xray_profile_collector.cpp 14.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
//===-- xray_profile_collector.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the interface for the profileCollectorService.
//
//===----------------------------------------------------------------------===//
#include "xray_profile_collector.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray_allocator.h"
#include "xray_defs.h"
#include "xray_profiling_flags.h"
#include "xray_segmented_array.h"
#include <memory>
#include <pthread.h>
#include <utility>

namespace __xray {
namespace profileCollectorService {

namespace {

SpinMutex GlobalMutex;
struct ThreadTrie {
  tid_t TId;
  typename std::aligned_storage<sizeof(FunctionCallTrie)>::type TrieStorage;
};

struct ProfileBuffer {
  void *Data;
  size_t Size;
};

// Current version of the profile format.
constexpr u64 XRayProfilingVersion = 0x20180424;

// Identifier for XRay profiling files 'xrayprof' in hex.
constexpr u64 XRayMagicBytes = 0x7872617970726f66;

struct XRayProfilingFileHeader {
  const u64 MagicBytes = XRayMagicBytes;
  const u64 Version = XRayProfilingVersion;
  u64 Timestamp = 0; // System time in nanoseconds.
  u64 PID = 0;       // Process ID.
};

struct BlockHeader {
  u32 BlockSize;
  u32 BlockNum;
  u64 ThreadId;
};

struct ThreadData {
  BufferQueue *BQ;
  FunctionCallTrie::Allocators::Buffers Buffers;
  FunctionCallTrie::Allocators Allocators;
  FunctionCallTrie FCT;
  tid_t TId;
};

using ThreadDataArray = Array<ThreadData>;
using ThreadDataAllocator = ThreadDataArray::AllocatorType;

// We use a separate buffer queue for the backing store for the allocator used
// by the ThreadData array. This lets us host the buffers, allocators, and tries
// associated with a thread by moving the data into the array instead of
// attempting to copy the data to a separately backed set of tries.
static typename std::aligned_storage<
    sizeof(BufferQueue), alignof(BufferQueue)>::type BufferQueueStorage;
static BufferQueue *BQ = nullptr;
static BufferQueue::Buffer Buffer;
static typename std::aligned_storage<sizeof(ThreadDataAllocator),
                                     alignof(ThreadDataAllocator)>::type
    ThreadDataAllocatorStorage;
static typename std::aligned_storage<sizeof(ThreadDataArray),
                                     alignof(ThreadDataArray)>::type
    ThreadDataArrayStorage;

static ThreadDataAllocator *TDAllocator = nullptr;
static ThreadDataArray *TDArray = nullptr;

using ProfileBufferArray = Array<ProfileBuffer>;
using ProfileBufferArrayAllocator = typename ProfileBufferArray::AllocatorType;

// These need to be global aligned storage to avoid dynamic initialization. We
// need these to be aligned to allow us to placement new objects into the
// storage, and have pointers to those objects be appropriately aligned.
static typename std::aligned_storage<sizeof(ProfileBufferArray)>::type
    ProfileBuffersStorage;
static typename std::aligned_storage<sizeof(ProfileBufferArrayAllocator)>::type
    ProfileBufferArrayAllocatorStorage;

static ProfileBufferArrayAllocator *ProfileBuffersAllocator = nullptr;
static ProfileBufferArray *ProfileBuffers = nullptr;

// Use a global flag to determine whether the collector implementation has been
// initialized.
static atomic_uint8_t CollectorInitialized{0};

} // namespace

void post(BufferQueue *Q, FunctionCallTrie &&T,
          FunctionCallTrie::Allocators &&A,
          FunctionCallTrie::Allocators::Buffers &&B,
          tid_t TId) XRAY_NEVER_INSTRUMENT {
  DCHECK_NE(Q, nullptr);

  // Bail out early if the collector has not been initialized.
  if (!atomic_load(&CollectorInitialized, memory_order_acquire)) {
    T.~FunctionCallTrie();
    A.~Allocators();
    Q->releaseBuffer(B.NodeBuffer);
    Q->releaseBuffer(B.RootsBuffer);
    Q->releaseBuffer(B.ShadowStackBuffer);
    Q->releaseBuffer(B.NodeIdPairBuffer);
    B.~Buffers();
    return;
  }

  {
    SpinMutexLock Lock(&GlobalMutex);
    DCHECK_NE(TDAllocator, nullptr);
    DCHECK_NE(TDArray, nullptr);

    if (TDArray->AppendEmplace(Q, std::move(B), std::move(A), std::move(T),
                               TId) == nullptr) {
      // If we fail to add the data to the array, we should destroy the objects
      // handed us.
      T.~FunctionCallTrie();
      A.~Allocators();
      Q->releaseBuffer(B.NodeBuffer);
      Q->releaseBuffer(B.RootsBuffer);
      Q->releaseBuffer(B.ShadowStackBuffer);
      Q->releaseBuffer(B.NodeIdPairBuffer);
      B.~Buffers();
    }
  }
}

// A PathArray represents the function id's representing a stack trace. In this
// context a path is almost always represented from the leaf function in a call
// stack to a root of the call trie.
using PathArray = Array<int32_t>;

struct ProfileRecord {
  using PathAllocator = typename PathArray::AllocatorType;

  // The Path in this record is the function id's from the leaf to the root of
  // the function call stack as represented from a FunctionCallTrie.
  PathArray Path;
  const FunctionCallTrie::Node *Node;
};

namespace {

using ProfileRecordArray = Array<ProfileRecord>;

// Walk a depth-first traversal of each root of the FunctionCallTrie to generate
// the path(s) and the data associated with the path.
static void
populateRecords(ProfileRecordArray &PRs, ProfileRecord::PathAllocator &PA,
                const FunctionCallTrie &Trie) XRAY_NEVER_INSTRUMENT {
  using StackArray = Array<const FunctionCallTrie::Node *>;
  using StackAllocator = typename StackArray::AllocatorType;
  StackAllocator StackAlloc(profilingFlags()->stack_allocator_max);
  StackArray DFSStack(StackAlloc);
  for (const auto *R : Trie.getRoots()) {
    DFSStack.Append(R);
    while (!DFSStack.empty()) {
      auto *Node = DFSStack.back();
      DFSStack.trim(1);
      if (Node == nullptr)
        continue;
      auto Record = PRs.AppendEmplace(PathArray{PA}, Node);
      if (Record == nullptr)
        return;
      DCHECK_NE(Record, nullptr);

      // Traverse the Node's parents and as we're doing so, get the FIds in
      // the order they appear.
      for (auto N = Node; N != nullptr; N = N->Parent)
        Record->Path.Append(N->FId);
      DCHECK(!Record->Path.empty());

      for (const auto C : Node->Callees)
        DFSStack.Append(C.NodePtr);
    }
  }
}

static void serializeRecords(ProfileBuffer *Buffer, const BlockHeader &Header,
                             const ProfileRecordArray &ProfileRecords)
    XRAY_NEVER_INSTRUMENT {
  auto NextPtr = static_cast<uint8_t *>(
                     internal_memcpy(Buffer->Data, &Header, sizeof(Header))) +
                 sizeof(Header);
  for (const auto &Record : ProfileRecords) {
    // List of IDs follow:
    for (const auto FId : Record.Path)
      NextPtr =
          static_cast<uint8_t *>(internal_memcpy(NextPtr, &FId, sizeof(FId))) +
          sizeof(FId);

    // Add the sentinel here.
    constexpr int32_t SentinelFId = 0;
    NextPtr = static_cast<uint8_t *>(
                  internal_memset(NextPtr, SentinelFId, sizeof(SentinelFId))) +
              sizeof(SentinelFId);

    // Add the node data here.
    NextPtr =
        static_cast<uint8_t *>(internal_memcpy(
            NextPtr, &Record.Node->CallCount, sizeof(Record.Node->CallCount))) +
        sizeof(Record.Node->CallCount);
    NextPtr = static_cast<uint8_t *>(
                  internal_memcpy(NextPtr, &Record.Node->CumulativeLocalTime,
                                  sizeof(Record.Node->CumulativeLocalTime))) +
              sizeof(Record.Node->CumulativeLocalTime);
  }

  DCHECK_EQ(NextPtr - static_cast<uint8_t *>(Buffer->Data), Buffer->Size);
}

} // namespace

void serialize() XRAY_NEVER_INSTRUMENT {
  if (!atomic_load(&CollectorInitialized, memory_order_acquire))
    return;

  SpinMutexLock Lock(&GlobalMutex);

  // Clear out the global ProfileBuffers, if it's not empty.
  for (auto &B : *ProfileBuffers)
    deallocateBuffer(reinterpret_cast<unsigned char *>(B.Data), B.Size);
  ProfileBuffers->trim(ProfileBuffers->size());

  DCHECK_NE(TDArray, nullptr);
  if (TDArray->empty())
    return;

  // Then repopulate the global ProfileBuffers.
  u32 I = 0;
  auto MaxSize = profilingFlags()->global_allocator_max;
  auto ProfileArena = allocateBuffer(MaxSize);
  if (ProfileArena == nullptr)
    return;

  auto ProfileArenaCleanup = at_scope_exit(
      [&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(ProfileArena, MaxSize); });

  auto PathArena = allocateBuffer(profilingFlags()->global_allocator_max);
  if (PathArena == nullptr)
    return;

  auto PathArenaCleanup = at_scope_exit(
      [&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(PathArena, MaxSize); });

  for (const auto &ThreadTrie : *TDArray) {
    using ProfileRecordAllocator = typename ProfileRecordArray::AllocatorType;
    ProfileRecordAllocator PRAlloc(ProfileArena,
                                   profilingFlags()->global_allocator_max);
    ProfileRecord::PathAllocator PathAlloc(
        PathArena, profilingFlags()->global_allocator_max);
    ProfileRecordArray ProfileRecords(PRAlloc);

    // First, we want to compute the amount of space we're going to need. We'll
    // use a local allocator and an __xray::Array<...> to store the intermediary
    // data, then compute the size as we're going along. Then we'll allocate the
    // contiguous space to contain the thread buffer data.
    if (ThreadTrie.FCT.getRoots().empty())
      continue;

    populateRecords(ProfileRecords, PathAlloc, ThreadTrie.FCT);
    DCHECK(!ThreadTrie.FCT.getRoots().empty());
    DCHECK(!ProfileRecords.empty());

    // Go through each record, to compute the sizes.
    //
    // header size = block size (4 bytes)
    //   + block number (4 bytes)
    //   + thread id (8 bytes)
    // record size = path ids (4 bytes * number of ids + sentinel 4 bytes)
    //   + call count (8 bytes)
    //   + local time (8 bytes)
    //   + end of record (8 bytes)
    u32 CumulativeSizes = 0;
    for (const auto &Record : ProfileRecords)
      CumulativeSizes += 20 + (4 * Record.Path.size());

    BlockHeader Header{16 + CumulativeSizes, I++, ThreadTrie.TId};
    auto B = ProfileBuffers->Append({});
    B->Size = sizeof(Header) + CumulativeSizes;
    B->Data = allocateBuffer(B->Size);
    DCHECK_NE(B->Data, nullptr);
    serializeRecords(B, Header, ProfileRecords);
  }
}

void reset() XRAY_NEVER_INSTRUMENT {
  atomic_store(&CollectorInitialized, 0, memory_order_release);
  SpinMutexLock Lock(&GlobalMutex);

  if (ProfileBuffers != nullptr) {
    // Clear out the profile buffers that have been serialized.
    for (auto &B : *ProfileBuffers)
      deallocateBuffer(reinterpret_cast<uint8_t *>(B.Data), B.Size);
    ProfileBuffers->trim(ProfileBuffers->size());
    ProfileBuffers = nullptr;
  }

  if (TDArray != nullptr) {
    // Release the resources as required.
    for (auto &TD : *TDArray) {
      TD.BQ->releaseBuffer(TD.Buffers.NodeBuffer);
      TD.BQ->releaseBuffer(TD.Buffers.RootsBuffer);
      TD.BQ->releaseBuffer(TD.Buffers.ShadowStackBuffer);
      TD.BQ->releaseBuffer(TD.Buffers.NodeIdPairBuffer);
    }
    // We don't bother destroying the array here because we've already
    // potentially freed the backing store for the array. Instead we're going to
    // reset the pointer to nullptr, and re-use the storage later instead
    // (placement-new'ing into the storage as-is).
    TDArray = nullptr;
  }

  if (TDAllocator != nullptr) {
    TDAllocator->~Allocator();
    TDAllocator = nullptr;
  }

  if (Buffer.Data != nullptr) {
    BQ->releaseBuffer(Buffer);
  }

  if (BQ == nullptr) {
    bool Success = false;
    new (&BufferQueueStorage)
        BufferQueue(profilingFlags()->global_allocator_max, 1, Success);
    if (!Success)
      return;
    BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
  } else {
    BQ->finalize();

    if (BQ->init(profilingFlags()->global_allocator_max, 1) !=
        BufferQueue::ErrorCode::Ok)
      return;
  }

  if (BQ->getBuffer(Buffer) != BufferQueue::ErrorCode::Ok)
    return;

  new (&ProfileBufferArrayAllocatorStorage)
      ProfileBufferArrayAllocator(profilingFlags()->global_allocator_max);
  ProfileBuffersAllocator = reinterpret_cast<ProfileBufferArrayAllocator *>(
      &ProfileBufferArrayAllocatorStorage);

  new (&ProfileBuffersStorage) ProfileBufferArray(*ProfileBuffersAllocator);
  ProfileBuffers =
      reinterpret_cast<ProfileBufferArray *>(&ProfileBuffersStorage);

  new (&ThreadDataAllocatorStorage)
      ThreadDataAllocator(Buffer.Data, Buffer.Size);
  TDAllocator =
      reinterpret_cast<ThreadDataAllocator *>(&ThreadDataAllocatorStorage);
  new (&ThreadDataArrayStorage) ThreadDataArray(*TDAllocator);
  TDArray = reinterpret_cast<ThreadDataArray *>(&ThreadDataArrayStorage);

  atomic_store(&CollectorInitialized, 1, memory_order_release);
}

XRayBuffer nextBuffer(XRayBuffer B) XRAY_NEVER_INSTRUMENT {
  SpinMutexLock Lock(&GlobalMutex);

  if (ProfileBuffers == nullptr || ProfileBuffers->size() == 0)
    return {nullptr, 0};

  static pthread_once_t Once = PTHREAD_ONCE_INIT;
  static typename std::aligned_storage<sizeof(XRayProfilingFileHeader)>::type
      FileHeaderStorage;
  pthread_once(
      &Once, +[]() XRAY_NEVER_INSTRUMENT {
        new (&FileHeaderStorage) XRayProfilingFileHeader{};
      });

  if (UNLIKELY(B.Data == nullptr)) {
    // The first buffer should always contain the file header information.
    auto &FileHeader =
        *reinterpret_cast<XRayProfilingFileHeader *>(&FileHeaderStorage);
    FileHeader.Timestamp = NanoTime();
    FileHeader.PID = internal_getpid();
    return {&FileHeaderStorage, sizeof(XRayProfilingFileHeader)};
  }

  if (UNLIKELY(B.Data == &FileHeaderStorage))
    return {(*ProfileBuffers)[0].Data, (*ProfileBuffers)[0].Size};

  BlockHeader Header;
  internal_memcpy(&Header, B.Data, sizeof(BlockHeader));
  auto NextBlock = Header.BlockNum + 1;
  if (NextBlock < ProfileBuffers->size())
    return {(*ProfileBuffers)[NextBlock].Data,
            (*ProfileBuffers)[NextBlock].Size};
  return {nullptr, 0};
}

} // namespace profileCollectorService
} // namespace __xray