xray_basic_logging.cpp 17.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
//===-- xray_basic_logging.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of a simple in-memory log of XRay events. This defines a
// logging function that's compatible with the XRay handler interface, and
// routines for exporting data to files.
//
//===----------------------------------------------------------------------===//

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_OPENBSD || SANITIZER_MAC
#include <sys/syscall.h>
#endif
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "xray/xray_records.h"
#include "xray_recursion_guard.h"
#include "xray_basic_flags.h"
#include "xray_basic_logging.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_interface_internal.h"
#include "xray_tsc.h"
#include "xray_utils.h"

namespace __xray {

static SpinMutex LogMutex;

namespace {
// We use elements of this type to record the entry TSC of every function ID we
// see as we're tracing a particular thread's execution.
struct alignas(16) StackEntry {
  int32_t FuncId;
  uint16_t Type;
  uint8_t CPU;
  uint8_t Padding;
  uint64_t TSC;
};

static_assert(sizeof(StackEntry) == 16, "Wrong size for StackEntry");

struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
  void *InMemoryBuffer = nullptr;
  size_t BufferSize = 0;
  size_t BufferOffset = 0;
  void *ShadowStack = nullptr;
  size_t StackSize = 0;
  size_t StackEntries = 0;
  __xray::LogWriter *LogWriter = nullptr;
};

struct BasicLoggingOptions {
  int DurationFilterMicros = 0;
  size_t MaxStackDepth = 0;
  size_t ThreadBufferSize = 0;
};
} // namespace

static pthread_key_t PThreadKey;

static atomic_uint8_t BasicInitialized{0};

struct BasicLoggingOptions GlobalOptions;

thread_local atomic_uint8_t Guard{0};

static atomic_uint8_t UseRealTSC{0};
static atomic_uint64_t ThresholdTicks{0};
static atomic_uint64_t TicksPerSec{0};
static atomic_uint64_t CycleFrequency{NanosecondsPerSecond};

static LogWriter *getLog() XRAY_NEVER_INSTRUMENT {
  LogWriter* LW = LogWriter::Open();
  if (LW == nullptr)
    return LW;

  static pthread_once_t DetectOnce = PTHREAD_ONCE_INIT;
  pthread_once(&DetectOnce, +[] {
    if (atomic_load(&UseRealTSC, memory_order_acquire))
      atomic_store(&CycleFrequency, getTSCFrequency(), memory_order_release);
  });

  // Since we're here, we get to write the header. We set it up so that the
  // header will only be written once, at the start, and let the threads
  // logging do writes which just append.
  XRayFileHeader Header;
  // Version 2 includes tail exit records.
  // Version 3 includes pid inside records.
  Header.Version = 3;
  Header.Type = FileTypes::NAIVE_LOG;
  Header.CycleFrequency = atomic_load(&CycleFrequency, memory_order_acquire);

  // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
  // before setting the values in the header.
  Header.ConstantTSC = 1;
  Header.NonstopTSC = 1;
  LW->WriteAll(reinterpret_cast<char *>(&Header),
               reinterpret_cast<char *>(&Header) + sizeof(Header));
  return LW;
}

static LogWriter *getGlobalLog() XRAY_NEVER_INSTRUMENT {
  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  static LogWriter *LW = nullptr;
  pthread_once(&OnceInit, +[] { LW = getLog(); });
  return LW;
}

static ThreadLocalData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
  thread_local ThreadLocalData TLD;
  thread_local bool UNUSED TOnce = [] {
    if (GlobalOptions.ThreadBufferSize == 0) {
      if (Verbosity())
        Report("Not initializing TLD since ThreadBufferSize == 0.\n");
      return false;
    }
    pthread_setspecific(PThreadKey, &TLD);
    TLD.LogWriter = getGlobalLog();
    TLD.InMemoryBuffer = reinterpret_cast<XRayRecord *>(
        InternalAlloc(sizeof(XRayRecord) * GlobalOptions.ThreadBufferSize,
                      nullptr, alignof(XRayRecord)));
    TLD.BufferSize = GlobalOptions.ThreadBufferSize;
    TLD.BufferOffset = 0;
    if (GlobalOptions.MaxStackDepth == 0) {
      if (Verbosity())
        Report("Not initializing the ShadowStack since MaxStackDepth == 0.\n");
      TLD.StackSize = 0;
      TLD.StackEntries = 0;
      TLD.ShadowStack = nullptr;
      return false;
    }
    TLD.ShadowStack = reinterpret_cast<StackEntry *>(
        InternalAlloc(sizeof(StackEntry) * GlobalOptions.MaxStackDepth, nullptr,
                      alignof(StackEntry)));
    TLD.StackSize = GlobalOptions.MaxStackDepth;
    TLD.StackEntries = 0;
    return false;
  }();
  return TLD;
}

template <class RDTSC>
void InMemoryRawLog(int32_t FuncId, XRayEntryType Type,
                    RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  LogWriter *LW = getGlobalLog();
  if (LW == nullptr)
    return;

  // Use a simple recursion guard, to handle cases where we're already logging
  // and for one reason or another, this function gets called again in the same
  // thread.
  RecursionGuard G(Guard);
  if (!G)
    return;

  uint8_t CPU = 0;
  uint64_t TSC = ReadTSC(CPU);

  switch (Type) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY: {
    // Short circuit if we've reached the maximum depth of the stack.
    if (TLD.StackEntries++ >= TLD.StackSize)
      return;

    // When we encounter an entry event, we keep track of the TSC and the CPU,
    // and put it in the stack.
    StackEntry E;
    E.FuncId = FuncId;
    E.CPU = CPU;
    E.Type = Type;
    E.TSC = TSC;
    auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
                         (sizeof(StackEntry) * (TLD.StackEntries - 1));
    internal_memcpy(StackEntryPtr, &E, sizeof(StackEntry));
    break;
  }
  case XRayEntryType::EXIT:
  case XRayEntryType::TAIL: {
    if (TLD.StackEntries == 0)
      break;

    if (--TLD.StackEntries >= TLD.StackSize)
      return;

    // When we encounter an exit event, we check whether all the following are
    // true:
    //
    // - The Function ID is the same as the most recent entry in the stack.
    // - The CPU is the same as the most recent entry in the stack.
    // - The Delta of the TSCs is less than the threshold amount of time we're
    //   looking to record.
    //
    // If all of these conditions are true, we pop the stack and don't write a
    // record and move the record offset back.
    StackEntry StackTop;
    auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
                         (sizeof(StackEntry) * TLD.StackEntries);
    internal_memcpy(&StackTop, StackEntryPtr, sizeof(StackEntry));
    if (StackTop.FuncId == FuncId && StackTop.CPU == CPU &&
        StackTop.TSC < TSC) {
      auto Delta = TSC - StackTop.TSC;
      if (Delta < atomic_load(&ThresholdTicks, memory_order_relaxed)) {
        DCHECK(TLD.BufferOffset > 0);
        TLD.BufferOffset -= StackTop.Type == XRayEntryType::ENTRY ? 1 : 2;
        return;
      }
    }
    break;
  }
  default:
    // Should be unreachable.
    DCHECK(false && "Unsupported XRayEntryType encountered.");
    break;
  }

  // First determine whether the delta between the function's enter record and
  // the exit record is higher than the threshold.
  XRayRecord R;
  R.RecordType = RecordTypes::NORMAL;
  R.CPU = CPU;
  R.TSC = TSC;
  R.TId = GetTid(); 
  R.PId = internal_getpid(); 
  R.Type = Type;
  R.FuncId = FuncId;
  auto FirstEntry = reinterpret_cast<XRayRecord *>(TLD.InMemoryBuffer);
  internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
  if (++TLD.BufferOffset == TLD.BufferSize) {
    SpinMutexLock Lock(&LogMutex);
    LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
                 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
}

template <class RDTSC>
void InMemoryRawLogWithArg(int32_t FuncId, XRayEntryType Type, uint64_t Arg1,
                           RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  auto FirstEntry =
      reinterpret_cast<XRayArgPayload *>(TLD.InMemoryBuffer);
  const auto &BuffLen = TLD.BufferSize;
  LogWriter *LW = getGlobalLog();
  if (LW == nullptr)
    return;

  // First we check whether there's enough space to write the data consecutively
  // in the thread-local buffer. If not, we first flush the buffer before
  // attempting to write the two records that must be consecutive.
  if (TLD.BufferOffset + 2 > BuffLen) {
    SpinMutexLock Lock(&LogMutex);
    LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
                 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }

  // Then we write the "we have an argument" record.
  InMemoryRawLog(FuncId, Type, ReadTSC);

  RecursionGuard G(Guard);
  if (!G)
    return;

  // And, from here on write the arg payload.
  XRayArgPayload R;
  R.RecordType = RecordTypes::ARG_PAYLOAD;
  R.FuncId = FuncId;
  R.TId = GetTid(); 
  R.PId = internal_getpid(); 
  R.Arg = Arg1;
  internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
  if (++TLD.BufferOffset == BuffLen) {
    SpinMutexLock Lock(&LogMutex);
    LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
                 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
}

void basicLoggingHandleArg0RealTSC(int32_t FuncId,
                                   XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, readTSC);
}

void basicLoggingHandleArg0EmulateTSC(int32_t FuncId, XRayEntryType Type)
    XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
      TS = {0, 0};
    }
    CPU = 0;
    return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
  });
}

void basicLoggingHandleArg1RealTSC(int32_t FuncId, XRayEntryType Type,
                                   uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(FuncId, Type, Arg1, readTSC);
}

void basicLoggingHandleArg1EmulateTSC(int32_t FuncId, XRayEntryType Type,
                                      uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(
      FuncId, Type, Arg1, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
        timespec TS;
        int result = clock_gettime(CLOCK_REALTIME, &TS);
        if (result != 0) {
          Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
          TS = {0, 0};
        }
        CPU = 0;
        return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
      });
}

static void TLDDestructor(void *P) XRAY_NEVER_INSTRUMENT {
  ThreadLocalData &TLD = *reinterpret_cast<ThreadLocalData *>(P);
  auto ExitGuard = at_scope_exit([&TLD] {
    // Clean up dynamic resources.
    if (TLD.InMemoryBuffer)
      InternalFree(TLD.InMemoryBuffer);
    if (TLD.ShadowStack)
      InternalFree(TLD.ShadowStack);
    if (Verbosity())
      Report("Cleaned up log for TID: %d\n", GetTid());
  });

  if (TLD.LogWriter == nullptr || TLD.BufferOffset == 0) {
    if (Verbosity())
      Report("Skipping buffer for TID: %d; Offset = %llu\n", GetTid(),
             TLD.BufferOffset);
    return;
  }

  {
    SpinMutexLock L(&LogMutex);
    TLD.LogWriter->WriteAll(reinterpret_cast<char *>(TLD.InMemoryBuffer),
                            reinterpret_cast<char *>(TLD.InMemoryBuffer) +
                            (sizeof(XRayRecord) * TLD.BufferOffset));
  }

  // Because this thread's exit could be the last one trying to write to
  // the file and that we're not able to close out the file properly, we
  // sync instead and hope that the pending writes are flushed as the
  // thread exits.
  TLD.LogWriter->Flush();
}

XRayLogInitStatus basicLoggingInit(UNUSED size_t BufferSize,
                                   UNUSED size_t BufferMax, void *Options,
                                   size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 1,
                                      memory_order_acq_rel)) {
    if (Verbosity())
      Report("Basic logging already initialized.\n");
    return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  }

  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  pthread_once(&OnceInit, +[] {
    pthread_key_create(&PThreadKey, TLDDestructor);
    atomic_store(&UseRealTSC, probeRequiredCPUFeatures(), memory_order_release);
    // Initialize the global TicksPerSec value.
    atomic_store(&TicksPerSec,
                 probeRequiredCPUFeatures() ? getTSCFrequency()
                                            : NanosecondsPerSecond,
                 memory_order_release);
    if (!atomic_load(&UseRealTSC, memory_order_relaxed) && Verbosity())
      Report("WARNING: Required CPU features missing for XRay instrumentation, "
             "using emulation instead.\n");
  });

  FlagParser P;
  BasicFlags F;
  F.setDefaults();
  registerXRayBasicFlags(&P, &F);
  P.ParseString(useCompilerDefinedBasicFlags());
  auto *EnvOpts = GetEnv("XRAY_BASIC_OPTIONS");
  if (EnvOpts == nullptr)
    EnvOpts = "";

  P.ParseString(EnvOpts);

  // If XRAY_BASIC_OPTIONS was not defined, then we use the deprecated options
  // set through XRAY_OPTIONS instead.
  if (internal_strlen(EnvOpts) == 0) {
    F.func_duration_threshold_us =
        flags()->xray_naive_log_func_duration_threshold_us;
    F.max_stack_depth = flags()->xray_naive_log_max_stack_depth;
    F.thread_buffer_size = flags()->xray_naive_log_thread_buffer_size;
  }

  P.ParseString(static_cast<const char *>(Options));
  GlobalOptions.ThreadBufferSize = F.thread_buffer_size;
  GlobalOptions.DurationFilterMicros = F.func_duration_threshold_us;
  GlobalOptions.MaxStackDepth = F.max_stack_depth;
  *basicFlags() = F;

  atomic_store(&ThresholdTicks,
               atomic_load(&TicksPerSec, memory_order_acquire) *
                   GlobalOptions.DurationFilterMicros / 1000000,
               memory_order_release);
  __xray_set_handler_arg1(atomic_load(&UseRealTSC, memory_order_acquire)
                              ? basicLoggingHandleArg1RealTSC
                              : basicLoggingHandleArg1EmulateTSC);
  __xray_set_handler(atomic_load(&UseRealTSC, memory_order_acquire)
                         ? basicLoggingHandleArg0RealTSC
                         : basicLoggingHandleArg0EmulateTSC);

  // TODO: Implement custom event and typed event handling support in Basic
  // Mode.
  __xray_remove_customevent_handler();
  __xray_remove_typedevent_handler();

  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}

XRayLogInitStatus basicLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 0,
                                      memory_order_acq_rel) &&
      Verbosity())
    Report("Basic logging already finalized.\n");

  // Nothing really to do aside from marking state of the global to be
  // uninitialized.

  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}

XRayLogFlushStatus basicLoggingFlush() XRAY_NEVER_INSTRUMENT {
  // This really does nothing, since flushing the logs happen at the end of a
  // thread's lifetime, or when the buffers are full.
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}

// This is a handler that, effectively, does nothing.
void basicLoggingHandleArg0Empty(int32_t, XRayEntryType) XRAY_NEVER_INSTRUMENT {
}

bool basicLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  XRayLogImpl Impl{
      basicLoggingInit,
      basicLoggingFinalize,
      basicLoggingHandleArg0Empty,
      basicLoggingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-basic", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
      Verbosity())
    Report("Cannot register XRay Basic Mode to 'xray-basic'; error = %d\n",
           RegistrationResult);
  if (flags()->xray_naive_log ||
      !internal_strcmp(flags()->xray_mode, "xray-basic")) {
    auto SelectResult = __xray_log_select_mode("xray-basic");
    if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
      if (Verbosity())
        Report("Failed selecting XRay Basic Mode; error = %d\n", SelectResult);
      return false;
    }

    // We initialize the implementation using the data we get from the
    // XRAY_BASIC_OPTIONS environment variable, at this point of the
    // implementation.
    auto *Env = GetEnv("XRAY_BASIC_OPTIONS");
    auto InitResult =
        __xray_log_init_mode("xray-basic", Env == nullptr ? "" : Env);
    if (InitResult != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
      if (Verbosity())
        Report("Failed initializing XRay Basic Mode; error = %d\n", InitResult);
      return false;
    }

    // At this point we know that we've successfully initialized Basic mode
    // tracing, and the only chance we're going to get for the current thread to
    // clean-up may be at thread/program exit. To ensure that we're going to get
    // the cleanup even without calling the finalization routines, we're
    // registering a program exit function that will do the cleanup.
    static pthread_once_t DynamicOnce = PTHREAD_ONCE_INIT;
    pthread_once(&DynamicOnce, +[] {
      static void *FakeTLD = nullptr;
      FakeTLD = &getThreadLocalData();
      Atexit(+[] { TLDDestructor(FakeTLD); });
    });
  }
  return true;
}

} // namespace __xray

static auto UNUSED Unused = __xray::basicLogDynamicInitializer();