InputFiles.cpp 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Config.h"
#include "InputChunks.h"
#include "InputEvent.h"
#include "InputGlobal.h"
#include "SymbolTable.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Reproduce.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Wasm.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "lld"

using namespace llvm;
using namespace llvm::object;
using namespace llvm::wasm;

namespace lld {

// Returns a string in the format of "foo.o" or "foo.a(bar.o)".
std::string toString(const wasm::InputFile *file) {
  if (!file)
    return "<internal>";

  if (file->archiveName.empty())
    return std::string(file->getName());

  return (file->archiveName + "(" + file->getName() + ")").str();
}

namespace wasm {
std::unique_ptr<llvm::TarWriter> tar;

Optional<MemoryBufferRef> readFile(StringRef path) {
  log("Loading: " + path);

  auto mbOrErr = MemoryBuffer::getFile(path);
  if (auto ec = mbOrErr.getError()) {
    error("cannot open " + path + ": " + ec.message());
    return None;
  }
  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
  MemoryBufferRef mbref = mb->getMemBufferRef();
  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership

  if (tar)
    tar->append(relativeToRoot(path), mbref.getBuffer());
  return mbref;
}

InputFile *createObjectFile(MemoryBufferRef mb,
                                       StringRef archiveName) {
  file_magic magic = identify_magic(mb.getBuffer());
  if (magic == file_magic::wasm_object) {
    std::unique_ptr<Binary> bin =
        CHECK(createBinary(mb), mb.getBufferIdentifier());
    auto *obj = cast<WasmObjectFile>(bin.get());
    if (obj->isSharedObject())
      return make<SharedFile>(mb);
    return make<ObjFile>(mb, archiveName);
  }

  if (magic == file_magic::bitcode)
    return make<BitcodeFile>(mb, archiveName);

  fatal("unknown file type: " + mb.getBufferIdentifier());
}

void ObjFile::dumpInfo() const {
  log("info for: " + toString(this) +
      "\n              Symbols : " + Twine(symbols.size()) +
      "\n     Function Imports : " + Twine(wasmObj->getNumImportedFunctions()) +
      "\n       Global Imports : " + Twine(wasmObj->getNumImportedGlobals()) +
      "\n        Event Imports : " + Twine(wasmObj->getNumImportedEvents()));
}

// Relocations contain either symbol or type indices.  This function takes a
// relocation and returns relocated index (i.e. translates from the input
// symbol/type space to the output symbol/type space).
uint32_t ObjFile::calcNewIndex(const WasmRelocation &reloc) const {
  if (reloc.Type == R_WASM_TYPE_INDEX_LEB) {
    assert(typeIsUsed[reloc.Index]);
    return typeMap[reloc.Index];
  }
  const Symbol *sym = symbols[reloc.Index];
  if (auto *ss = dyn_cast<SectionSymbol>(sym))
    sym = ss->getOutputSectionSymbol();
  return sym->getOutputSymbolIndex();
}

// Relocations can contain addend for combined sections. This function takes a
// relocation and returns updated addend by offset in the output section.
uint64_t ObjFile::calcNewAddend(const WasmRelocation &reloc) const {
  switch (reloc.Type) {
  case R_WASM_MEMORY_ADDR_LEB:
  case R_WASM_MEMORY_ADDR_LEB64:
  case R_WASM_MEMORY_ADDR_SLEB64:
  case R_WASM_MEMORY_ADDR_SLEB:
  case R_WASM_MEMORY_ADDR_REL_SLEB:
  case R_WASM_MEMORY_ADDR_REL_SLEB64:
  case R_WASM_MEMORY_ADDR_I32:
  case R_WASM_MEMORY_ADDR_I64:
  case R_WASM_FUNCTION_OFFSET_I32:
    return reloc.Addend;
  case R_WASM_SECTION_OFFSET_I32:
    return getSectionSymbol(reloc.Index)->section->outputOffset + reloc.Addend;
  default:
    llvm_unreachable("unexpected relocation type");
  }
}

// Calculate the value we expect to find at the relocation location.
// This is used as a sanity check before applying a relocation to a given
// location.  It is useful for catching bugs in the compiler and linker.
uint64_t ObjFile::calcExpectedValue(const WasmRelocation &reloc) const {
  switch (reloc.Type) {
  case R_WASM_TABLE_INDEX_I32:
  case R_WASM_TABLE_INDEX_I64:
  case R_WASM_TABLE_INDEX_SLEB:
  case R_WASM_TABLE_INDEX_SLEB64: {
    const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
    return tableEntries[sym.Info.ElementIndex];
  }
  case R_WASM_TABLE_INDEX_REL_SLEB: {
    const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
    return tableEntriesRel[sym.Info.ElementIndex];
  }
  case R_WASM_MEMORY_ADDR_LEB:
  case R_WASM_MEMORY_ADDR_LEB64:
  case R_WASM_MEMORY_ADDR_SLEB:
  case R_WASM_MEMORY_ADDR_SLEB64:
  case R_WASM_MEMORY_ADDR_REL_SLEB:
  case R_WASM_MEMORY_ADDR_REL_SLEB64:
  case R_WASM_MEMORY_ADDR_I32:
  case R_WASM_MEMORY_ADDR_I64: {
    const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
    if (sym.isUndefined())
      return 0;
    const WasmSegment &segment =
        wasmObj->dataSegments()[sym.Info.DataRef.Segment];
    if (segment.Data.Offset.Opcode == WASM_OPCODE_I32_CONST)
      return segment.Data.Offset.Value.Int32 + sym.Info.DataRef.Offset +
             reloc.Addend;
    else if (segment.Data.Offset.Opcode == WASM_OPCODE_I64_CONST)
      return segment.Data.Offset.Value.Int64 + sym.Info.DataRef.Offset +
             reloc.Addend;
    else
      llvm_unreachable("unknown init expr opcode");
  }
  case R_WASM_FUNCTION_OFFSET_I32: {
    const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
    InputFunction *f =
        functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()];
    return f->getFunctionInputOffset() + f->getFunctionCodeOffset() +
           reloc.Addend;
  }
  case R_WASM_SECTION_OFFSET_I32:
    return reloc.Addend;
  case R_WASM_TYPE_INDEX_LEB:
    return reloc.Index;
  case R_WASM_FUNCTION_INDEX_LEB:
  case R_WASM_GLOBAL_INDEX_LEB:
  case R_WASM_GLOBAL_INDEX_I32:
  case R_WASM_EVENT_INDEX_LEB: {
    const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
    return sym.Info.ElementIndex;
  }
  default:
    llvm_unreachable("unknown relocation type");
  }
}

// Translate from the relocation's index into the final linked output value.
uint64_t ObjFile::calcNewValue(const WasmRelocation &reloc) const {
  const Symbol* sym = nullptr;
  if (reloc.Type != R_WASM_TYPE_INDEX_LEB) {
    sym = symbols[reloc.Index];

    // We can end up with relocations against non-live symbols.  For example
    // in debug sections. We return reloc.Addend because always returning zero
    // causes the generation of spurious range-list terminators in the
    // .debug_ranges section.
    if ((isa<FunctionSymbol>(sym) || isa<DataSymbol>(sym)) && !sym->isLive())
      return reloc.Addend;
  }

  switch (reloc.Type) {
  case R_WASM_TABLE_INDEX_I32:
  case R_WASM_TABLE_INDEX_I64:
  case R_WASM_TABLE_INDEX_SLEB:
  case R_WASM_TABLE_INDEX_SLEB64:
  case R_WASM_TABLE_INDEX_REL_SLEB: {
    if (!getFunctionSymbol(reloc.Index)->hasTableIndex())
      return 0;
    uint32_t index = getFunctionSymbol(reloc.Index)->getTableIndex();
    if (reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB)
      index -= config->tableBase;
    return index;

  }
  case R_WASM_MEMORY_ADDR_LEB:
  case R_WASM_MEMORY_ADDR_LEB64:
  case R_WASM_MEMORY_ADDR_SLEB:
  case R_WASM_MEMORY_ADDR_SLEB64:
  case R_WASM_MEMORY_ADDR_REL_SLEB:
  case R_WASM_MEMORY_ADDR_REL_SLEB64:
  case R_WASM_MEMORY_ADDR_I32:
  case R_WASM_MEMORY_ADDR_I64:
    if (isa<UndefinedData>(sym) || sym->isUndefWeak())
      return 0;
    return cast<DefinedData>(sym)->getVirtualAddress() + reloc.Addend;
  case R_WASM_TYPE_INDEX_LEB:
    return typeMap[reloc.Index];
  case R_WASM_FUNCTION_INDEX_LEB:
    return getFunctionSymbol(reloc.Index)->getFunctionIndex();
  case R_WASM_GLOBAL_INDEX_LEB:
  case R_WASM_GLOBAL_INDEX_I32:
    if (auto gs = dyn_cast<GlobalSymbol>(sym))
      return gs->getGlobalIndex();
    return sym->getGOTIndex();
  case R_WASM_EVENT_INDEX_LEB:
    return getEventSymbol(reloc.Index)->getEventIndex();
  case R_WASM_FUNCTION_OFFSET_I32: {
    auto *f = cast<DefinedFunction>(sym);
    return f->function->outputOffset +
           (f->function->getFunctionCodeOffset() + reloc.Addend);
  }
  case R_WASM_SECTION_OFFSET_I32:
    return getSectionSymbol(reloc.Index)->section->outputOffset + reloc.Addend;
  default:
    llvm_unreachable("unknown relocation type");
  }
}

template <class T>
static void setRelocs(const std::vector<T *> &chunks,
                      const WasmSection *section) {
  if (!section)
    return;

  ArrayRef<WasmRelocation> relocs = section->Relocations;
  assert(llvm::is_sorted(
      relocs, [](const WasmRelocation &r1, const WasmRelocation &r2) {
        return r1.Offset < r2.Offset;
      }));
  assert(llvm::is_sorted(chunks, [](InputChunk *c1, InputChunk *c2) {
    return c1->getInputSectionOffset() < c2->getInputSectionOffset();
  }));

  auto relocsNext = relocs.begin();
  auto relocsEnd = relocs.end();
  auto relocLess = [](const WasmRelocation &r, uint32_t val) {
    return r.Offset < val;
  };
  for (InputChunk *c : chunks) {
    auto relocsStart = std::lower_bound(relocsNext, relocsEnd,
                                        c->getInputSectionOffset(), relocLess);
    relocsNext = std::lower_bound(
        relocsStart, relocsEnd, c->getInputSectionOffset() + c->getInputSize(),
        relocLess);
    c->setRelocations(ArrayRef<WasmRelocation>(relocsStart, relocsNext));
  }
}

void ObjFile::parse(bool ignoreComdats) {
  // Parse a memory buffer as a wasm file.
  LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n");
  std::unique_ptr<Binary> bin = CHECK(createBinary(mb), toString(this));

  auto *obj = dyn_cast<WasmObjectFile>(bin.get());
  if (!obj)
    fatal(toString(this) + ": not a wasm file");
  if (!obj->isRelocatableObject())
    fatal(toString(this) + ": not a relocatable wasm file");

  bin.release();
  wasmObj.reset(obj);

  // Build up a map of function indices to table indices for use when
  // verifying the existing table index relocations
  uint32_t totalFunctions =
      wasmObj->getNumImportedFunctions() + wasmObj->functions().size();
  tableEntriesRel.resize(totalFunctions);
  tableEntries.resize(totalFunctions);
  for (const WasmElemSegment &seg : wasmObj->elements()) {
    int64_t offset;
    if (seg.Offset.Opcode == WASM_OPCODE_I32_CONST)
      offset = seg.Offset.Value.Int32;
    else if (seg.Offset.Opcode == WASM_OPCODE_I64_CONST)
      offset = seg.Offset.Value.Int64;
    else
      fatal(toString(this) + ": invalid table elements");
    for (size_t index = 0; index < seg.Functions.size(); index++) {
      auto functionIndex = seg.Functions[index];
      tableEntriesRel[functionIndex] = index;
      tableEntries[functionIndex] = offset + index;
    }
  }

  uint32_t sectionIndex = 0;

  // Bool for each symbol, true if called directly.  This allows us to implement
  // a weaker form of signature checking where undefined functions that are not
  // called directly (i.e. only address taken) don't have to match the defined
  // function's signature.  We cannot do this for directly called functions
  // because those signatures are checked at validation times.
  // See https://bugs.llvm.org/show_bug.cgi?id=40412
  std::vector<bool> isCalledDirectly(wasmObj->getNumberOfSymbols(), false);
  for (const SectionRef &sec : wasmObj->sections()) {
    const WasmSection &section = wasmObj->getWasmSection(sec);
    // Wasm objects can have at most one code and one data section.
    if (section.Type == WASM_SEC_CODE) {
      assert(!codeSection);
      codeSection = &section;
    } else if (section.Type == WASM_SEC_DATA) {
      assert(!dataSection);
      dataSection = &section;
    } else if (section.Type == WASM_SEC_CUSTOM) {
      customSections.emplace_back(make<InputSection>(section, this));
      customSections.back()->setRelocations(section.Relocations);
      customSectionsByIndex[sectionIndex] = customSections.back();
    }
    sectionIndex++;
    // Scans relocations to determine if a function symbol is called directly.
    for (const WasmRelocation &reloc : section.Relocations)
      if (reloc.Type == R_WASM_FUNCTION_INDEX_LEB)
        isCalledDirectly[reloc.Index] = true;
  }

  typeMap.resize(getWasmObj()->types().size());
  typeIsUsed.resize(getWasmObj()->types().size(), false);

  ArrayRef<StringRef> comdats = wasmObj->linkingData().Comdats;
  for (StringRef comdat : comdats) {
    bool isNew = ignoreComdats || symtab->addComdat(comdat);
    keptComdats.push_back(isNew);
  }

  // Populate `Segments`.
  for (const WasmSegment &s : wasmObj->dataSegments()) {
    auto* seg = make<InputSegment>(s, this);
    seg->discarded = isExcludedByComdat(seg);
    segments.emplace_back(seg);
  }
  setRelocs(segments, dataSection);

  // Populate `Functions`.
  ArrayRef<WasmFunction> funcs = wasmObj->functions();
  ArrayRef<uint32_t> funcTypes = wasmObj->functionTypes();
  ArrayRef<WasmSignature> types = wasmObj->types();
  functions.reserve(funcs.size());

  for (size_t i = 0, e = funcs.size(); i != e; ++i) {
    auto* func = make<InputFunction>(types[funcTypes[i]], &funcs[i], this);
    func->discarded = isExcludedByComdat(func);
    functions.emplace_back(func);
  }
  setRelocs(functions, codeSection);

  // Populate `Globals`.
  for (const WasmGlobal &g : wasmObj->globals())
    globals.emplace_back(make<InputGlobal>(g, this));

  // Populate `Events`.
  for (const WasmEvent &e : wasmObj->events())
    events.emplace_back(make<InputEvent>(types[e.Type.SigIndex], e, this));

  // Populate `Symbols` based on the symbols in the object.
  symbols.reserve(wasmObj->getNumberOfSymbols());
  for (const SymbolRef &sym : wasmObj->symbols()) {
    const WasmSymbol &wasmSym = wasmObj->getWasmSymbol(sym.getRawDataRefImpl());
    if (wasmSym.isDefined()) {
      // createDefined may fail if the symbol is comdat excluded in which case
      // we fall back to creating an undefined symbol
      if (Symbol *d = createDefined(wasmSym)) {
        symbols.push_back(d);
        continue;
      }
    }
    size_t idx = symbols.size();
    symbols.push_back(createUndefined(wasmSym, isCalledDirectly[idx]));
  }
}

bool ObjFile::isExcludedByComdat(InputChunk *chunk) const {
  uint32_t c = chunk->getComdat();
  if (c == UINT32_MAX)
    return false;
  return !keptComdats[c];
}

FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t index) const {
  return cast<FunctionSymbol>(symbols[index]);
}

GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t index) const {
  return cast<GlobalSymbol>(symbols[index]);
}

EventSymbol *ObjFile::getEventSymbol(uint32_t index) const {
  return cast<EventSymbol>(symbols[index]);
}

SectionSymbol *ObjFile::getSectionSymbol(uint32_t index) const {
  return cast<SectionSymbol>(symbols[index]);
}

DataSymbol *ObjFile::getDataSymbol(uint32_t index) const {
  return cast<DataSymbol>(symbols[index]);
}

Symbol *ObjFile::createDefined(const WasmSymbol &sym) {
  StringRef name = sym.Info.Name;
  uint32_t flags = sym.Info.Flags;

  switch (sym.Info.Kind) {
  case WASM_SYMBOL_TYPE_FUNCTION: {
    InputFunction *func =
        functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()];
    if (sym.isBindingLocal())
      return make<DefinedFunction>(name, flags, this, func);
    if (func->discarded)
      return nullptr;
    return symtab->addDefinedFunction(name, flags, this, func);
  }
  case WASM_SYMBOL_TYPE_DATA: {
    InputSegment *seg = segments[sym.Info.DataRef.Segment];
    auto offset = sym.Info.DataRef.Offset;
    auto size = sym.Info.DataRef.Size;
    if (sym.isBindingLocal())
      return make<DefinedData>(name, flags, this, seg, offset, size);
    if (seg->discarded)
      return nullptr;
    return symtab->addDefinedData(name, flags, this, seg, offset, size);
  }
  case WASM_SYMBOL_TYPE_GLOBAL: {
    InputGlobal *global =
        globals[sym.Info.ElementIndex - wasmObj->getNumImportedGlobals()];
    if (sym.isBindingLocal())
      return make<DefinedGlobal>(name, flags, this, global);
    return symtab->addDefinedGlobal(name, flags, this, global);
  }
  case WASM_SYMBOL_TYPE_SECTION: {
    InputSection *section = customSectionsByIndex[sym.Info.ElementIndex];
    assert(sym.isBindingLocal());
    return make<SectionSymbol>(flags, section, this);
  }
  case WASM_SYMBOL_TYPE_EVENT: {
    InputEvent *event =
        events[sym.Info.ElementIndex - wasmObj->getNumImportedEvents()];
    if (sym.isBindingLocal())
      return make<DefinedEvent>(name, flags, this, event);
    return symtab->addDefinedEvent(name, flags, this, event);
  }
  }
  llvm_unreachable("unknown symbol kind");
}

Symbol *ObjFile::createUndefined(const WasmSymbol &sym, bool isCalledDirectly) {
  StringRef name = sym.Info.Name;
  uint32_t flags = sym.Info.Flags | WASM_SYMBOL_UNDEFINED;

  switch (sym.Info.Kind) {
  case WASM_SYMBOL_TYPE_FUNCTION:
    if (sym.isBindingLocal())
      return make<UndefinedFunction>(name, sym.Info.ImportName,
                                     sym.Info.ImportModule, flags, this,
                                     sym.Signature, isCalledDirectly);
    return symtab->addUndefinedFunction(name, sym.Info.ImportName,
                                        sym.Info.ImportModule, flags, this,
                                        sym.Signature, isCalledDirectly);
  case WASM_SYMBOL_TYPE_DATA:
    if (sym.isBindingLocal())
      return make<UndefinedData>(name, flags, this);
    return symtab->addUndefinedData(name, flags, this);
  case WASM_SYMBOL_TYPE_GLOBAL:
    if (sym.isBindingLocal())
      return make<UndefinedGlobal>(name, sym.Info.ImportName,
                                   sym.Info.ImportModule, flags, this,
                                   sym.GlobalType);
    return symtab->addUndefinedGlobal(name, sym.Info.ImportName,
                                      sym.Info.ImportModule, flags, this,
                                      sym.GlobalType);
  case WASM_SYMBOL_TYPE_SECTION:
    llvm_unreachable("section symbols cannot be undefined");
  }
  llvm_unreachable("unknown symbol kind");
}

void ArchiveFile::parse() {
  // Parse a MemoryBufferRef as an archive file.
  LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n");
  file = CHECK(Archive::create(mb), toString(this));

  // Read the symbol table to construct Lazy symbols.
  int count = 0;
  for (const Archive::Symbol &sym : file->symbols()) {
    symtab->addLazy(this, &sym);
    ++count;
  }
  LLVM_DEBUG(dbgs() << "Read " << count << " symbols\n");
}

void ArchiveFile::addMember(const Archive::Symbol *sym) {
  const Archive::Child &c =
      CHECK(sym->getMember(),
            "could not get the member for symbol " + sym->getName());

  // Don't try to load the same member twice (this can happen when members
  // mutually reference each other).
  if (!seen.insert(c.getChildOffset()).second)
    return;

  LLVM_DEBUG(dbgs() << "loading lazy: " << sym->getName() << "\n");
  LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n");

  MemoryBufferRef mb =
      CHECK(c.getMemoryBufferRef(),
            "could not get the buffer for the member defining symbol " +
                sym->getName());

  InputFile *obj = createObjectFile(mb, getName());
  symtab->addFile(obj);
}

static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
  switch (gvVisibility) {
  case GlobalValue::DefaultVisibility:
    return WASM_SYMBOL_VISIBILITY_DEFAULT;
  case GlobalValue::HiddenVisibility:
  case GlobalValue::ProtectedVisibility:
    return WASM_SYMBOL_VISIBILITY_HIDDEN;
  }
  llvm_unreachable("unknown visibility");
}

static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
                                   const lto::InputFile::Symbol &objSym,
                                   BitcodeFile &f) {
  StringRef name = saver.save(objSym.getName());

  uint32_t flags = objSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0;
  flags |= mapVisibility(objSym.getVisibility());

  int c = objSym.getComdatIndex();
  bool excludedByComdat = c != -1 && !keptComdats[c];

  if (objSym.isUndefined() || excludedByComdat) {
    flags |= WASM_SYMBOL_UNDEFINED;
    if (objSym.isExecutable())
      return symtab->addUndefinedFunction(name, None, None, flags, &f, nullptr,
                                          true);
    return symtab->addUndefinedData(name, flags, &f);
  }

  if (objSym.isExecutable())
    return symtab->addDefinedFunction(name, flags, &f, nullptr);
  return symtab->addDefinedData(name, flags, &f, nullptr, 0, 0);
}

bool BitcodeFile::doneLTO = false;

void BitcodeFile::parse() {
  if (doneLTO) {
    error(toString(this) + ": attempt to add bitcode file after LTO.");
    return;
  }

  obj = check(lto::InputFile::create(MemoryBufferRef(
      mb.getBuffer(), saver.save(archiveName + mb.getBufferIdentifier()))));
  Triple t(obj->getTargetTriple());
  if (!t.isWasm()) {
    error(toString(this) + ": machine type must be wasm32 or wasm64");
    return;
  }
  bool is64 = t.getArch() == Triple::wasm64;
  if (config->is64.hasValue() && *config->is64 != is64) {
    error(toString(this) + ": machine type for all bitcode files must match");
    return;
  }
  config->is64 = is64;
  std::vector<bool> keptComdats;
  for (StringRef s : obj->getComdatTable())
    keptComdats.push_back(symtab->addComdat(s));

  for (const lto::InputFile::Symbol &objSym : obj->symbols())
    symbols.push_back(createBitcodeSymbol(keptComdats, objSym, *this));
}

} // namespace wasm
} // namespace lld