InputFiles.cpp
21.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Config.h"
#include "InputChunks.h"
#include "InputEvent.h"
#include "InputGlobal.h"
#include "SymbolTable.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Reproduce.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/Wasm.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "lld"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::wasm;
namespace lld {
// Returns a string in the format of "foo.o" or "foo.a(bar.o)".
std::string toString(const wasm::InputFile *file) {
if (!file)
return "<internal>";
if (file->archiveName.empty())
return std::string(file->getName());
return (file->archiveName + "(" + file->getName() + ")").str();
}
namespace wasm {
std::unique_ptr<llvm::TarWriter> tar;
Optional<MemoryBufferRef> readFile(StringRef path) {
log("Loading: " + path);
auto mbOrErr = MemoryBuffer::getFile(path);
if (auto ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return None;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return mbref;
}
InputFile *createObjectFile(MemoryBufferRef mb,
StringRef archiveName) {
file_magic magic = identify_magic(mb.getBuffer());
if (magic == file_magic::wasm_object) {
std::unique_ptr<Binary> bin =
CHECK(createBinary(mb), mb.getBufferIdentifier());
auto *obj = cast<WasmObjectFile>(bin.get());
if (obj->isSharedObject())
return make<SharedFile>(mb);
return make<ObjFile>(mb, archiveName);
}
if (magic == file_magic::bitcode)
return make<BitcodeFile>(mb, archiveName);
fatal("unknown file type: " + mb.getBufferIdentifier());
}
void ObjFile::dumpInfo() const {
log("info for: " + toString(this) +
"\n Symbols : " + Twine(symbols.size()) +
"\n Function Imports : " + Twine(wasmObj->getNumImportedFunctions()) +
"\n Global Imports : " + Twine(wasmObj->getNumImportedGlobals()) +
"\n Event Imports : " + Twine(wasmObj->getNumImportedEvents()));
}
// Relocations contain either symbol or type indices. This function takes a
// relocation and returns relocated index (i.e. translates from the input
// symbol/type space to the output symbol/type space).
uint32_t ObjFile::calcNewIndex(const WasmRelocation &reloc) const {
if (reloc.Type == R_WASM_TYPE_INDEX_LEB) {
assert(typeIsUsed[reloc.Index]);
return typeMap[reloc.Index];
}
const Symbol *sym = symbols[reloc.Index];
if (auto *ss = dyn_cast<SectionSymbol>(sym))
sym = ss->getOutputSectionSymbol();
return sym->getOutputSymbolIndex();
}
// Relocations can contain addend for combined sections. This function takes a
// relocation and returns updated addend by offset in the output section.
uint64_t ObjFile::calcNewAddend(const WasmRelocation &reloc) const {
switch (reloc.Type) {
case R_WASM_MEMORY_ADDR_LEB:
case R_WASM_MEMORY_ADDR_LEB64:
case R_WASM_MEMORY_ADDR_SLEB64:
case R_WASM_MEMORY_ADDR_SLEB:
case R_WASM_MEMORY_ADDR_REL_SLEB:
case R_WASM_MEMORY_ADDR_REL_SLEB64:
case R_WASM_MEMORY_ADDR_I32:
case R_WASM_MEMORY_ADDR_I64:
case R_WASM_FUNCTION_OFFSET_I32:
return reloc.Addend;
case R_WASM_SECTION_OFFSET_I32:
return getSectionSymbol(reloc.Index)->section->outputOffset + reloc.Addend;
default:
llvm_unreachable("unexpected relocation type");
}
}
// Calculate the value we expect to find at the relocation location.
// This is used as a sanity check before applying a relocation to a given
// location. It is useful for catching bugs in the compiler and linker.
uint64_t ObjFile::calcExpectedValue(const WasmRelocation &reloc) const {
switch (reloc.Type) {
case R_WASM_TABLE_INDEX_I32:
case R_WASM_TABLE_INDEX_I64:
case R_WASM_TABLE_INDEX_SLEB:
case R_WASM_TABLE_INDEX_SLEB64: {
const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
return tableEntries[sym.Info.ElementIndex];
}
case R_WASM_TABLE_INDEX_REL_SLEB: {
const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
return tableEntriesRel[sym.Info.ElementIndex];
}
case R_WASM_MEMORY_ADDR_LEB:
case R_WASM_MEMORY_ADDR_LEB64:
case R_WASM_MEMORY_ADDR_SLEB:
case R_WASM_MEMORY_ADDR_SLEB64:
case R_WASM_MEMORY_ADDR_REL_SLEB:
case R_WASM_MEMORY_ADDR_REL_SLEB64:
case R_WASM_MEMORY_ADDR_I32:
case R_WASM_MEMORY_ADDR_I64: {
const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
if (sym.isUndefined())
return 0;
const WasmSegment &segment =
wasmObj->dataSegments()[sym.Info.DataRef.Segment];
if (segment.Data.Offset.Opcode == WASM_OPCODE_I32_CONST)
return segment.Data.Offset.Value.Int32 + sym.Info.DataRef.Offset +
reloc.Addend;
else if (segment.Data.Offset.Opcode == WASM_OPCODE_I64_CONST)
return segment.Data.Offset.Value.Int64 + sym.Info.DataRef.Offset +
reloc.Addend;
else
llvm_unreachable("unknown init expr opcode");
}
case R_WASM_FUNCTION_OFFSET_I32: {
const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
InputFunction *f =
functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()];
return f->getFunctionInputOffset() + f->getFunctionCodeOffset() +
reloc.Addend;
}
case R_WASM_SECTION_OFFSET_I32:
return reloc.Addend;
case R_WASM_TYPE_INDEX_LEB:
return reloc.Index;
case R_WASM_FUNCTION_INDEX_LEB:
case R_WASM_GLOBAL_INDEX_LEB:
case R_WASM_GLOBAL_INDEX_I32:
case R_WASM_EVENT_INDEX_LEB: {
const WasmSymbol &sym = wasmObj->syms()[reloc.Index];
return sym.Info.ElementIndex;
}
default:
llvm_unreachable("unknown relocation type");
}
}
// Translate from the relocation's index into the final linked output value.
uint64_t ObjFile::calcNewValue(const WasmRelocation &reloc) const {
const Symbol* sym = nullptr;
if (reloc.Type != R_WASM_TYPE_INDEX_LEB) {
sym = symbols[reloc.Index];
// We can end up with relocations against non-live symbols. For example
// in debug sections. We return reloc.Addend because always returning zero
// causes the generation of spurious range-list terminators in the
// .debug_ranges section.
if ((isa<FunctionSymbol>(sym) || isa<DataSymbol>(sym)) && !sym->isLive())
return reloc.Addend;
}
switch (reloc.Type) {
case R_WASM_TABLE_INDEX_I32:
case R_WASM_TABLE_INDEX_I64:
case R_WASM_TABLE_INDEX_SLEB:
case R_WASM_TABLE_INDEX_SLEB64:
case R_WASM_TABLE_INDEX_REL_SLEB: {
if (!getFunctionSymbol(reloc.Index)->hasTableIndex())
return 0;
uint32_t index = getFunctionSymbol(reloc.Index)->getTableIndex();
if (reloc.Type == R_WASM_TABLE_INDEX_REL_SLEB)
index -= config->tableBase;
return index;
}
case R_WASM_MEMORY_ADDR_LEB:
case R_WASM_MEMORY_ADDR_LEB64:
case R_WASM_MEMORY_ADDR_SLEB:
case R_WASM_MEMORY_ADDR_SLEB64:
case R_WASM_MEMORY_ADDR_REL_SLEB:
case R_WASM_MEMORY_ADDR_REL_SLEB64:
case R_WASM_MEMORY_ADDR_I32:
case R_WASM_MEMORY_ADDR_I64:
if (isa<UndefinedData>(sym) || sym->isUndefWeak())
return 0;
return cast<DefinedData>(sym)->getVirtualAddress() + reloc.Addend;
case R_WASM_TYPE_INDEX_LEB:
return typeMap[reloc.Index];
case R_WASM_FUNCTION_INDEX_LEB:
return getFunctionSymbol(reloc.Index)->getFunctionIndex();
case R_WASM_GLOBAL_INDEX_LEB:
case R_WASM_GLOBAL_INDEX_I32:
if (auto gs = dyn_cast<GlobalSymbol>(sym))
return gs->getGlobalIndex();
return sym->getGOTIndex();
case R_WASM_EVENT_INDEX_LEB:
return getEventSymbol(reloc.Index)->getEventIndex();
case R_WASM_FUNCTION_OFFSET_I32: {
auto *f = cast<DefinedFunction>(sym);
return f->function->outputOffset +
(f->function->getFunctionCodeOffset() + reloc.Addend);
}
case R_WASM_SECTION_OFFSET_I32:
return getSectionSymbol(reloc.Index)->section->outputOffset + reloc.Addend;
default:
llvm_unreachable("unknown relocation type");
}
}
template <class T>
static void setRelocs(const std::vector<T *> &chunks,
const WasmSection *section) {
if (!section)
return;
ArrayRef<WasmRelocation> relocs = section->Relocations;
assert(llvm::is_sorted(
relocs, [](const WasmRelocation &r1, const WasmRelocation &r2) {
return r1.Offset < r2.Offset;
}));
assert(llvm::is_sorted(chunks, [](InputChunk *c1, InputChunk *c2) {
return c1->getInputSectionOffset() < c2->getInputSectionOffset();
}));
auto relocsNext = relocs.begin();
auto relocsEnd = relocs.end();
auto relocLess = [](const WasmRelocation &r, uint32_t val) {
return r.Offset < val;
};
for (InputChunk *c : chunks) {
auto relocsStart = std::lower_bound(relocsNext, relocsEnd,
c->getInputSectionOffset(), relocLess);
relocsNext = std::lower_bound(
relocsStart, relocsEnd, c->getInputSectionOffset() + c->getInputSize(),
relocLess);
c->setRelocations(ArrayRef<WasmRelocation>(relocsStart, relocsNext));
}
}
void ObjFile::parse(bool ignoreComdats) {
// Parse a memory buffer as a wasm file.
LLVM_DEBUG(dbgs() << "Parsing object: " << toString(this) << "\n");
std::unique_ptr<Binary> bin = CHECK(createBinary(mb), toString(this));
auto *obj = dyn_cast<WasmObjectFile>(bin.get());
if (!obj)
fatal(toString(this) + ": not a wasm file");
if (!obj->isRelocatableObject())
fatal(toString(this) + ": not a relocatable wasm file");
bin.release();
wasmObj.reset(obj);
// Build up a map of function indices to table indices for use when
// verifying the existing table index relocations
uint32_t totalFunctions =
wasmObj->getNumImportedFunctions() + wasmObj->functions().size();
tableEntriesRel.resize(totalFunctions);
tableEntries.resize(totalFunctions);
for (const WasmElemSegment &seg : wasmObj->elements()) {
int64_t offset;
if (seg.Offset.Opcode == WASM_OPCODE_I32_CONST)
offset = seg.Offset.Value.Int32;
else if (seg.Offset.Opcode == WASM_OPCODE_I64_CONST)
offset = seg.Offset.Value.Int64;
else
fatal(toString(this) + ": invalid table elements");
for (size_t index = 0; index < seg.Functions.size(); index++) {
auto functionIndex = seg.Functions[index];
tableEntriesRel[functionIndex] = index;
tableEntries[functionIndex] = offset + index;
}
}
uint32_t sectionIndex = 0;
// Bool for each symbol, true if called directly. This allows us to implement
// a weaker form of signature checking where undefined functions that are not
// called directly (i.e. only address taken) don't have to match the defined
// function's signature. We cannot do this for directly called functions
// because those signatures are checked at validation times.
// See https://bugs.llvm.org/show_bug.cgi?id=40412
std::vector<bool> isCalledDirectly(wasmObj->getNumberOfSymbols(), false);
for (const SectionRef &sec : wasmObj->sections()) {
const WasmSection §ion = wasmObj->getWasmSection(sec);
// Wasm objects can have at most one code and one data section.
if (section.Type == WASM_SEC_CODE) {
assert(!codeSection);
codeSection = §ion;
} else if (section.Type == WASM_SEC_DATA) {
assert(!dataSection);
dataSection = §ion;
} else if (section.Type == WASM_SEC_CUSTOM) {
customSections.emplace_back(make<InputSection>(section, this));
customSections.back()->setRelocations(section.Relocations);
customSectionsByIndex[sectionIndex] = customSections.back();
}
sectionIndex++;
// Scans relocations to determine if a function symbol is called directly.
for (const WasmRelocation &reloc : section.Relocations)
if (reloc.Type == R_WASM_FUNCTION_INDEX_LEB)
isCalledDirectly[reloc.Index] = true;
}
typeMap.resize(getWasmObj()->types().size());
typeIsUsed.resize(getWasmObj()->types().size(), false);
ArrayRef<StringRef> comdats = wasmObj->linkingData().Comdats;
for (StringRef comdat : comdats) {
bool isNew = ignoreComdats || symtab->addComdat(comdat);
keptComdats.push_back(isNew);
}
// Populate `Segments`.
for (const WasmSegment &s : wasmObj->dataSegments()) {
auto* seg = make<InputSegment>(s, this);
seg->discarded = isExcludedByComdat(seg);
segments.emplace_back(seg);
}
setRelocs(segments, dataSection);
// Populate `Functions`.
ArrayRef<WasmFunction> funcs = wasmObj->functions();
ArrayRef<uint32_t> funcTypes = wasmObj->functionTypes();
ArrayRef<WasmSignature> types = wasmObj->types();
functions.reserve(funcs.size());
for (size_t i = 0, e = funcs.size(); i != e; ++i) {
auto* func = make<InputFunction>(types[funcTypes[i]], &funcs[i], this);
func->discarded = isExcludedByComdat(func);
functions.emplace_back(func);
}
setRelocs(functions, codeSection);
// Populate `Globals`.
for (const WasmGlobal &g : wasmObj->globals())
globals.emplace_back(make<InputGlobal>(g, this));
// Populate `Events`.
for (const WasmEvent &e : wasmObj->events())
events.emplace_back(make<InputEvent>(types[e.Type.SigIndex], e, this));
// Populate `Symbols` based on the symbols in the object.
symbols.reserve(wasmObj->getNumberOfSymbols());
for (const SymbolRef &sym : wasmObj->symbols()) {
const WasmSymbol &wasmSym = wasmObj->getWasmSymbol(sym.getRawDataRefImpl());
if (wasmSym.isDefined()) {
// createDefined may fail if the symbol is comdat excluded in which case
// we fall back to creating an undefined symbol
if (Symbol *d = createDefined(wasmSym)) {
symbols.push_back(d);
continue;
}
}
size_t idx = symbols.size();
symbols.push_back(createUndefined(wasmSym, isCalledDirectly[idx]));
}
}
bool ObjFile::isExcludedByComdat(InputChunk *chunk) const {
uint32_t c = chunk->getComdat();
if (c == UINT32_MAX)
return false;
return !keptComdats[c];
}
FunctionSymbol *ObjFile::getFunctionSymbol(uint32_t index) const {
return cast<FunctionSymbol>(symbols[index]);
}
GlobalSymbol *ObjFile::getGlobalSymbol(uint32_t index) const {
return cast<GlobalSymbol>(symbols[index]);
}
EventSymbol *ObjFile::getEventSymbol(uint32_t index) const {
return cast<EventSymbol>(symbols[index]);
}
SectionSymbol *ObjFile::getSectionSymbol(uint32_t index) const {
return cast<SectionSymbol>(symbols[index]);
}
DataSymbol *ObjFile::getDataSymbol(uint32_t index) const {
return cast<DataSymbol>(symbols[index]);
}
Symbol *ObjFile::createDefined(const WasmSymbol &sym) {
StringRef name = sym.Info.Name;
uint32_t flags = sym.Info.Flags;
switch (sym.Info.Kind) {
case WASM_SYMBOL_TYPE_FUNCTION: {
InputFunction *func =
functions[sym.Info.ElementIndex - wasmObj->getNumImportedFunctions()];
if (sym.isBindingLocal())
return make<DefinedFunction>(name, flags, this, func);
if (func->discarded)
return nullptr;
return symtab->addDefinedFunction(name, flags, this, func);
}
case WASM_SYMBOL_TYPE_DATA: {
InputSegment *seg = segments[sym.Info.DataRef.Segment];
auto offset = sym.Info.DataRef.Offset;
auto size = sym.Info.DataRef.Size;
if (sym.isBindingLocal())
return make<DefinedData>(name, flags, this, seg, offset, size);
if (seg->discarded)
return nullptr;
return symtab->addDefinedData(name, flags, this, seg, offset, size);
}
case WASM_SYMBOL_TYPE_GLOBAL: {
InputGlobal *global =
globals[sym.Info.ElementIndex - wasmObj->getNumImportedGlobals()];
if (sym.isBindingLocal())
return make<DefinedGlobal>(name, flags, this, global);
return symtab->addDefinedGlobal(name, flags, this, global);
}
case WASM_SYMBOL_TYPE_SECTION: {
InputSection *section = customSectionsByIndex[sym.Info.ElementIndex];
assert(sym.isBindingLocal());
return make<SectionSymbol>(flags, section, this);
}
case WASM_SYMBOL_TYPE_EVENT: {
InputEvent *event =
events[sym.Info.ElementIndex - wasmObj->getNumImportedEvents()];
if (sym.isBindingLocal())
return make<DefinedEvent>(name, flags, this, event);
return symtab->addDefinedEvent(name, flags, this, event);
}
}
llvm_unreachable("unknown symbol kind");
}
Symbol *ObjFile::createUndefined(const WasmSymbol &sym, bool isCalledDirectly) {
StringRef name = sym.Info.Name;
uint32_t flags = sym.Info.Flags | WASM_SYMBOL_UNDEFINED;
switch (sym.Info.Kind) {
case WASM_SYMBOL_TYPE_FUNCTION:
if (sym.isBindingLocal())
return make<UndefinedFunction>(name, sym.Info.ImportName,
sym.Info.ImportModule, flags, this,
sym.Signature, isCalledDirectly);
return symtab->addUndefinedFunction(name, sym.Info.ImportName,
sym.Info.ImportModule, flags, this,
sym.Signature, isCalledDirectly);
case WASM_SYMBOL_TYPE_DATA:
if (sym.isBindingLocal())
return make<UndefinedData>(name, flags, this);
return symtab->addUndefinedData(name, flags, this);
case WASM_SYMBOL_TYPE_GLOBAL:
if (sym.isBindingLocal())
return make<UndefinedGlobal>(name, sym.Info.ImportName,
sym.Info.ImportModule, flags, this,
sym.GlobalType);
return symtab->addUndefinedGlobal(name, sym.Info.ImportName,
sym.Info.ImportModule, flags, this,
sym.GlobalType);
case WASM_SYMBOL_TYPE_SECTION:
llvm_unreachable("section symbols cannot be undefined");
}
llvm_unreachable("unknown symbol kind");
}
void ArchiveFile::parse() {
// Parse a MemoryBufferRef as an archive file.
LLVM_DEBUG(dbgs() << "Parsing library: " << toString(this) << "\n");
file = CHECK(Archive::create(mb), toString(this));
// Read the symbol table to construct Lazy symbols.
int count = 0;
for (const Archive::Symbol &sym : file->symbols()) {
symtab->addLazy(this, &sym);
++count;
}
LLVM_DEBUG(dbgs() << "Read " << count << " symbols\n");
}
void ArchiveFile::addMember(const Archive::Symbol *sym) {
const Archive::Child &c =
CHECK(sym->getMember(),
"could not get the member for symbol " + sym->getName());
// Don't try to load the same member twice (this can happen when members
// mutually reference each other).
if (!seen.insert(c.getChildOffset()).second)
return;
LLVM_DEBUG(dbgs() << "loading lazy: " << sym->getName() << "\n");
LLVM_DEBUG(dbgs() << "from archive: " << toString(this) << "\n");
MemoryBufferRef mb =
CHECK(c.getMemoryBufferRef(),
"could not get the buffer for the member defining symbol " +
sym->getName());
InputFile *obj = createObjectFile(mb, getName());
symtab->addFile(obj);
}
static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
switch (gvVisibility) {
case GlobalValue::DefaultVisibility:
return WASM_SYMBOL_VISIBILITY_DEFAULT;
case GlobalValue::HiddenVisibility:
case GlobalValue::ProtectedVisibility:
return WASM_SYMBOL_VISIBILITY_HIDDEN;
}
llvm_unreachable("unknown visibility");
}
static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
const lto::InputFile::Symbol &objSym,
BitcodeFile &f) {
StringRef name = saver.save(objSym.getName());
uint32_t flags = objSym.isWeak() ? WASM_SYMBOL_BINDING_WEAK : 0;
flags |= mapVisibility(objSym.getVisibility());
int c = objSym.getComdatIndex();
bool excludedByComdat = c != -1 && !keptComdats[c];
if (objSym.isUndefined() || excludedByComdat) {
flags |= WASM_SYMBOL_UNDEFINED;
if (objSym.isExecutable())
return symtab->addUndefinedFunction(name, None, None, flags, &f, nullptr,
true);
return symtab->addUndefinedData(name, flags, &f);
}
if (objSym.isExecutable())
return symtab->addDefinedFunction(name, flags, &f, nullptr);
return symtab->addDefinedData(name, flags, &f, nullptr, 0, 0);
}
bool BitcodeFile::doneLTO = false;
void BitcodeFile::parse() {
if (doneLTO) {
error(toString(this) + ": attempt to add bitcode file after LTO.");
return;
}
obj = check(lto::InputFile::create(MemoryBufferRef(
mb.getBuffer(), saver.save(archiveName + mb.getBufferIdentifier()))));
Triple t(obj->getTargetTriple());
if (!t.isWasm()) {
error(toString(this) + ": machine type must be wasm32 or wasm64");
return;
}
bool is64 = t.getArch() == Triple::wasm64;
if (config->is64.hasValue() && *config->is64 != is64) {
error(toString(this) + ": machine type for all bitcode files must match");
return;
}
config->is64 = is64;
std::vector<bool> keptComdats;
for (StringRef s : obj->getComdatTable())
keptComdats.push_back(symtab->addComdat(s));
for (const lto::InputFile::Symbol &objSym : obj->symbols())
symbols.push_back(createBitcodeSymbol(keptComdats, objSym, *this));
}
} // namespace wasm
} // namespace lld