shape.cpp 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
//===-- lib/Evaluate/shape.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/shape.h"
#include "flang/Common/idioms.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/characteristics.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/intrinsics.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/message.h"
#include "flang/Semantics/symbol.h"
#include <functional>

using namespace std::placeholders; // _1, _2, &c. for std::bind()

namespace Fortran::evaluate {

bool IsImpliedShape(const Symbol &symbol0) {
  const Symbol &symbol{ResolveAssociations(symbol0)};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    if (symbol.attrs().test(semantics::Attr::PARAMETER) && details->init()) {
      return details->shape().IsImpliedShape();
    }
  }
  return false;
}

bool IsExplicitShape(const Symbol &symbol0) {
  const Symbol &symbol{ResolveAssociations(symbol0)};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    const auto &shape{details->shape()};
    return shape.Rank() == 0 || shape.IsExplicitShape(); // even if scalar
  } else {
    return false;
  }
}

Shape AsShape(const Constant<ExtentType> &arrayConstant) {
  CHECK(arrayConstant.Rank() == 1);
  Shape result;
  std::size_t dimensions{arrayConstant.size()};
  for (std::size_t j{0}; j < dimensions; ++j) {
    Scalar<ExtentType> extent{arrayConstant.values().at(j)};
    result.emplace_back(MaybeExtentExpr{ExtentExpr{extent}});
  }
  return result;
}

std::optional<Shape> AsShape(FoldingContext &context, ExtentExpr &&arrayExpr) {
  // Flatten any array expression into an array constructor if possible.
  arrayExpr = Fold(context, std::move(arrayExpr));
  if (const auto *constArray{UnwrapConstantValue<ExtentType>(arrayExpr)}) {
    return AsShape(*constArray);
  }
  if (auto *constructor{UnwrapExpr<ArrayConstructor<ExtentType>>(arrayExpr)}) {
    Shape result;
    for (auto &value : *constructor) {
      if (auto *expr{std::get_if<ExtentExpr>(&value.u)}) {
        if (expr->Rank() == 0) {
          result.emplace_back(std::move(*expr));
          continue;
        }
      }
      return std::nullopt;
    }
    return result;
  }
  return std::nullopt;
}

std::optional<ExtentExpr> AsExtentArrayExpr(const Shape &shape) {
  ArrayConstructorValues<ExtentType> values;
  for (const auto &dim : shape) {
    if (dim) {
      values.Push(common::Clone(*dim));
    } else {
      return std::nullopt;
    }
  }
  return ExtentExpr{ArrayConstructor<ExtentType>{std::move(values)}};
}

std::optional<Constant<ExtentType>> AsConstantShape(
    FoldingContext &context, const Shape &shape) {
  if (auto shapeArray{AsExtentArrayExpr(shape)}) {
    auto folded{Fold(context, std::move(*shapeArray))};
    if (auto *p{UnwrapConstantValue<ExtentType>(folded)}) {
      return std::move(*p);
    }
  }
  return std::nullopt;
}

Constant<SubscriptInteger> AsConstantShape(const ConstantSubscripts &shape) {
  using IntType = Scalar<SubscriptInteger>;
  std::vector<IntType> result;
  for (auto dim : shape) {
    result.emplace_back(dim);
  }
  return {std::move(result), ConstantSubscripts{GetRank(shape)}};
}

ConstantSubscripts AsConstantExtents(const Constant<ExtentType> &shape) {
  ConstantSubscripts result;
  for (const auto &extent : shape.values()) {
    result.push_back(extent.ToInt64());
  }
  return result;
}

std::optional<ConstantSubscripts> AsConstantExtents(
    FoldingContext &context, const Shape &shape) {
  if (auto shapeConstant{AsConstantShape(context, shape)}) {
    return AsConstantExtents(*shapeConstant);
  } else {
    return std::nullopt;
  }
}

static ExtentExpr ComputeTripCount(FoldingContext &context, ExtentExpr &&lower,
    ExtentExpr &&upper, ExtentExpr &&stride) {
  ExtentExpr strideCopy{common::Clone(stride)};
  ExtentExpr span{
      (std::move(upper) - std::move(lower) + std::move(strideCopy)) /
      std::move(stride)};
  ExtentExpr extent{
      Extremum<ExtentType>{Ordering::Greater, std::move(span), ExtentExpr{0}}};
  return Fold(context, std::move(extent));
}

ExtentExpr CountTrips(FoldingContext &context, ExtentExpr &&lower,
    ExtentExpr &&upper, ExtentExpr &&stride) {
  return ComputeTripCount(
      context, std::move(lower), std::move(upper), std::move(stride));
}

ExtentExpr CountTrips(FoldingContext &context, const ExtentExpr &lower,
    const ExtentExpr &upper, const ExtentExpr &stride) {
  return ComputeTripCount(context, common::Clone(lower), common::Clone(upper),
      common::Clone(stride));
}

MaybeExtentExpr CountTrips(FoldingContext &context, MaybeExtentExpr &&lower,
    MaybeExtentExpr &&upper, MaybeExtentExpr &&stride) {
  std::function<ExtentExpr(ExtentExpr &&, ExtentExpr &&, ExtentExpr &&)> bound{
      std::bind(ComputeTripCount, context, _1, _2, _3)};
  return common::MapOptional(
      std::move(bound), std::move(lower), std::move(upper), std::move(stride));
}

MaybeExtentExpr GetSize(Shape &&shape) {
  ExtentExpr extent{1};
  for (auto &&dim : std::move(shape)) {
    if (dim) {
      extent = std::move(extent) * std::move(*dim);
    } else {
      return std::nullopt;
    }
  }
  return extent;
}

bool ContainsAnyImpliedDoIndex(const ExtentExpr &expr) {
  struct MyVisitor : public AnyTraverse<MyVisitor> {
    using Base = AnyTraverse<MyVisitor>;
    MyVisitor() : Base{*this} {}
    using Base::operator();
    bool operator()(const ImpliedDoIndex &) { return true; }
  };
  return MyVisitor{}(expr);
}

// Determines lower bound on a dimension.  This can be other than 1 only
// for a reference to a whole array object or component. (See LBOUND, 16.9.109).
// ASSOCIATE construct entities may require tranversal of their referents.
class GetLowerBoundHelper : public Traverse<GetLowerBoundHelper, ExtentExpr> {
public:
  using Result = ExtentExpr;
  using Base = Traverse<GetLowerBoundHelper, ExtentExpr>;
  using Base::operator();
  GetLowerBoundHelper(FoldingContext &c, int d)
      : Base{*this}, context_{c}, dimension_{d} {}
  static ExtentExpr Default() { return ExtentExpr{1}; }
  static ExtentExpr Combine(Result &&, Result &&) { return Default(); }
  ExtentExpr operator()(const Symbol &);
  ExtentExpr operator()(const Component &);

private:
  FoldingContext &context_;
  int dimension_;
};

auto GetLowerBoundHelper::operator()(const Symbol &symbol0) -> Result {
  const Symbol &symbol{symbol0.GetUltimate()};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    int j{0};
    for (const auto &shapeSpec : details->shape()) {
      if (j++ == dimension_) {
        if (const auto &bound{shapeSpec.lbound().GetExplicit()}) {
          return Fold(context_, common::Clone(*bound));
        } else if (IsDescriptor(symbol)) {
          return ExtentExpr{DescriptorInquiry{NamedEntity{symbol0},
              DescriptorInquiry::Field::LowerBound, dimension_}};
        } else {
          break;
        }
      }
    }
  } else if (const auto *assoc{
                 symbol.detailsIf<semantics::AssocEntityDetails>()}) {
    return (*this)(assoc->expr());
  }
  return Default();
}

auto GetLowerBoundHelper::operator()(const Component &component) -> Result {
  if (component.base().Rank() == 0) {
    const Symbol &symbol{component.GetLastSymbol().GetUltimate()};
    if (const auto *details{
            symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
      int j{0};
      for (const auto &shapeSpec : details->shape()) {
        if (j++ == dimension_) {
          if (const auto &bound{shapeSpec.lbound().GetExplicit()}) {
            return Fold(context_, common::Clone(*bound));
          } else if (IsDescriptor(symbol)) {
            return ExtentExpr{
                DescriptorInquiry{NamedEntity{common::Clone(component)},
                    DescriptorInquiry::Field::LowerBound, dimension_}};
          } else {
            break;
          }
        }
      }
    }
  }
  return Default();
}

ExtentExpr GetLowerBound(
    FoldingContext &context, const NamedEntity &base, int dimension) {
  return GetLowerBoundHelper{context, dimension}(base);
}

Shape GetLowerBounds(FoldingContext &context, const NamedEntity &base) {
  Shape result;
  int rank{base.Rank()};
  for (int dim{0}; dim < rank; ++dim) {
    result.emplace_back(GetLowerBound(context, base, dim));
  }
  return result;
}

MaybeExtentExpr GetExtent(
    FoldingContext &context, const NamedEntity &base, int dimension) {
  CHECK(dimension >= 0);
  const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    if (IsImpliedShape(symbol)) {
      Shape shape{GetShape(context, symbol).value()};
      return std::move(shape.at(dimension));
    }
    int j{0};
    for (const auto &shapeSpec : details->shape()) {
      if (j++ == dimension) {
        if (shapeSpec.ubound().isExplicit()) {
          if (const auto &ubound{shapeSpec.ubound().GetExplicit()}) {
            if (const auto &lbound{shapeSpec.lbound().GetExplicit()}) {
              return Fold(context,
                  common::Clone(ubound.value()) -
                      common::Clone(lbound.value()) + ExtentExpr{1});
            } else {
              return Fold(context, common::Clone(ubound.value()));
            }
          }
        } else if (details->IsAssumedSize() && j == symbol.Rank()) {
          return std::nullopt;
        } else if (semantics::IsDescriptor(symbol)) {
          return ExtentExpr{DescriptorInquiry{
              NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}};
        }
      }
    }
  } else if (const auto *assoc{
                 symbol.detailsIf<semantics::AssocEntityDetails>()}) {
    if (auto shape{GetShape(context, assoc->expr())}) {
      if (dimension < static_cast<int>(shape->size())) {
        return std::move(shape->at(dimension));
      }
    }
  }
  return std::nullopt;
}

MaybeExtentExpr GetExtent(FoldingContext &context, const Subscript &subscript,
    const NamedEntity &base, int dimension) {
  return std::visit(
      common::visitors{
          [&](const Triplet &triplet) -> MaybeExtentExpr {
            MaybeExtentExpr upper{triplet.upper()};
            if (!upper) {
              upper = GetUpperBound(context, base, dimension);
            }
            MaybeExtentExpr lower{triplet.lower()};
            if (!lower) {
              lower = GetLowerBound(context, base, dimension);
            }
            return CountTrips(context, std::move(lower), std::move(upper),
                MaybeExtentExpr{triplet.stride()});
          },
          [&](const IndirectSubscriptIntegerExpr &subs) -> MaybeExtentExpr {
            if (auto shape{GetShape(context, subs.value())}) {
              if (GetRank(*shape) > 0) {
                CHECK(GetRank(*shape) == 1); // vector-valued subscript
                return std::move(shape->at(0));
              }
            }
            return std::nullopt;
          },
      },
      subscript.u);
}

MaybeExtentExpr ComputeUpperBound(
    FoldingContext &context, ExtentExpr &&lower, MaybeExtentExpr &&extent) {
  if (extent) {
    return Fold(context, std::move(*extent) - std::move(lower) + ExtentExpr{1});
  } else {
    return std::nullopt;
  }
}

MaybeExtentExpr GetUpperBound(
    FoldingContext &context, const NamedEntity &base, int dimension) {
  const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    int j{0};
    for (const auto &shapeSpec : details->shape()) {
      if (j++ == dimension) {
        if (const auto &bound{shapeSpec.ubound().GetExplicit()}) {
          return Fold(context, common::Clone(*bound));
        } else if (details->IsAssumedSize() && dimension + 1 == symbol.Rank()) {
          break;
        } else {
          return ComputeUpperBound(context,
              GetLowerBound(context, base, dimension),
              GetExtent(context, base, dimension));
        }
      }
    }
  } else if (const auto *assoc{
                 symbol.detailsIf<semantics::AssocEntityDetails>()}) {
    if (auto shape{GetShape(context, assoc->expr())}) {
      if (dimension < static_cast<int>(shape->size())) {
        return ComputeUpperBound(context,
            GetLowerBound(context, base, dimension),
            std::move(shape->at(dimension)));
      }
    }
  }
  return std::nullopt;
}

Shape GetUpperBounds(FoldingContext &context, const NamedEntity &base) {
  const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())};
  if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
    Shape result;
    int dim{0};
    for (const auto &shapeSpec : details->shape()) {
      if (const auto &bound{shapeSpec.ubound().GetExplicit()}) {
        result.emplace_back(Fold(context, common::Clone(*bound)));
      } else if (details->IsAssumedSize()) {
        CHECK(dim + 1 == base.Rank());
        result.emplace_back(std::nullopt); // UBOUND folding replaces with -1
      } else {
        result.emplace_back(ComputeUpperBound(context,
            GetLowerBound(context, base, dim), GetExtent(context, base, dim)));
      }
      ++dim;
    }
    CHECK(GetRank(result) == symbol.Rank());
    return result;
  } else {
    return std::move(GetShape(context, base).value());
  }
}

auto GetShapeHelper::operator()(const Symbol &symbol) const -> Result {
  return std::visit(
      common::visitors{
          [&](const semantics::ObjectEntityDetails &object) {
            if (IsImpliedShape(symbol)) {
              return (*this)(object.init());
            } else {
              int n{object.shape().Rank()};
              NamedEntity base{symbol};
              return Result{CreateShape(n, base)};
            }
          },
          [](const semantics::EntityDetails &) {
            return Scalar(); // no dimensions seen
          },
          [&](const semantics::ProcEntityDetails &proc) {
            if (const Symbol * interface{proc.interface().symbol()}) {
              return (*this)(*interface);
            } else {
              return Scalar();
            }
          },
          [&](const semantics::AssocEntityDetails &assoc) {
            if (!assoc.rank()) {
              return (*this)(assoc.expr());
            } else {
              int n{assoc.rank().value()};
              NamedEntity base{symbol};
              return Result{CreateShape(n, base)};
            }
          },
          [&](const semantics::SubprogramDetails &subp) {
            if (subp.isFunction()) {
              return (*this)(subp.result());
            } else {
              return Result{};
            }
          },
          [&](const semantics::ProcBindingDetails &binding) {
            return (*this)(binding.symbol());
          },
          [&](const semantics::UseDetails &use) {
            return (*this)(use.symbol());
          },
          [&](const semantics::HostAssocDetails &assoc) {
            return (*this)(assoc.symbol());
          },
          [](const semantics::TypeParamDetails &) { return Scalar(); },
          [](const auto &) { return Result{}; },
      },
      symbol.details());
}

auto GetShapeHelper::operator()(const Component &component) const -> Result {
  const Symbol &symbol{component.GetLastSymbol()};
  int rank{symbol.Rank()};
  if (rank == 0) {
    return (*this)(component.base());
  } else if (symbol.has<semantics::ObjectEntityDetails>()) {
    NamedEntity base{Component{component}};
    return CreateShape(rank, base);
  } else if (symbol.has<semantics::AssocEntityDetails>()) {
    NamedEntity base{Component{component}};
    return Result{CreateShape(rank, base)};
  } else {
    return (*this)(symbol);
  }
}

auto GetShapeHelper::operator()(const ArrayRef &arrayRef) const -> Result {
  Shape shape;
  int dimension{0};
  const NamedEntity &base{arrayRef.base()};
  for (const Subscript &ss : arrayRef.subscript()) {
    if (ss.Rank() > 0) {
      shape.emplace_back(GetExtent(context_, ss, base, dimension));
    }
    ++dimension;
  }
  if (shape.empty()) {
    if (const Component * component{base.UnwrapComponent()}) {
      return (*this)(component->base());
    }
  }
  return shape;
}

auto GetShapeHelper::operator()(const CoarrayRef &coarrayRef) const -> Result {
  NamedEntity base{coarrayRef.GetBase()};
  if (coarrayRef.subscript().empty()) {
    return (*this)(base);
  } else {
    Shape shape;
    int dimension{0};
    for (const Subscript &ss : coarrayRef.subscript()) {
      if (ss.Rank() > 0) {
        shape.emplace_back(GetExtent(context_, ss, base, dimension));
      }
      ++dimension;
    }
    return shape;
  }
}

auto GetShapeHelper::operator()(const Substring &substring) const -> Result {
  return (*this)(substring.parent());
}

auto GetShapeHelper::operator()(const ProcedureRef &call) const -> Result {
  if (call.Rank() == 0) {
    return Scalar();
  } else if (call.IsElemental()) {
    for (const auto &arg : call.arguments()) {
      if (arg && arg->Rank() > 0) {
        return (*this)(*arg);
      }
    }
    return Scalar();
  } else if (const Symbol * symbol{call.proc().GetSymbol()}) {
    return (*this)(*symbol);
  } else if (const auto *intrinsic{call.proc().GetSpecificIntrinsic()}) {
    if (intrinsic->name == "shape" || intrinsic->name == "lbound" ||
        intrinsic->name == "ubound") {
      // These are the array-valued cases for LBOUND and UBOUND (no DIM=).
      const auto *expr{call.arguments().front().value().UnwrapExpr()};
      CHECK(expr);
      return Shape{MaybeExtentExpr{ExtentExpr{expr->Rank()}}};
    } else if (intrinsic->name == "all" || intrinsic->name == "any" ||
        intrinsic->name == "count" || intrinsic->name == "iall" ||
        intrinsic->name == "iany" || intrinsic->name == "iparity" ||
        intrinsic->name == "maxloc" || intrinsic->name == "maxval" ||
        intrinsic->name == "minloc" || intrinsic->name == "minval" ||
        intrinsic->name == "norm2" || intrinsic->name == "parity" ||
        intrinsic->name == "product" || intrinsic->name == "sum") {
      // Reduction with DIM=
      if (call.arguments().size() >= 2) {
        auto arrayShape{
            (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))};
        const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))};
        if (arrayShape && dimArg) {
          if (auto dim{ToInt64(*dimArg)}) {
            if (*dim >= 1 &&
                static_cast<std::size_t>(*dim) <= arrayShape->size()) {
              arrayShape->erase(arrayShape->begin() + (*dim - 1));
              return std::move(*arrayShape);
            }
          }
        }
      }
    } else if (intrinsic->name == "cshift" || intrinsic->name == "eoshift") {
      if (!call.arguments().empty()) {
        return (*this)(call.arguments()[0]);
      }
    } else if (intrinsic->name == "matmul") {
      if (call.arguments().size() == 2) {
        if (auto ashape{(*this)(call.arguments()[0])}) {
          if (auto bshape{(*this)(call.arguments()[1])}) {
            if (ashape->size() == 1 && bshape->size() == 2) {
              bshape->erase(bshape->begin());
              return std::move(*bshape); // matmul(vector, matrix)
            } else if (ashape->size() == 2 && bshape->size() == 1) {
              ashape->pop_back();
              return std::move(*ashape); // matmul(matrix, vector)
            } else if (ashape->size() == 2 && bshape->size() == 2) {
              (*ashape)[1] = std::move((*bshape)[1]);
              return std::move(*ashape); // matmul(matrix, matrix)
            }
          }
        }
      }
    } else if (intrinsic->name == "reshape") {
      if (call.arguments().size() >= 2 && call.arguments().at(1)) {
        // SHAPE(RESHAPE(array,shape)) -> shape
        if (const auto *shapeExpr{
                call.arguments().at(1).value().UnwrapExpr()}) {
          auto shape{std::get<Expr<SomeInteger>>(shapeExpr->u)};
          return AsShape(context_, ConvertToType<ExtentType>(std::move(shape)));
        }
      }
    } else if (intrinsic->name == "pack") {
      if (call.arguments().size() >= 3 && call.arguments().at(2)) {
        // SHAPE(PACK(,,VECTOR=v)) -> SHAPE(v)
        return (*this)(call.arguments().at(2));
      } else if (call.arguments().size() >= 2) {
        if (auto maskShape{(*this)(call.arguments().at(1))}) {
          if (maskShape->size() == 0) {
            // Scalar MASK= -> [MERGE(SIZE(ARRAY=), 0, mask)]
            if (auto arrayShape{(*this)(call.arguments().at(0))}) {
              auto arraySize{GetSize(std::move(*arrayShape))};
              CHECK(arraySize);
              ActualArguments toMerge{
                  ActualArgument{AsGenericExpr(std::move(*arraySize))},
                  ActualArgument{AsGenericExpr(ExtentExpr{0})},
                  common::Clone(call.arguments().at(1))};
              auto specific{context_.intrinsics().Probe(
                  CallCharacteristics{"merge"}, toMerge, context_)};
              CHECK(specific);
              return Shape{ExtentExpr{FunctionRef<ExtentType>{
                  ProcedureDesignator{std::move(specific->specificIntrinsic)},
                  std::move(specific->arguments)}}};
            }
          } else {
            // Non-scalar MASK= -> [COUNT(mask)]
            ActualArguments toCount{ActualArgument{common::Clone(
                DEREF(call.arguments().at(1).value().UnwrapExpr()))}};
            auto specific{context_.intrinsics().Probe(
                CallCharacteristics{"count"}, toCount, context_)};
            CHECK(specific);
            return Shape{ExtentExpr{FunctionRef<ExtentType>{
                ProcedureDesignator{std::move(specific->specificIntrinsic)},
                std::move(specific->arguments)}}};
          }
        }
      }
    } else if (intrinsic->name == "spread") {
      // SHAPE(SPREAD(ARRAY,DIM,NCOPIES)) = SHAPE(ARRAY) with NCOPIES inserted
      // at position DIM.
      if (call.arguments().size() == 3) {
        auto arrayShape{
            (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))};
        const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))};
        const auto *nCopies{
            UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))};
        if (arrayShape && dimArg && nCopies) {
          if (auto dim{ToInt64(*dimArg)}) {
            if (*dim >= 1 &&
                static_cast<std::size_t>(*dim) <= arrayShape->size() + 1) {
              arrayShape->emplace(arrayShape->begin() + *dim - 1,
                  ConvertToType<ExtentType>(common::Clone(*nCopies)));
              return std::move(*arrayShape);
            }
          }
        }
      }
    } else if (intrinsic->name == "transfer") {
      if (call.arguments().size() == 3 && call.arguments().at(2)) {
        // SIZE= is present; shape is vector [SIZE=]
        if (const auto *size{
                UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}) {
          return Shape{
              MaybeExtentExpr{ConvertToType<ExtentType>(common::Clone(*size))}};
        }
      } else if (auto moldTypeAndShape{
                     characteristics::TypeAndShape::Characterize(
                         call.arguments().at(1), context_)}) {
        if (GetRank(moldTypeAndShape->shape()) == 0) {
          // SIZE= is absent and MOLD= is scalar: result is scalar
          return Scalar();
        } else {
          // SIZE= is absent and MOLD= is array: result is vector whose
          // length is determined by sizes of types.  See 16.9.193p4 case(ii).
          if (auto sourceTypeAndShape{
                  characteristics::TypeAndShape::Characterize(
                      call.arguments().at(0), context_)}) {
            auto sourceElements{
                GetSize(common::Clone(sourceTypeAndShape->shape()))};
            auto sourceElementBytes{
                sourceTypeAndShape->type().MeasureSizeInBytes(&context_)};
            auto moldElementBytes{
                moldTypeAndShape->type().MeasureSizeInBytes(&context_)};
            if (sourceElements && sourceElementBytes && moldElementBytes) {
              ExtentExpr extent{Fold(context_,
                  ((std::move(*sourceElements) *
                       std::move(*sourceElementBytes)) +
                      common::Clone(*moldElementBytes) - ExtentExpr{1}) /
                      common::Clone(*moldElementBytes))};
              return Shape{MaybeExtentExpr{std::move(extent)}};
            }
          }
        }
      }
    } else if (intrinsic->name == "transpose") {
      if (call.arguments().size() >= 1) {
        if (auto shape{(*this)(call.arguments().at(0))}) {
          if (shape->size() == 2) {
            std::swap((*shape)[0], (*shape)[1]);
            return shape;
          }
        }
      }
    } else if (intrinsic->characteristics.value().attrs.test(characteristics::
                       Procedure::Attr::NullPointer)) { // NULL(MOLD=)
      return (*this)(call.arguments());
    } else {
      // TODO: shapes of other non-elemental intrinsic results
    }
  }
  return std::nullopt;
}

bool CheckConformance(parser::ContextualMessages &messages, const Shape &left,
    const Shape &right, const char *leftIs, const char *rightIs) {
  int n{GetRank(left)};
  int rn{GetRank(right)};
  if (n != 0 && rn != 0) {
    if (n != rn) {
      messages.Say("Rank of %1$s is %2$d, but %3$s has rank %4$d"_err_en_US,
          leftIs, n, rightIs, rn);
      return false;
    } else {
      for (int j{0}; j < n; ++j) {
        if (auto leftDim{ToInt64(left[j])}) {
          if (auto rightDim{ToInt64(right[j])}) {
            if (*leftDim != *rightDim) {
              messages.Say("Dimension %1$d of %2$s has extent %3$jd, "
                           "but %4$s has extent %5$jd"_err_en_US,
                  j + 1, leftIs, *leftDim, rightIs, *rightDim);
              return false;
            }
          }
        }
      }
    }
  }
  return true;
}

bool IncrementSubscripts(
    ConstantSubscripts &indices, const ConstantSubscripts &extents) {
  std::size_t rank(indices.size());
  CHECK(rank <= extents.size());
  for (std::size_t j{0}; j < rank; ++j) {
    if (extents[j] < 1) {
      return false;
    }
  }
  for (std::size_t j{0}; j < rank; ++j) {
    if (indices[j]++ < extents[j]) {
      return true;
    }
    indices[j] = 1;
  }
  return false;
}
} // namespace Fortran::evaluate