RTBuilder.h
9.35 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//===-- RTBuilder.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines some C++17 template classes that are used to convert the
/// signatures of plain old C functions into a model that can be used to
/// generate MLIR calls to those functions. This can be used to autogenerate
/// tables at compiler compile-time to call runtime support code.
///
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_LOWER_RTBUILDER_H
#define FORTRAN_LOWER_RTBUILDER_H
#include "flang/Lower/ConvertType.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/StandardTypes.h"
#include "llvm/ADT/SmallVector.h"
#include <functional>
// List the runtime headers we want to be able to dissect
#include "../../runtime/io-api.h"
namespace Fortran::lower {
using TypeBuilderFunc = mlir::Type (*)(mlir::MLIRContext *);
using FuncTypeBuilderFunc = mlir::FunctionType (*)(mlir::MLIRContext *);
//===----------------------------------------------------------------------===//
// Type builder models
//===----------------------------------------------------------------------===//
/// Return a function that returns the type signature model for the type `T`
/// when provided an MLIRContext*. This allows one to translate C(++) function
/// signatures from runtime header files to MLIR signatures into a static table
/// at compile-time.
///
/// For example, when `T` is `int`, return a function that returns the MLIR
/// standard type `i32` when `sizeof(int)` is 4.
template <typename T>
static constexpr TypeBuilderFunc getModel();
template <>
constexpr TypeBuilderFunc getModel<int>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(8 * sizeof(int), context);
};
}
template <>
constexpr TypeBuilderFunc getModel<int &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
TypeBuilderFunc f{getModel<int>()};
return fir::ReferenceType::get(f(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<Fortran::runtime::io::Iostat>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(8 * sizeof(Fortran::runtime::io::Iostat),
context);
};
}
template <>
constexpr TypeBuilderFunc getModel<char *>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(mlir::IntegerType::get(8, context));
};
}
template <>
constexpr TypeBuilderFunc getModel<const char *>() {
return getModel<char *>();
}
template <>
constexpr TypeBuilderFunc getModel<const char16_t *>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(mlir::IntegerType::get(16, context));
};
}
template <>
constexpr TypeBuilderFunc getModel<const char32_t *>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(mlir::IntegerType::get(32, context));
};
}
template <>
constexpr TypeBuilderFunc getModel<void **>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::ReferenceType::get(
fir::PointerType::get(mlir::IntegerType::get(8, context)));
};
}
template <>
constexpr TypeBuilderFunc getModel<std::int64_t>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(64, context);
};
}
template <>
constexpr TypeBuilderFunc getModel<std::int64_t &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
TypeBuilderFunc f{getModel<std::int64_t>()};
return fir::ReferenceType::get(f(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<std::size_t>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(8 * sizeof(std::size_t), context);
};
}
template <>
constexpr TypeBuilderFunc getModel<Fortran::runtime::io::IoStatementState *>() {
return getModel<char *>();
}
template <>
constexpr TypeBuilderFunc getModel<double>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::FloatType::getF64(context);
};
}
template <>
constexpr TypeBuilderFunc getModel<double &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
TypeBuilderFunc f{getModel<double>()};
return fir::ReferenceType::get(f(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<float>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::FloatType::getF32(context);
};
}
template <>
constexpr TypeBuilderFunc getModel<float &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
TypeBuilderFunc f{getModel<float>()};
return fir::ReferenceType::get(f(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<bool>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::IntegerType::get(1, context);
};
}
template <>
constexpr TypeBuilderFunc getModel<bool &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
TypeBuilderFunc f{getModel<bool>()};
return fir::ReferenceType::get(f(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<const Fortran::runtime::Descriptor &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return fir::BoxType::get(mlir::NoneType::get(context));
};
}
template <>
constexpr TypeBuilderFunc getModel<const Fortran::runtime::NamelistGroup &>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
// FIXME: a namelist group must be some well-defined data structure, use a
// tuple as a proxy for the moment
return mlir::TupleType::get(context);
};
}
template <>
constexpr TypeBuilderFunc getModel<void>() {
return [](mlir::MLIRContext *context) -> mlir::Type {
return mlir::NoneType::get(context);
};
}
template <typename...>
struct RuntimeTableKey;
template <typename RT, typename... ATs>
struct RuntimeTableKey<RT(ATs...)> {
static constexpr FuncTypeBuilderFunc getTypeModel() {
return [](mlir::MLIRContext *ctxt) {
TypeBuilderFunc ret = getModel<RT>();
std::array<TypeBuilderFunc, sizeof...(ATs)> args = {getModel<ATs>()...};
mlir::Type retTy = ret(ctxt);
llvm::SmallVector<mlir::Type, sizeof...(ATs)> argTys;
for (auto f : args)
argTys.push_back(f(ctxt));
return mlir::FunctionType::get(argTys, {retTy}, ctxt);
};
}
};
//===----------------------------------------------------------------------===//
// Runtime table building (constexpr folded)
//===----------------------------------------------------------------------===//
template <char... Cs>
using RuntimeIdentifier = std::integer_sequence<char, Cs...>;
namespace details {
template <typename T, T... As, T... Bs>
static constexpr std::integer_sequence<T, As..., Bs...>
concat(std::integer_sequence<T, As...>, std::integer_sequence<T, Bs...>) {
return {};
}
template <typename T, T... As, T... Bs, typename... Cs>
static constexpr auto concat(std::integer_sequence<T, As...>,
std::integer_sequence<T, Bs...>, Cs...) {
return concat(std::integer_sequence<T, As..., Bs...>{}, Cs{}...);
}
template <typename T>
static constexpr std::integer_sequence<T> concat(std::integer_sequence<T>) {
return {};
}
template <typename T, T a>
static constexpr auto filterZero(std::integer_sequence<T, a>) {
if constexpr (a != 0) {
return std::integer_sequence<T, a>{};
} else {
return std::integer_sequence<T>{};
}
}
template <typename T, T... b>
static constexpr auto filter(std::integer_sequence<T, b...>) {
if constexpr (sizeof...(b) > 0) {
return details::concat(filterZero(std::integer_sequence<T, b>{})...);
} else {
return std::integer_sequence<T>{};
}
}
} // namespace details
template <typename...>
struct RuntimeTableEntry;
template <typename KT, char... Cs>
struct RuntimeTableEntry<RuntimeTableKey<KT>, RuntimeIdentifier<Cs...>> {
static constexpr FuncTypeBuilderFunc getTypeModel() {
return RuntimeTableKey<KT>::getTypeModel();
}
static constexpr const char name[sizeof...(Cs) + 1] = {Cs..., '\0'};
};
#undef E
#define E(L, I) (I < sizeof(L) / sizeof(*L) ? L[I] : 0)
#define QuoteKey(X) #X
#define MacroExpandKey(X) \
E(X, 0), E(X, 1), E(X, 2), E(X, 3), E(X, 4), E(X, 5), E(X, 6), E(X, 7), \
E(X, 8), E(X, 9), E(X, 10), E(X, 11), E(X, 12), E(X, 13), E(X, 14), \
E(X, 15), E(X, 16), E(X, 17), E(X, 18), E(X, 19), E(X, 20), E(X, 21), \
E(X, 22), E(X, 23), E(X, 24), E(X, 25), E(X, 26), E(X, 27), E(X, 28), \
E(X, 29), E(X, 30), E(X, 31), E(X, 32), E(X, 33), E(X, 34), E(X, 35), \
E(X, 36), E(X, 37), E(X, 38), E(X, 39), E(X, 40), E(X, 41), E(X, 42), \
E(X, 43), E(X, 44), E(X, 45), E(X, 46), E(X, 47), E(X, 48), E(X, 49)
#define ExpandKey(X) MacroExpandKey(QuoteKey(X))
#define FullSeq(X) std::integer_sequence<char, ExpandKey(X)>
#define AsSequence(X) decltype(Fortran::lower::details::filter(FullSeq(X){}))
#define mkKey(X) \
Fortran::lower::RuntimeTableEntry< \
Fortran::lower::RuntimeTableKey<decltype(X)>, AsSequence(X)>
} // namespace Fortran::lower
#endif // FORTRAN_LOWER_RTBUILDER_H