primary32.h 18.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_PRIMARY32_H_
#define SCUDO_PRIMARY32_H_

#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "options.h"
#include "release.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"

namespace scudo {

// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
//
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
// boundary, and keeps a bytemap of the mappable address space to track the size
// class they are associated with.
//
// Mapped regions are split into equally sized Blocks according to the size
// class they belong to, and the associated pointers are shuffled to prevent any
// predictable address pattern (the predictability increases with the block
// size).
//
// Regions for size class 0 are special and used to hold TransferBatches, which
// allow to transfer arrays of pointers from the global size class freelist to
// the thread specific freelist for said class, and back.
//
// Memory used by this allocator is never unmapped but can be partially
// reclaimed if the platform allows for it.

template <class SizeClassMapT, uptr RegionSizeLog,
          s32 MinReleaseToOsIntervalMs = INT32_MIN,
          s32 MaxReleaseToOsIntervalMs = INT32_MAX>
class SizeClassAllocator32 {
public:
  typedef SizeClassMapT SizeClassMap;
  // The bytemap can only track UINT8_MAX - 1 classes.
  static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
  // Regions should be large enough to hold the largest Block.
  static_assert((1UL << RegionSizeLog) >= SizeClassMap::MaxSize, "");
  typedef SizeClassAllocator32<SizeClassMapT, RegionSizeLog,
                               MinReleaseToOsIntervalMs,
                               MaxReleaseToOsIntervalMs>
      ThisT;
  typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
  typedef typename CacheT::TransferBatch TransferBatch;
  static const bool SupportsMemoryTagging = false;

  static uptr getSizeByClassId(uptr ClassId) {
    return (ClassId == SizeClassMap::BatchClassId)
               ? sizeof(TransferBatch)
               : SizeClassMap::getSizeByClassId(ClassId);
  }

  static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }

  void initLinkerInitialized(s32 ReleaseToOsInterval) {
    if (SCUDO_FUCHSIA)
      reportError("SizeClassAllocator32 is not supported on Fuchsia");

    PossibleRegions.initLinkerInitialized();
    MinRegionIndex = NumRegions; // MaxRegionIndex is already initialized to 0.

    u32 Seed;
    const u64 Time = getMonotonicTime();
    if (UNLIKELY(!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))))
      Seed = static_cast<u32>(
          Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
    const uptr PageSize = getPageSizeCached();
    for (uptr I = 0; I < NumClasses; I++) {
      SizeClassInfo *Sci = getSizeClassInfo(I);
      Sci->RandState = getRandomU32(&Seed);
      // See comment in the 64-bit primary about releasing smaller size classes.
      Sci->CanRelease = (I != SizeClassMap::BatchClassId) &&
                        (getSizeByClassId(I) >= (PageSize / 32));
      if (Sci->CanRelease)
        Sci->ReleaseInfo.LastReleaseAtNs = Time;
    }
    setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
  }
  void init(s32 ReleaseToOsInterval) {
    memset(this, 0, sizeof(*this));
    initLinkerInitialized(ReleaseToOsInterval);
  }

  void unmapTestOnly() {
    while (NumberOfStashedRegions > 0)
      unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
            RegionSize);
    for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
      if (PossibleRegions[I])
        unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
    PossibleRegions.unmapTestOnly();
  }

  TransferBatch *popBatch(CacheT *C, uptr ClassId) {
    DCHECK_LT(ClassId, NumClasses);
    SizeClassInfo *Sci = getSizeClassInfo(ClassId);
    ScopedLock L(Sci->Mutex);
    TransferBatch *B = Sci->FreeList.front();
    if (B) {
      Sci->FreeList.pop_front();
    } else {
      B = populateFreeList(C, ClassId, Sci);
      if (UNLIKELY(!B))
        return nullptr;
    }
    DCHECK_GT(B->getCount(), 0);
    Sci->Stats.PoppedBlocks += B->getCount();
    return B;
  }

  void pushBatch(uptr ClassId, TransferBatch *B) {
    DCHECK_LT(ClassId, NumClasses);
    DCHECK_GT(B->getCount(), 0);
    SizeClassInfo *Sci = getSizeClassInfo(ClassId);
    ScopedLock L(Sci->Mutex);
    Sci->FreeList.push_front(B);
    Sci->Stats.PushedBlocks += B->getCount();
    if (Sci->CanRelease)
      releaseToOSMaybe(Sci, ClassId);
  }

  void disable() {
    // The BatchClassId must be locked last since other classes can use it.
    for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
      if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
        continue;
      getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
    }
    getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
    RegionsStashMutex.lock();
    PossibleRegions.disable();
  }

  void enable() {
    PossibleRegions.enable();
    RegionsStashMutex.unlock();
    getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
    for (uptr I = 0; I < NumClasses; I++) {
      if (I == SizeClassMap::BatchClassId)
        continue;
      getSizeClassInfo(I)->Mutex.unlock();
    }
  }

  template <typename F> void iterateOverBlocks(F Callback) {
    for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
      if (PossibleRegions[I] &&
          (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
        const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
        const uptr From = I * RegionSize;
        const uptr To = From + (RegionSize / BlockSize) * BlockSize;
        for (uptr Block = From; Block < To; Block += BlockSize)
          Callback(Block);
      }
  }

  void getStats(ScopedString *Str) {
    // TODO(kostyak): get the RSS per region.
    uptr TotalMapped = 0;
    uptr PoppedBlocks = 0;
    uptr PushedBlocks = 0;
    for (uptr I = 0; I < NumClasses; I++) {
      SizeClassInfo *Sci = getSizeClassInfo(I);
      TotalMapped += Sci->AllocatedUser;
      PoppedBlocks += Sci->Stats.PoppedBlocks;
      PushedBlocks += Sci->Stats.PushedBlocks;
    }
    Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
                "remains %zu\n",
                TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
    for (uptr I = 0; I < NumClasses; I++)
      getStats(Str, I, 0);
  }

  bool setOption(Option O, sptr Value) {
    if (O == Option::ReleaseInterval) {
      const s32 Interval =
          Max(Min(static_cast<s32>(Value), MaxReleaseToOsIntervalMs),
              MinReleaseToOsIntervalMs);
      atomic_store(&ReleaseToOsIntervalMs, Interval, memory_order_relaxed);
      return true;
    }
    // Not supported by the Primary, but not an error either.
    return true;
  }

  uptr releaseToOS() {
    uptr TotalReleasedBytes = 0;
    for (uptr I = 0; I < NumClasses; I++) {
      SizeClassInfo *Sci = getSizeClassInfo(I);
      ScopedLock L(Sci->Mutex);
      TotalReleasedBytes += releaseToOSMaybe(Sci, I, /*Force=*/true);
    }
    return TotalReleasedBytes;
  }

  static bool useMemoryTagging(Options Options) {
    (void)Options;
    return false;
  }
  void disableMemoryTagging() {}

  const char *getRegionInfoArrayAddress() const { return nullptr; }
  static uptr getRegionInfoArraySize() { return 0; }

  static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) {
    (void)RegionInfoData;
    (void)Ptr;
    return {};
  }

  AtomicOptions Options;

private:
  static const uptr NumClasses = SizeClassMap::NumClasses;
  static const uptr RegionSize = 1UL << RegionSizeLog;
  static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> RegionSizeLog;
  static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
  typedef FlatByteMap<NumRegions> ByteMap;

  struct SizeClassStats {
    uptr PoppedBlocks;
    uptr PushedBlocks;
  };

  struct ReleaseToOsInfo {
    uptr PushedBlocksAtLastRelease;
    uptr RangesReleased;
    uptr LastReleasedBytes;
    u64 LastReleaseAtNs;
  };

  struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
    HybridMutex Mutex;
    SinglyLinkedList<TransferBatch> FreeList;
    uptr CurrentRegion;
    uptr CurrentRegionAllocated;
    SizeClassStats Stats;
    bool CanRelease;
    u32 RandState;
    uptr AllocatedUser;
    ReleaseToOsInfo ReleaseInfo;
  };
  static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");

  uptr computeRegionId(uptr Mem) {
    const uptr Id = Mem >> RegionSizeLog;
    CHECK_LT(Id, NumRegions);
    return Id;
  }

  uptr allocateRegionSlow() {
    uptr MapSize = 2 * RegionSize;
    const uptr MapBase = reinterpret_cast<uptr>(
        map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
    if (UNLIKELY(!MapBase))
      return 0;
    const uptr MapEnd = MapBase + MapSize;
    uptr Region = MapBase;
    if (isAligned(Region, RegionSize)) {
      ScopedLock L(RegionsStashMutex);
      if (NumberOfStashedRegions < MaxStashedRegions)
        RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
      else
        MapSize = RegionSize;
    } else {
      Region = roundUpTo(MapBase, RegionSize);
      unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
      MapSize = RegionSize;
    }
    const uptr End = Region + MapSize;
    if (End != MapEnd)
      unmap(reinterpret_cast<void *>(End), MapEnd - End);
    return Region;
  }

  uptr allocateRegion(uptr ClassId) {
    DCHECK_LT(ClassId, NumClasses);
    uptr Region = 0;
    {
      ScopedLock L(RegionsStashMutex);
      if (NumberOfStashedRegions > 0)
        Region = RegionsStash[--NumberOfStashedRegions];
    }
    if (!Region)
      Region = allocateRegionSlow();
    if (LIKELY(Region)) {
      const uptr RegionIndex = computeRegionId(Region);
      if (RegionIndex < MinRegionIndex)
        MinRegionIndex = RegionIndex;
      if (RegionIndex > MaxRegionIndex)
        MaxRegionIndex = RegionIndex;
      PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
    }
    return Region;
  }

  SizeClassInfo *getSizeClassInfo(uptr ClassId) {
    DCHECK_LT(ClassId, NumClasses);
    return &SizeClassInfoArray[ClassId];
  }

  bool populateBatches(CacheT *C, SizeClassInfo *Sci, uptr ClassId,
                       TransferBatch **CurrentBatch, u32 MaxCount,
                       void **PointersArray, u32 Count) {
    if (ClassId != SizeClassMap::BatchClassId)
      shuffle(PointersArray, Count, &Sci->RandState);
    TransferBatch *B = *CurrentBatch;
    for (uptr I = 0; I < Count; I++) {
      if (B && B->getCount() == MaxCount) {
        Sci->FreeList.push_back(B);
        B = nullptr;
      }
      if (!B) {
        B = C->createBatch(ClassId, PointersArray[I]);
        if (UNLIKELY(!B))
          return false;
        B->clear();
      }
      B->add(PointersArray[I]);
    }
    *CurrentBatch = B;
    return true;
  }

  NOINLINE TransferBatch *populateFreeList(CacheT *C, uptr ClassId,
                                           SizeClassInfo *Sci) {
    uptr Region;
    uptr Offset;
    // If the size-class currently has a region associated to it, use it. The
    // newly created blocks will be located after the currently allocated memory
    // for that region (up to RegionSize). Otherwise, create a new region, where
    // the new blocks will be carved from the beginning.
    if (Sci->CurrentRegion) {
      Region = Sci->CurrentRegion;
      DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
      Offset = Sci->CurrentRegionAllocated;
    } else {
      DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
      Region = allocateRegion(ClassId);
      if (UNLIKELY(!Region))
        return nullptr;
      C->getStats().add(StatMapped, RegionSize);
      Sci->CurrentRegion = Region;
      Offset = 0;
    }

    const uptr Size = getSizeByClassId(ClassId);
    const u32 MaxCount = TransferBatch::getMaxCached(Size);
    DCHECK_GT(MaxCount, 0U);
    // The maximum number of blocks we should carve in the region is dictated
    // by the maximum number of batches we want to fill, and the amount of
    // memory left in the current region (we use the lowest of the two). This
    // will not be 0 as we ensure that a region can at least hold one block (via
    // static_assert and at the end of this function).
    const u32 NumberOfBlocks =
        Min(MaxNumBatches * MaxCount,
            static_cast<u32>((RegionSize - Offset) / Size));
    DCHECK_GT(NumberOfBlocks, 0U);

    TransferBatch *B = nullptr;
    constexpr u32 ShuffleArraySize =
        MaxNumBatches * TransferBatch::MaxNumCached;
    // Fill the transfer batches and put them in the size-class freelist. We
    // need to randomize the blocks for security purposes, so we first fill a
    // local array that we then shuffle before populating the batches.
    void *ShuffleArray[ShuffleArraySize];
    u32 Count = 0;
    const uptr AllocatedUser = Size * NumberOfBlocks;
    for (uptr I = Region + Offset; I < Region + Offset + AllocatedUser;
         I += Size) {
      ShuffleArray[Count++] = reinterpret_cast<void *>(I);
      if (Count == ShuffleArraySize) {
        if (UNLIKELY(!populateBatches(C, Sci, ClassId, &B, MaxCount,
                                      ShuffleArray, Count)))
          return nullptr;
        Count = 0;
      }
    }
    if (Count) {
      if (UNLIKELY(!populateBatches(C, Sci, ClassId, &B, MaxCount, ShuffleArray,
                                    Count)))
        return nullptr;
    }
    DCHECK(B);
    if (!Sci->FreeList.empty()) {
      Sci->FreeList.push_back(B);
      B = Sci->FreeList.front();
      Sci->FreeList.pop_front();
    }
    DCHECK_GT(B->getCount(), 0);

    C->getStats().add(StatFree, AllocatedUser);
    DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
    // If there is not enough room in the region currently associated to fit
    // more blocks, we deassociate the region by resetting CurrentRegion and
    // CurrentRegionAllocated. Otherwise, update the allocated amount.
    if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
      Sci->CurrentRegion = 0;
      Sci->CurrentRegionAllocated = 0;
    } else {
      Sci->CurrentRegionAllocated += AllocatedUser;
    }
    Sci->AllocatedUser += AllocatedUser;

    return B;
  }

  void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
    SizeClassInfo *Sci = getSizeClassInfo(ClassId);
    if (Sci->AllocatedUser == 0)
      return;
    const uptr InUse = Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks;
    const uptr AvailableChunks = Sci->AllocatedUser / getSizeByClassId(ClassId);
    Str->append("  %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
                "inuse: %6zu avail: %6zu rss: %6zuK releases: %6zu\n",
                ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
                Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks, InUse,
                AvailableChunks, Rss >> 10, Sci->ReleaseInfo.RangesReleased);
  }

  NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
                                 bool Force = false) {
    const uptr BlockSize = getSizeByClassId(ClassId);
    const uptr PageSize = getPageSizeCached();

    CHECK_GE(Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks);
    const uptr BytesInFreeList =
        Sci->AllocatedUser -
        (Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks) * BlockSize;
    if (BytesInFreeList < PageSize)
      return 0; // No chance to release anything.
    const uptr BytesPushed =
        (Sci->Stats.PushedBlocks - Sci->ReleaseInfo.PushedBlocksAtLastRelease) *
        BlockSize;
    if (BytesPushed < PageSize)
      return 0; // Nothing new to release.

    // Releasing smaller blocks is expensive, so we want to make sure that a
    // significant amount of bytes are free, and that there has been a good
    // amount of batches pushed to the freelist before attempting to release.
    if (BlockSize < PageSize / 16U) {
      if (!Force && BytesPushed < Sci->AllocatedUser / 16U)
        return 0;
      // We want 8x% to 9x% free bytes (the larger the bock, the lower the %).
      if ((BytesInFreeList * 100U) / Sci->AllocatedUser <
          (100U - 1U - BlockSize / 16U))
        return 0;
    }

    if (!Force) {
      const s32 IntervalMs =
          atomic_load(&ReleaseToOsIntervalMs, memory_order_relaxed);
      if (IntervalMs < 0)
        return 0;
      if (Sci->ReleaseInfo.LastReleaseAtNs +
              static_cast<u64>(IntervalMs) * 1000000 >
          getMonotonicTime()) {
        return 0; // Memory was returned recently.
      }
    }

    DCHECK_GT(MinRegionIndex, 0U);
    uptr First = 0;
    for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
      if (PossibleRegions[I] - 1U == ClassId) {
        First = I;
        break;
      }
    }
    uptr Last = 0;
    for (uptr I = MaxRegionIndex; I >= MinRegionIndex; I--) {
      if (PossibleRegions[I] - 1U == ClassId) {
        Last = I;
        break;
      }
    }
    uptr TotalReleasedBytes = 0;
    auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
      return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
    };
    if (First && Last) {
      const uptr Base = First * RegionSize;
      const uptr NumberOfRegions = Last - First + 1U;
      ReleaseRecorder Recorder(Base);
      releaseFreeMemoryToOS(Sci->FreeList, Base, RegionSize, NumberOfRegions,
                            BlockSize, &Recorder, SkipRegion);
      if (Recorder.getReleasedRangesCount() > 0) {
        Sci->ReleaseInfo.PushedBlocksAtLastRelease = Sci->Stats.PushedBlocks;
        Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
        Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
        TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
      }
    }
    Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
    return TotalReleasedBytes;
  }

  SizeClassInfo SizeClassInfoArray[NumClasses];

  // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
  ByteMap PossibleRegions;
  // Keep track of the lowest & highest regions allocated to avoid looping
  // through the whole NumRegions.
  uptr MinRegionIndex;
  uptr MaxRegionIndex;
  atomic_s32 ReleaseToOsIntervalMs;
  // Unless several threads request regions simultaneously from different size
  // classes, the stash rarely contains more than 1 entry.
  static constexpr uptr MaxStashedRegions = 4;
  HybridMutex RegionsStashMutex;
  uptr NumberOfStashedRegions;
  uptr RegionsStash[MaxStashedRegions];
};

} // namespace scudo

#endif // SCUDO_PRIMARY32_H_