurContext is not a lambda call operator. Refer to that Bug Report
  // for an example of the code that might cause this asynchrony.
  // By ensuring we are in the context of a lambda's call operator
  // we can fix the bug (we only need to check whether we need to capture
  // if we are within a lambda's body); but per the comments in that
  // PR, a proper fix would entail :
  //   "Alternative suggestion:
  //   - Add to Sema an integer holding the smallest (outermost) scope
  //     index that we are *lexically* within, and save/restore/set to
  //     FunctionScopes.size() in InstantiatingTemplate's
  //     constructor/destructor.
  //  - Teach the handful of places that iterate over FunctionScopes to
  //    stop at the outermost enclosing lexical scope."
  DeclContext *DC = CurContext;
  while (DC && isa<CapturedDecl>(DC))
    DC = DC->getParent();
  const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
  if (IsInLambdaDeclContext && CurrentLSI &&
      CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
    CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
                                                              *this);
  return MaybeCreateExprWithCleanups(FullExpr);
}

StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
  if (!FullStmt) return StmtError();

  return MaybeCreateStmtWithCleanups(FullStmt);
}

Sema::IfExistsResult
Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
                                   CXXScopeSpec &SS,
                                   const DeclarationNameInfo &TargetNameInfo) {
  DeclarationName TargetName = TargetNameInfo.getName();
  if (!TargetName)
    return IER_DoesNotExist;

  // If the name itself is dependent, then the result is dependent.
  if (TargetName.isDependentName())
    return IER_Dependent;

  // Do the redeclaration lookup in the current scope.
  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
                 Sema::NotForRedeclaration);
  LookupParsedName(R, S, &SS);
  R.suppressDiagnostics();

  switch (R.getResultKind()) {
  case LookupResult::Found:
  case LookupResult::FoundOverloaded:
  case LookupResult::FoundUnresolvedValue:
  case LookupResult::Ambiguous:
    return IER_Exists;

  case LookupResult::NotFound:
    return IER_DoesNotExist;

  case LookupResult::NotFoundInCurrentInstantiation:
    return IER_Dependent;
  }

  llvm_unreachable("Invalid LookupResult Kind!");
}

Sema::IfExistsResult
Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
                                   bool IsIfExists, CXXScopeSpec &SS,
                                   UnqualifiedId &Name) {
  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);

  // Check for an unexpanded parameter pack.
  auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
  if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
    return IER_Error;

  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
}

concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
  return BuildExprRequirement(E, /*IsSimple=*/true,
                              /*NoexceptLoc=*/SourceLocation(),
                              /*ReturnTypeRequirement=*/{});
}

concepts::Requirement *
Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
                           SourceLocation NameLoc, IdentifierInfo *TypeName,
                           TemplateIdAnnotation *TemplateId) {
  assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
         "Exactly one of TypeName and TemplateId must be specified.");
  TypeSourceInfo *TSI = nullptr;
  if (TypeName) {
    QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
                                   SS.getWithLocInContext(Context), *TypeName,
                                   NameLoc, &TSI, /*DeducedTypeContext=*/false);
    if (T.isNull())
      return nullptr;
  } else {
    ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
                               TemplateId->NumArgs);
    TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
                                     TemplateId->TemplateKWLoc,
                                     TemplateId->Template, TemplateId->Name,
                                     TemplateId->TemplateNameLoc,
                                     TemplateId->LAngleLoc, ArgsPtr,
                                     TemplateId->RAngleLoc);
    if (T.isInvalid())
      return nullptr;
    if (GetTypeFromParser(T.get(), &TSI).isNull())
      return nullptr;
  }
  return BuildTypeRequirement(TSI);
}

concepts::Requirement *
Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
  return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
                              /*ReturnTypeRequirement=*/{});
}

concepts::Requirement *
Sema::ActOnCompoundRequirement(
    Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
    TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
  // C++2a [expr.prim.req.compound] p1.3.3
  //   [..] the expression is deduced against an invented function template
  //   F [...] F is a void function template with a single type template
  //   parameter T declared with the constrained-parameter. Form a new
  //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
  //   around the constrained-parameter. F has a single parameter whose
  //   type-specifier is cv T followed by the abstract-declarator. [...]
  //
  // The cv part is done in the calling function - we get the concept with
  // arguments and the abstract declarator with the correct CV qualification and
  // have to synthesize T and the single parameter of F.
  auto &II = Context.Idents.get("expr-type");
  auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
                                              SourceLocation(),
                                              SourceLocation(), Depth,
                                              /*Index=*/0, &II,
                                              /*Typename=*/true,
                                              /*ParameterPack=*/false,
                                              /*HasTypeConstraint=*/true);

  if (ActOnTypeConstraint(SS, TypeConstraint, TParam,
                          /*EllpsisLoc=*/SourceLocation()))
    // Just produce a requirement with no type requirements.
    return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});

  auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
                                            SourceLocation(),
                                            ArrayRef<NamedDecl *>(TParam),
                                            SourceLocation(),
                                            /*RequiresClause=*/nullptr);
  return BuildExprRequirement(
      E, /*IsSimple=*/false, NoexceptLoc,
      concepts::ExprRequirement::ReturnTypeRequirement(TPL));
}

concepts::ExprRequirement *
Sema::BuildExprRequirement(
    Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
    concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
  auto Status = concepts::ExprRequirement::SS_Satisfied;
  ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
  if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
    Status = concepts::ExprRequirement::SS_Dependent;
  else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
    Status = concepts::ExprRequirement::SS_NoexceptNotMet;
  else if (ReturnTypeRequirement.isSubstitutionFailure())
    Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
  else if (ReturnTypeRequirement.isTypeConstraint()) {
    // C++2a [expr.prim.req]p1.3.3
    //     The immediately-declared constraint ([temp]) of decltype((E)) shall
    //     be satisfied.
    TemplateParameterList *TPL =
        ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
    QualType MatchedType =
        BuildDecltypeType(E, E->getBeginLoc()).getCanonicalType();
    llvm::SmallVector<TemplateArgument, 1> Args;
    Args.push_back(TemplateArgument(MatchedType));
    TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
    MultiLevelTemplateArgumentList MLTAL(TAL);
    for (unsigned I = 0; I < TPL->getDepth(); ++I)
      MLTAL.addOuterRetainedLevel();
    Expr *IDC =
        cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
            ->getImmediatelyDeclaredConstraint();
    ExprResult Constraint = SubstExpr(IDC, MLTAL);
    assert(!Constraint.isInvalid() &&
           "Substitution cannot fail as it is simply putting a type template "
           "argument into a concept specialization expression's parameter.");

    SubstitutedConstraintExpr =
        cast<ConceptSpecializationExpr>(Constraint.get());
    if (!SubstitutedConstraintExpr->isSatisfied())
      Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
  }
  return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
                                                 ReturnTypeRequirement, Status,
                                                 SubstitutedConstraintExpr);
}

concepts::ExprRequirement *
Sema::BuildExprRequirement(
    concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
    bool IsSimple, SourceLocation NoexceptLoc,
    concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
  return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
                                                 IsSimple, NoexceptLoc,
                                                 ReturnTypeRequirement);
}

concepts::TypeRequirement *
Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
  return new (Context) concepts::TypeRequirement(Type);
}

concepts::TypeRequirement *
Sema::BuildTypeRequirement(
    concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
  return new (Context) concepts::TypeRequirement(SubstDiag);
}

concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
  return BuildNestedRequirement(Constraint);
}

concepts::NestedRequirement *
Sema::BuildNestedRequirement(Expr *Constraint) {
  ConstraintSatisfaction Satisfaction;
  if (!Constraint->isInstantiationDependent() &&
      CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
                                  Constraint->getSourceRange(), Satisfaction))
    return nullptr;
  return new (Context) concepts::NestedRequirement(Context, Constraint,
                                                   Satisfaction);
}

concepts::NestedRequirement *
Sema::BuildNestedRequirement(
    concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
  return new (Context) concepts::NestedRequirement(SubstDiag);
}

RequiresExprBodyDecl *
Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
                             ArrayRef<ParmVarDecl *> LocalParameters,
                             Scope *BodyScope) {
  assert(BodyScope);

  RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
                                                            RequiresKWLoc);

  PushDeclContext(BodyScope, Body);

  for (ParmVarDecl *Param : LocalParameters) {
    if (Param->hasDefaultArg())
      // C++2a [expr.prim.req] p4
      //     [...] A local parameter of a requires-expression shall not have a
      //     default argument. [...]
      Diag(Param->getDefaultArgRange().getBegin(),
           diag::err_requires_expr_local_parameter_default_argument);
    // Ignore default argument and move on

    Param->setDeclContext(Body);
    // If this has an identifier, add it to the scope stack.
    if (Param->getIdentifier()) {
      CheckShadow(BodyScope, Param);
      PushOnScopeChains(Param, BodyScope);
    }
  }
  return Body;
}

void Sema::ActOnFinishRequiresExpr() {
  assert(CurContext && "DeclContext imbalance!");
  CurContext = CurContext->getLexicalParent();
  assert(CurContext && "Popped translation unit!");
}

ExprResult
Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
                        RequiresExprBodyDecl *Body,
                        ArrayRef<ParmVarDecl *> LocalParameters,
                        ArrayRef<concepts::Requirement *> Requirements,
                        SourceLocation ClosingBraceLoc) {
  auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
                                  Requirements, ClosingBraceLoc);
  if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
    return ExprError();
  return RE;
}