fdr_controller_test.cpp
15.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
//===-- fdr_controller_test.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <memory>
#include <time.h>
#include "test_helpers.h"
#include "xray/xray_records.h"
#include "xray_buffer_queue.h"
#include "xray_fdr_controller.h"
#include "xray_fdr_log_writer.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Testing/Support/Error.h"
#include "llvm/XRay/Trace.h"
#include "llvm/XRay/XRayRecord.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace __xray {
namespace {
using ::llvm::HasValue;
using ::llvm::xray::testing::FuncId;
using ::llvm::xray::testing::HasArg;
using ::llvm::xray::testing::RecordType;
using ::llvm::xray::testing::TSCIs;
using ::testing::AllOf;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::Field;
using ::testing::Gt;
using ::testing::IsEmpty;
using ::testing::SizeIs;
class FunctionSequenceTest : public ::testing::Test {
protected:
BufferQueue::Buffer B{};
std::unique_ptr<BufferQueue> BQ;
std::unique_ptr<FDRLogWriter> W;
std::unique_ptr<FDRController<>> C;
public:
void SetUp() override {
bool Success;
BQ = std::make_unique<BufferQueue>(4096, 1, Success);
ASSERT_TRUE(Success);
ASSERT_EQ(BQ->getBuffer(B), BufferQueue::ErrorCode::Ok);
W = std::make_unique<FDRLogWriter>(B);
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 0);
}
};
TEST_F(FunctionSequenceTest, DefaultInitFinalizeFlush) {
ASSERT_TRUE(C->functionEnter(1, 2, 3));
ASSERT_TRUE(C->functionExit(1, 2, 3));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see we find the expected records.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr,
HasValue(ElementsAre(
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER)),
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT)))));
}
TEST_F(FunctionSequenceTest, BoundaryFuncIdEncoding) {
// We ensure that we can write function id's that are at the boundary of the
// acceptable function ids.
int32_t FId = (1 << 28) - 1;
uint64_t TSC = 2;
uint16_t CPU = 1;
ASSERT_TRUE(C->functionEnter(FId, TSC++, CPU));
ASSERT_TRUE(C->functionExit(FId, TSC++, CPU));
ASSERT_TRUE(C->functionEnterArg(FId, TSC++, CPU, 1));
ASSERT_TRUE(C->functionTailExit(FId, TSC++, CPU));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see we find the expected records.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr,
HasValue(ElementsAre(
AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::ENTER)),
AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::EXIT)),
AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::ENTER_ARG)),
AllOf(FuncId(FId), RecordType(llvm::xray::RecordTypes::TAIL_EXIT)))));
}
TEST_F(FunctionSequenceTest, ThresholdsAreEnforced) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
ASSERT_TRUE(C->functionEnter(1, 2, 3));
ASSERT_TRUE(C->functionExit(1, 2, 3));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see we find the *no* records, because
// the function entry-exit comes under the cycle threshold.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(IsEmpty()));
}
TEST_F(FunctionSequenceTest, ArgsAreHandledAndKept) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
ASSERT_TRUE(C->functionEnterArg(1, 2, 3, 4));
ASSERT_TRUE(C->functionExit(1, 2, 3));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see we find the function enter arg
// record with the specified argument.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr,
HasValue(ElementsAre(
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER_ARG),
HasArg(4)),
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT)))));
}
TEST_F(FunctionSequenceTest, PreservedCallsHaveCorrectTSC) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
uint64_t TSC = 1;
uint16_t CPU = 0;
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(2, TSC++, CPU));
ASSERT_TRUE(C->functionExit(2, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC += 1000, CPU));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see if we find the remaining records,
// because the function entry-exit comes under the cycle threshold.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr,
HasValue(ElementsAre(
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER),
TSCIs(Eq(1uL))),
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT),
TSCIs(Gt(1000uL))))));
}
TEST_F(FunctionSequenceTest, PreservedCallsSupportLargeDeltas) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
uint64_t TSC = 1;
uint16_t CPU = 0;
const auto LargeDelta = uint64_t{std::numeric_limits<int32_t>::max()};
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC += LargeDelta, CPU));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffer then test to see if we find the right TSC with a large
// delta.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr,
HasValue(ElementsAre(
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER),
TSCIs(Eq(1uL))),
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT),
TSCIs(Gt(LargeDelta))))));
}
TEST_F(FunctionSequenceTest, RewindingMultipleCalls) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
// First we construct an arbitrarily deep function enter/call stack.
// We also ensure that we are in the same CPU.
uint64_t TSC = 1;
uint16_t CPU = 1;
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(2, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(3, TSC++, CPU));
// Then we exit them one at a time, in reverse order of entry.
ASSERT_TRUE(C->functionExit(3, TSC++, CPU));
ASSERT_TRUE(C->functionExit(2, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC++, CPU));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see we find that all the calls have been
// unwound because all of them are under the cycle counter threshold.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(IsEmpty()));
}
TEST_F(FunctionSequenceTest, RewindingIntermediaryTailExits) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
// First we construct an arbitrarily deep function enter/call stack.
// We also ensure that we are in the same CPU.
uint64_t TSC = 1;
uint16_t CPU = 1;
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(2, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(3, TSC++, CPU));
// Next we tail-exit into a new function multiple times.
ASSERT_TRUE(C->functionTailExit(3, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(4, TSC++, CPU));
ASSERT_TRUE(C->functionTailExit(4, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(5, TSC++, CPU));
ASSERT_TRUE(C->functionTailExit(5, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(6, TSC++, CPU));
// Then we exit them one at a time, in reverse order of entry.
ASSERT_TRUE(C->functionExit(6, TSC++, CPU));
ASSERT_TRUE(C->functionExit(2, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC++, CPU));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize the buffers then test to see we find that all the calls have been
// unwound because all of them are under the cycle counter threshold.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(IsEmpty()));
}
TEST_F(FunctionSequenceTest, RewindingAfterMigration) {
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 1000);
// First we construct an arbitrarily deep function enter/call stack.
// We also ensure that we are in the same CPU.
uint64_t TSC = 1;
uint16_t CPU = 1;
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(2, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(3, TSC++, CPU));
// Next we tail-exit into a new function multiple times.
ASSERT_TRUE(C->functionTailExit(3, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(4, TSC++, CPU));
ASSERT_TRUE(C->functionTailExit(4, TSC++, CPU));
// But before we enter the next function, we migrate to a different CPU.
CPU = 2;
ASSERT_TRUE(C->functionEnter(5, TSC++, CPU));
ASSERT_TRUE(C->functionTailExit(5, TSC++, CPU));
ASSERT_TRUE(C->functionEnter(6, TSC++, CPU));
// Then we exit them one at a time, in reverse order of entry.
ASSERT_TRUE(C->functionExit(6, TSC++, CPU));
ASSERT_TRUE(C->functionExit(2, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC++, CPU));
ASSERT_TRUE(C->flush());
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// Serialize buffers then test that we can find all the events that span the
// CPU migration.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr,
HasValue(ElementsAre(
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER)),
AllOf(FuncId(2), RecordType(llvm::xray::RecordTypes::ENTER)),
AllOf(FuncId(2), RecordType(llvm::xray::RecordTypes::EXIT)),
AllOf(FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT)))));
}
class BufferManagementTest : public ::testing::Test {
protected:
BufferQueue::Buffer B{};
std::unique_ptr<BufferQueue> BQ;
std::unique_ptr<FDRLogWriter> W;
std::unique_ptr<FDRController<>> C;
static constexpr size_t kBuffers = 10;
public:
void SetUp() override {
bool Success;
BQ = std::make_unique<BufferQueue>(sizeof(MetadataRecord) * 5 +
sizeof(FunctionRecord) * 2,
kBuffers, Success);
ASSERT_TRUE(Success);
ASSERT_EQ(BQ->getBuffer(B), BufferQueue::ErrorCode::Ok);
W = std::make_unique<FDRLogWriter>(B);
C = std::make_unique<FDRController<>>(BQ.get(), B, *W, clock_gettime, 0);
}
};
constexpr size_t BufferManagementTest::kBuffers;
TEST_F(BufferManagementTest, HandlesOverflow) {
uint64_t TSC = 1;
uint16_t CPU = 1;
for (size_t I = 0; I < kBuffers + 1; ++I) {
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC++, CPU));
}
ASSERT_TRUE(C->flush());
ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok));
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(kBuffers * 2)));
}
TEST_F(BufferManagementTest, HandlesOverflowWithArgs) {
uint64_t TSC = 1;
uint16_t CPU = 1;
uint64_t ARG = 1;
for (size_t I = 0; I < kBuffers + 1; ++I) {
ASSERT_TRUE(C->functionEnterArg(1, TSC++, CPU, ARG++));
ASSERT_TRUE(C->functionExit(1, TSC++, CPU));
}
ASSERT_TRUE(C->flush());
ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok));
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(kBuffers)));
}
TEST_F(BufferManagementTest, HandlesOverflowWithCustomEvents) {
uint64_t TSC = 1;
uint16_t CPU = 1;
int32_t D = 0x9009;
for (size_t I = 0; I < kBuffers; ++I) {
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_TRUE(C->functionExit(1, TSC++, CPU));
ASSERT_TRUE(C->customEvent(TSC++, CPU, &D, sizeof(D)));
}
ASSERT_TRUE(C->flush());
ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok));
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
// We expect to also now count the kBuffers/2 custom event records showing up
// in the Trace.
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(kBuffers + (kBuffers / 2))));
}
TEST_F(BufferManagementTest, HandlesFinalizedBufferQueue) {
uint64_t TSC = 1;
uint16_t CPU = 1;
// First write one function entry.
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
// Then we finalize the buffer queue, simulating the case where the logging
// has been finalized.
ASSERT_EQ(BQ->finalize(), BufferQueue::ErrorCode::Ok);
// At this point further calls to the controller must fail.
ASSERT_FALSE(C->functionExit(1, TSC++, CPU));
// But flushing should succeed.
ASSERT_TRUE(C->flush());
// We expect that we'll only be able to find the function enter event, but not
// the function exit event.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr, HasValue(ElementsAre(AllOf(
FuncId(1), RecordType(llvm::xray::RecordTypes::ENTER)))));
}
TEST_F(BufferManagementTest, HandlesGenerationalBufferQueue) {
uint64_t TSC = 1;
uint16_t CPU = 1;
ASSERT_TRUE(C->functionEnter(1, TSC++, CPU));
ASSERT_THAT(BQ->finalize(), Eq(BufferQueue::ErrorCode::Ok));
ASSERT_THAT(BQ->init(sizeof(MetadataRecord) * 4 + sizeof(FunctionRecord) * 2,
kBuffers),
Eq(BufferQueue::ErrorCode::Ok));
EXPECT_TRUE(C->functionExit(1, TSC++, CPU));
ASSERT_TRUE(C->flush());
// We expect that we will only be able to find the function exit event, but
// not the function enter event, since we only have information about the new
// generation of the buffers.
std::string Serialized = serialize(*BQ, 3);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(
TraceOrErr, HasValue(ElementsAre(AllOf(
FuncId(1), RecordType(llvm::xray::RecordTypes::EXIT)))));
}
} // namespace
} // namespace __xray