SyntheticSections.h 15.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
//===- SyntheticSections.h -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLD_MACHO_SYNTHETIC_SECTIONS_H
#define LLD_MACHO_SYNTHETIC_SECTIONS_H

#include "Config.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "Target.h"

#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/raw_ostream.h"

namespace lld {
namespace macho {

namespace section_names {

constexpr const char pageZero[] = "__pagezero";
constexpr const char common[] = "__common";
constexpr const char header[] = "__mach_header";
constexpr const char rebase[] = "__rebase";
constexpr const char binding[] = "__binding";
constexpr const char weakBinding[] = "__weak_binding";
constexpr const char lazyBinding[] = "__lazy_binding";
constexpr const char export_[] = "__export";
constexpr const char symbolTable[] = "__symbol_table";
constexpr const char indirectSymbolTable[] = "__ind_sym_tab";
constexpr const char stringTable[] = "__string_table";
constexpr const char got[] = "__got";
constexpr const char threadPtrs[] = "__thread_ptrs";
constexpr const char unwindInfo[] = "__unwind_info";
// these are not synthetic, but in service of synthetic __unwind_info
constexpr const char compactUnwind[] = "__compact_unwind";
constexpr const char ehFrame[] = "__eh_frame";

} // namespace section_names

class Defined;
class DylibSymbol;
class LoadCommand;

class SyntheticSection : public OutputSection {
public:
  SyntheticSection(const char *segname, const char *name);
  virtual ~SyntheticSection() = default;

  static bool classof(const OutputSection *sec) {
    return sec->kind() == SyntheticKind;
  }

  const StringRef segname;
};

// All sections in __LINKEDIT should inherit from this.
class LinkEditSection : public SyntheticSection {
public:
  LinkEditSection(const char *segname, const char *name)
      : SyntheticSection(segname, name) {
    align = WordSize;
  }

  // Sections in __LINKEDIT are special: their offsets are recorded in the
  // load commands like LC_DYLD_INFO_ONLY and LC_SYMTAB, instead of in section
  // headers.
  bool isHidden() const override final { return true; }

  virtual uint64_t getRawSize() const = 0;

  // codesign (or more specifically libstuff) checks that each section in
  // __LINKEDIT ends where the next one starts -- no gaps are permitted. We
  // therefore align every section's start and end points to WordSize.
  //
  // NOTE: This assumes that the extra bytes required for alignment can be
  // zero-valued bytes.
  uint64_t getSize() const override final {
    return llvm::alignTo(getRawSize(), WordSize);
  }
};

// The header of the Mach-O file, which must have a file offset of zero.
class MachHeaderSection : public SyntheticSection {
public:
  MachHeaderSection();
  void addLoadCommand(LoadCommand *);
  bool isHidden() const override { return true; }
  uint64_t getSize() const override;
  void writeTo(uint8_t *buf) const override;

private:
  std::vector<LoadCommand *> loadCommands;
  uint32_t sizeOfCmds = 0;
};

// A hidden section that exists solely for the purpose of creating the
// __PAGEZERO segment, which is used to catch null pointer dereferences.
class PageZeroSection : public SyntheticSection {
public:
  PageZeroSection();
  bool isHidden() const override { return true; }
  uint64_t getSize() const override { return PageZeroSize; }
  uint64_t getFileSize() const override { return 0; }
  void writeTo(uint8_t *buf) const override {}
};

// This is the base class for the GOT and TLVPointer sections, which are nearly
// functionally identical -- they will both be populated by dyld with addresses
// to non-lazily-loaded dylib symbols. The main difference is that the
// TLVPointerSection stores references to thread-local variables.
class NonLazyPointerSectionBase : public SyntheticSection {
public:
  NonLazyPointerSectionBase(const char *segname, const char *name);

  const llvm::SetVector<const Symbol *> &getEntries() const { return entries; }

  bool isNeeded() const override { return !entries.empty(); }

  uint64_t getSize() const override { return entries.size() * WordSize; }

  void writeTo(uint8_t *buf) const override;

  void addEntry(Symbol *sym);

private:
  llvm::SetVector<const Symbol *> entries;
};

class GotSection : public NonLazyPointerSectionBase {
public:
  GotSection()
      : NonLazyPointerSectionBase(segment_names::dataConst,
                                  section_names::got) {
    // TODO: section_64::reserved1 should be an index into the indirect symbol
    // table, which we do not currently emit
  }
};

class TlvPointerSection : public NonLazyPointerSectionBase {
public:
  TlvPointerSection()
      : NonLazyPointerSectionBase(segment_names::data,
                                  section_names::threadPtrs) {}
};

using SectionPointerUnion =
    llvm::PointerUnion<const InputSection *, const OutputSection *>;

struct Location {
  SectionPointerUnion section = nullptr;
  uint64_t offset = 0;

  Location(SectionPointerUnion section, uint64_t offset)
      : section(section), offset(offset) {}
  uint64_t getVA() const;
};

// Stores rebase opcodes, which tell dyld where absolute addresses have been
// encoded in the binary. If the binary is not loaded at its preferred address,
// dyld has to rebase these addresses by adding an offset to them.
class RebaseSection : public LinkEditSection {
public:
  RebaseSection();
  void finalizeContents();
  uint64_t getRawSize() const override { return contents.size(); }
  bool isNeeded() const override { return !locations.empty(); }
  void writeTo(uint8_t *buf) const override;

  void addEntry(SectionPointerUnion section, uint64_t offset) {
    if (config->isPic)
      locations.push_back({section, offset});
  }

private:
  std::vector<Location> locations;
  SmallVector<char, 128> contents;
};

struct BindingEntry {
  const DylibSymbol *dysym;
  int64_t addend;
  Location target;
  BindingEntry(const DylibSymbol *dysym, int64_t addend, Location target)
      : dysym(dysym), addend(addend), target(std::move(target)) {}
};

// Stores bind opcodes for telling dyld which symbols to load non-lazily.
class BindingSection : public LinkEditSection {
public:
  BindingSection();
  void finalizeContents();
  uint64_t getRawSize() const override { return contents.size(); }
  bool isNeeded() const override { return !bindings.empty(); }
  void writeTo(uint8_t *buf) const override;

  void addEntry(const DylibSymbol *dysym, SectionPointerUnion section,
                uint64_t offset, int64_t addend = 0) {
    bindings.emplace_back(dysym, addend, Location(section, offset));
  }

private:
  std::vector<BindingEntry> bindings;
  SmallVector<char, 128> contents;
};

struct WeakBindingEntry {
  const Symbol *symbol;
  int64_t addend;
  Location target;
  WeakBindingEntry(const Symbol *symbol, int64_t addend, Location target)
      : symbol(symbol), addend(addend), target(std::move(target)) {}
};

// Stores bind opcodes for telling dyld which weak symbols need coalescing.
// There are two types of entries in this section:
//
//   1) Non-weak definitions: This is a symbol definition that weak symbols in
//   other dylibs should coalesce to.
//
//   2) Weak bindings: These tell dyld that a given symbol reference should
//   coalesce to a non-weak definition if one is found. Note that unlike in the
//   entries in the BindingSection, the bindings here only refer to these
//   symbols by name, but do not specify which dylib to load them from.
class WeakBindingSection : public LinkEditSection {
public:
  WeakBindingSection();
  void finalizeContents();
  uint64_t getRawSize() const override { return contents.size(); }
  bool isNeeded() const override {
    return !bindings.empty() || !definitions.empty();
  }

  void writeTo(uint8_t *buf) const override;

  void addEntry(const Symbol *symbol, SectionPointerUnion section,
                uint64_t offset, int64_t addend = 0) {
    bindings.emplace_back(symbol, addend, Location(section, offset));
  }

  bool hasEntry() const { return !bindings.empty(); }

  void addNonWeakDefinition(const Defined *defined) {
    definitions.emplace_back(defined);
  }

  bool hasNonWeakDefinition() const { return !definitions.empty(); }

private:
  std::vector<WeakBindingEntry> bindings;
  std::vector<const Defined *> definitions;
  SmallVector<char, 128> contents;
};

// Whether a given symbol's address can only be resolved at runtime.
bool needsBinding(const Symbol *);

// Add bindings for symbols that need weak or non-lazy bindings.
void addNonLazyBindingEntries(const Symbol *, SectionPointerUnion,
                              uint64_t offset, int64_t addend = 0);

// The following sections implement lazy symbol binding -- very similar to the
// PLT mechanism in ELF.
//
// ELF's .plt section is broken up into two sections in Mach-O: StubsSection
// and StubHelperSection. Calls to functions in dylibs will end up calling into
// StubsSection, which contains indirect jumps to addresses stored in the
// LazyPointerSection (the counterpart to ELF's .plt.got).
//
// We will first describe how non-weak symbols are handled.
//
// At program start, the LazyPointerSection contains addresses that point into
// one of the entry points in the middle of the StubHelperSection. The code in
// StubHelperSection will push on the stack an offset into the
// LazyBindingSection. The push is followed by a jump to the beginning of the
// StubHelperSection (similar to PLT0), which then calls into dyld_stub_binder.
// dyld_stub_binder is a non-lazily-bound symbol, so this call looks it up in
// the GOT.
//
// The stub binder will look up the bind opcodes in the LazyBindingSection at
// the given offset. The bind opcodes will tell the binder to update the
// address in the LazyPointerSection to point to the symbol, so that subsequent
// calls don't have to redo the symbol resolution. The binder will then jump to
// the resolved symbol.
//
// With weak symbols, the situation is slightly different. Since there is no
// "weak lazy" lookup, function calls to weak symbols are always non-lazily
// bound. We emit both regular non-lazy bindings as well as weak bindings, in
// order that the weak bindings may overwrite the non-lazy bindings if an
// appropriate symbol is found at runtime. However, the bound addresses will
// still be written (non-lazily) into the LazyPointerSection.

class StubsSection : public SyntheticSection {
public:
  StubsSection();
  uint64_t getSize() const override;
  bool isNeeded() const override { return !entries.empty(); }
  void writeTo(uint8_t *buf) const override;
  const llvm::SetVector<Symbol *> &getEntries() const { return entries; }
  // Returns whether the symbol was added. Note that every stubs entry will
  // have a corresponding entry in the LazyPointerSection.
  bool addEntry(Symbol *);

private:
  llvm::SetVector<Symbol *> entries;
};

class StubHelperSection : public SyntheticSection {
public:
  StubHelperSection();
  uint64_t getSize() const override;
  bool isNeeded() const override;
  void writeTo(uint8_t *buf) const override;

  void setup();

  DylibSymbol *stubBinder = nullptr;
};

// This section contains space for just a single word, and will be used by dyld
// to cache an address to the image loader it uses. Note that unlike the other
// synthetic sections, which are OutputSections, the ImageLoaderCacheSection is
// an InputSection that gets merged into the __data OutputSection.
class ImageLoaderCacheSection : public InputSection {
public:
  ImageLoaderCacheSection();
  uint64_t getSize() const override { return WordSize; }
};

// Note that this section may also be targeted by non-lazy bindings. In
// particular, this happens when branch relocations target weak symbols.
class LazyPointerSection : public SyntheticSection {
public:
  LazyPointerSection();
  uint64_t getSize() const override;
  bool isNeeded() const override;
  void writeTo(uint8_t *buf) const override;
};

class LazyBindingSection : public LinkEditSection {
public:
  LazyBindingSection();
  void finalizeContents();
  uint64_t getRawSize() const override { return contents.size(); }
  bool isNeeded() const override { return !entries.empty(); }
  void writeTo(uint8_t *buf) const override;
  // Note that every entry here will by referenced by a corresponding entry in
  // the StubHelperSection.
  void addEntry(DylibSymbol *dysym);
  const llvm::SetVector<DylibSymbol *> &getEntries() const { return entries; }

private:
  uint32_t encode(const DylibSymbol &);

  llvm::SetVector<DylibSymbol *> entries;
  SmallVector<char, 128> contents;
  llvm::raw_svector_ostream os{contents};
};

// Adds stubs and bindings where necessary (e.g. if the symbol is a
// DylibSymbol.)
void prepareBranchTarget(Symbol *);

// Stores a trie that describes the set of exported symbols.
class ExportSection : public LinkEditSection {
public:
  ExportSection();
  void finalizeContents();
  uint64_t getRawSize() const override { return size; }
  void writeTo(uint8_t *buf) const override;

  bool hasWeakSymbol = false;

private:
  TrieBuilder trieBuilder;
  size_t size = 0;
};

// Stores the strings referenced by the symbol table.
class StringTableSection : public LinkEditSection {
public:
  StringTableSection();
  // Returns the start offset of the added string.
  uint32_t addString(StringRef);
  uint64_t getRawSize() const override { return size; }
  void writeTo(uint8_t *buf) const override;

private:
  // An n_strx value of 0 always indicates the empty string, so we must locate
  // our non-empty string values at positive offsets in the string table.
  // Therefore we insert a dummy value at position zero.
  std::vector<StringRef> strings{"\0"};
  size_t size = 1;
};

struct SymtabEntry {
  Symbol *sym;
  size_t strx;
};

class SymtabSection : public LinkEditSection {
public:
  SymtabSection(StringTableSection &);
  void finalizeContents();
  size_t getNumSymbols() const { return symbols.size(); }
  uint64_t getRawSize() const override;
  void writeTo(uint8_t *buf) const override;

private:
  StringTableSection &stringTableSection;
  std::vector<SymtabEntry> symbols;
};

// The indirect symbol table is a list of 32-bit integers that serve as indices
// into the (actual) symbol table. The indirect symbol table is a
// concatentation of several sub-arrays of indices, each sub-array belonging to
// a separate section. The starting offset of each sub-array is stored in the
// reserved1 header field of the respective section.
//
// These sub-arrays provide symbol information for sections that store
// contiguous sequences of symbol references. These references can be pointers
// (e.g. those in the GOT and TLVP sections) or assembly sequences (e.g.
// function stubs).
class IndirectSymtabSection : public LinkEditSection {
public:
  IndirectSymtabSection();
  void finalizeContents();
  uint32_t getNumSymbols() const;
  uint64_t getRawSize() const override {
    return getNumSymbols() * sizeof(uint32_t);
  }
  bool isNeeded() const override;
  void writeTo(uint8_t *buf) const override;
};

struct InStruct {
  MachHeaderSection *header = nullptr;
  RebaseSection *rebase = nullptr;
  BindingSection *binding = nullptr;
  WeakBindingSection *weakBinding = nullptr;
  LazyBindingSection *lazyBinding = nullptr;
  ExportSection *exports = nullptr;
  GotSection *got = nullptr;
  TlvPointerSection *tlvPointers = nullptr;
  LazyPointerSection *lazyPointers = nullptr;
  StubsSection *stubs = nullptr;
  StubHelperSection *stubHelper = nullptr;
  ImageLoaderCacheSection *imageLoaderCache = nullptr;
};

extern InStruct in;
extern std::vector<SyntheticSection *> syntheticSections;

} // namespace macho
} // namespace lld

#endif