constant.cpp
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//===-- lib/Evaluate/constant.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/constant.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/shape.h"
#include "flang/Evaluate/type.h"
#include <string>
namespace Fortran::evaluate {
std::size_t TotalElementCount(const ConstantSubscripts &shape) {
std::size_t size{1};
for (auto dim : shape) {
CHECK(dim >= 0);
size *= dim;
}
return size;
}
ConstantBounds::ConstantBounds(const ConstantSubscripts &shape)
: shape_(shape), lbounds_(shape_.size(), 1) {}
ConstantBounds::ConstantBounds(ConstantSubscripts &&shape)
: shape_(std::move(shape)), lbounds_(shape_.size(), 1) {}
ConstantBounds::~ConstantBounds() = default;
void ConstantBounds::set_lbounds(ConstantSubscripts &&lb) {
CHECK(lb.size() == shape_.size());
lbounds_ = std::move(lb);
}
Constant<SubscriptInteger> ConstantBounds::SHAPE() const {
return AsConstantShape(shape_);
}
ConstantSubscript ConstantBounds::SubscriptsToOffset(
const ConstantSubscripts &index) const {
CHECK(GetRank(index) == GetRank(shape_));
ConstantSubscript stride{1}, offset{0};
int dim{0};
for (auto j : index) {
auto lb{lbounds_[dim]};
auto extent{shape_[dim++]};
CHECK(j >= lb && j < lb + extent);
offset += stride * (j - lb);
stride *= extent;
}
return offset;
}
bool ConstantBounds::IncrementSubscripts(
ConstantSubscripts &indices, const std::vector<int> *dimOrder) const {
int rank{GetRank(shape_)};
CHECK(GetRank(indices) == rank);
CHECK(!dimOrder || static_cast<int>(dimOrder->size()) == rank);
for (int j{0}; j < rank; ++j) {
ConstantSubscript k{dimOrder ? (*dimOrder)[j] : j};
auto lb{lbounds_[k]};
CHECK(indices[k] >= lb);
if (++indices[k] < lb + shape_[k]) {
return true;
} else {
CHECK(indices[k] == lb + shape_[k]);
indices[k] = lb;
}
}
return false; // all done
}
std::optional<std::vector<int>> ValidateDimensionOrder(
int rank, const std::vector<int> &order) {
std::vector<int> dimOrder(rank);
if (static_cast<int>(order.size()) == rank) {
std::bitset<common::maxRank> seenDimensions;
for (int j{0}; j < rank; ++j) {
int dim{order[j]};
if (dim < 1 || dim > rank || seenDimensions.test(dim - 1)) {
return std::nullopt;
}
dimOrder[dim - 1] = j;
seenDimensions.set(dim - 1);
}
return dimOrder;
} else {
return std::nullopt;
}
}
bool HasNegativeExtent(const ConstantSubscripts &shape) {
for (ConstantSubscript extent : shape) {
if (extent < 0) {
return true;
}
}
return false;
}
template <typename RESULT, typename ELEMENT>
ConstantBase<RESULT, ELEMENT>::ConstantBase(
std::vector<Element> &&x, ConstantSubscripts &&sh, Result res)
: ConstantBounds(std::move(sh)), result_{res}, values_(std::move(x)) {
CHECK(size() == TotalElementCount(shape()));
}
template <typename RESULT, typename ELEMENT>
ConstantBase<RESULT, ELEMENT>::~ConstantBase() {}
template <typename RESULT, typename ELEMENT>
bool ConstantBase<RESULT, ELEMENT>::operator==(const ConstantBase &that) const {
return shape() == that.shape() && values_ == that.values_;
}
template <typename RESULT, typename ELEMENT>
auto ConstantBase<RESULT, ELEMENT>::Reshape(
const ConstantSubscripts &dims) const -> std::vector<Element> {
std::size_t n{TotalElementCount(dims)};
CHECK(!empty() || n == 0);
std::vector<Element> elements;
auto iter{values().cbegin()};
while (n-- > 0) {
elements.push_back(*iter);
if (++iter == values().cend()) {
iter = values().cbegin();
}
}
return elements;
}
template <typename RESULT, typename ELEMENT>
std::size_t ConstantBase<RESULT, ELEMENT>::CopyFrom(
const ConstantBase<RESULT, ELEMENT> &source, std::size_t count,
ConstantSubscripts &resultSubscripts, const std::vector<int> *dimOrder) {
std::size_t copied{0};
ConstantSubscripts sourceSubscripts{source.lbounds()};
while (copied < count) {
values_.at(SubscriptsToOffset(resultSubscripts)) =
source.values_.at(source.SubscriptsToOffset(sourceSubscripts));
copied++;
source.IncrementSubscripts(sourceSubscripts);
IncrementSubscripts(resultSubscripts, dimOrder);
}
return copied;
}
template <typename T>
auto Constant<T>::At(const ConstantSubscripts &index) const -> Element {
return Base::values_.at(Base::SubscriptsToOffset(index));
}
template <typename T>
auto Constant<T>::Reshape(ConstantSubscripts &&dims) const -> Constant {
return {Base::Reshape(dims), std::move(dims)};
}
template <typename T>
std::size_t Constant<T>::CopyFrom(const Constant<T> &source, std::size_t count,
ConstantSubscripts &resultSubscripts, const std::vector<int> *dimOrder) {
return Base::CopyFrom(source, count, resultSubscripts, dimOrder);
}
// Constant<Type<TypeCategory::Character, KIND> specializations
template <int KIND>
Constant<Type<TypeCategory::Character, KIND>>::Constant(
const Scalar<Result> &str)
: values_{str}, length_{static_cast<ConstantSubscript>(values_.size())} {}
template <int KIND>
Constant<Type<TypeCategory::Character, KIND>>::Constant(Scalar<Result> &&str)
: values_{std::move(str)}, length_{static_cast<ConstantSubscript>(
values_.size())} {}
template <int KIND>
Constant<Type<TypeCategory::Character, KIND>>::Constant(ConstantSubscript len,
std::vector<Scalar<Result>> &&strings, ConstantSubscripts &&sh)
: ConstantBounds(std::move(sh)), length_{len} {
CHECK(strings.size() == TotalElementCount(shape()));
values_.assign(strings.size() * length_,
static_cast<typename Scalar<Result>::value_type>(' '));
ConstantSubscript at{0};
for (const auto &str : strings) {
auto strLen{static_cast<ConstantSubscript>(str.size())};
if (strLen > length_) {
values_.replace(at, length_, str.substr(0, length_));
} else {
values_.replace(at, strLen, str);
}
at += length_;
}
CHECK(at == static_cast<ConstantSubscript>(values_.size()));
}
template <int KIND>
Constant<Type<TypeCategory::Character, KIND>>::~Constant() {}
template <int KIND>
bool Constant<Type<TypeCategory::Character, KIND>>::empty() const {
return size() == 0;
}
template <int KIND>
std::size_t Constant<Type<TypeCategory::Character, KIND>>::size() const {
if (length_ == 0) {
return TotalElementCount(shape());
} else {
return static_cast<ConstantSubscript>(values_.size()) / length_;
}
}
template <int KIND>
auto Constant<Type<TypeCategory::Character, KIND>>::At(
const ConstantSubscripts &index) const -> Scalar<Result> {
auto offset{SubscriptsToOffset(index)};
return values_.substr(offset * length_, length_);
}
template <int KIND>
auto Constant<Type<TypeCategory::Character, KIND>>::Reshape(
ConstantSubscripts &&dims) const -> Constant<Result> {
std::size_t n{TotalElementCount(dims)};
CHECK(!empty() || n == 0);
std::vector<Element> elements;
ConstantSubscript at{0},
limit{static_cast<ConstantSubscript>(values_.size())};
while (n-- > 0) {
elements.push_back(values_.substr(at, length_));
at += length_;
if (at == limit) { // subtle: at > limit somehow? substr() will catch it
at = 0;
}
}
return {length_, std::move(elements), std::move(dims)};
}
template <int KIND>
std::size_t Constant<Type<TypeCategory::Character, KIND>>::CopyFrom(
const Constant<Type<TypeCategory::Character, KIND>> &source,
std::size_t count, ConstantSubscripts &resultSubscripts,
const std::vector<int> *dimOrder) {
CHECK(length_ == source.length_);
if (length_ == 0) {
// It's possible that the array of strings consists of all empty strings.
// If so, constant folding will result in a string that's completely empty
// and the length_ will be zero, and there's nothing to do.
return count;
} else {
std::size_t copied{0};
std::size_t elementBytes{length_ * sizeof(decltype(values_[0]))};
ConstantSubscripts sourceSubscripts{source.lbounds()};
while (copied < count) {
auto *dest{&values_.at(SubscriptsToOffset(resultSubscripts) * length_)};
const auto *src{&source.values_.at(
source.SubscriptsToOffset(sourceSubscripts) * length_)};
std::memcpy(dest, src, elementBytes);
copied++;
source.IncrementSubscripts(sourceSubscripts);
IncrementSubscripts(resultSubscripts, dimOrder);
}
return copied;
}
}
// Constant<SomeDerived> specialization
Constant<SomeDerived>::Constant(const StructureConstructor &x)
: Base{x.values(), Result{x.derivedTypeSpec()}} {}
Constant<SomeDerived>::Constant(StructureConstructor &&x)
: Base{std::move(x.values()), Result{x.derivedTypeSpec()}} {}
Constant<SomeDerived>::Constant(const semantics::DerivedTypeSpec &spec,
std::vector<StructureConstructorValues> &&x, ConstantSubscripts &&s)
: Base{std::move(x), std::move(s), Result{spec}} {}
static std::vector<StructureConstructorValues> AcquireValues(
std::vector<StructureConstructor> &&x) {
std::vector<StructureConstructorValues> result;
for (auto &&structure : std::move(x)) {
result.emplace_back(std::move(structure.values()));
}
return result;
}
Constant<SomeDerived>::Constant(const semantics::DerivedTypeSpec &spec,
std::vector<StructureConstructor> &&x, ConstantSubscripts &&shape)
: Base{AcquireValues(std::move(x)), std::move(shape), Result{spec}} {}
std::optional<StructureConstructor>
Constant<SomeDerived>::GetScalarValue() const {
if (Rank() == 0) {
return StructureConstructor{result().derivedTypeSpec(), values_.at(0)};
} else {
return std::nullopt;
}
}
StructureConstructor Constant<SomeDerived>::At(
const ConstantSubscripts &index) const {
return {result().derivedTypeSpec(), values_.at(SubscriptsToOffset(index))};
}
auto Constant<SomeDerived>::Reshape(ConstantSubscripts &&dims) const
-> Constant {
return {result().derivedTypeSpec(), Base::Reshape(dims), std::move(dims)};
}
std::size_t Constant<SomeDerived>::CopyFrom(const Constant<SomeDerived> &source,
std::size_t count, ConstantSubscripts &resultSubscripts,
const std::vector<int> *dimOrder) {
return Base::CopyFrom(source, count, resultSubscripts, dimOrder);
}
INSTANTIATE_CONSTANT_TEMPLATES
} // namespace Fortran::evaluate