primary32.h
18.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_PRIMARY32_H_
#define SCUDO_PRIMARY32_H_
#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "options.h"
#include "release.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"
namespace scudo {
// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
//
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
// boundary, and keeps a bytemap of the mappable address space to track the size
// class they are associated with.
//
// Mapped regions are split into equally sized Blocks according to the size
// class they belong to, and the associated pointers are shuffled to prevent any
// predictable address pattern (the predictability increases with the block
// size).
//
// Regions for size class 0 are special and used to hold TransferBatches, which
// allow to transfer arrays of pointers from the global size class freelist to
// the thread specific freelist for said class, and back.
//
// Memory used by this allocator is never unmapped but can be partially
// reclaimed if the platform allows for it.
template <class SizeClassMapT, uptr RegionSizeLog,
s32 MinReleaseToOsIntervalMs = INT32_MIN,
s32 MaxReleaseToOsIntervalMs = INT32_MAX>
class SizeClassAllocator32 {
public:
typedef SizeClassMapT SizeClassMap;
// The bytemap can only track UINT8_MAX - 1 classes.
static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
// Regions should be large enough to hold the largest Block.
static_assert((1UL << RegionSizeLog) >= SizeClassMap::MaxSize, "");
typedef SizeClassAllocator32<SizeClassMapT, RegionSizeLog,
MinReleaseToOsIntervalMs,
MaxReleaseToOsIntervalMs>
ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
typedef typename CacheT::TransferBatch TransferBatch;
static const bool SupportsMemoryTagging = false;
static uptr getSizeByClassId(uptr ClassId) {
return (ClassId == SizeClassMap::BatchClassId)
? sizeof(TransferBatch)
: SizeClassMap::getSizeByClassId(ClassId);
}
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
void initLinkerInitialized(s32 ReleaseToOsInterval) {
if (SCUDO_FUCHSIA)
reportError("SizeClassAllocator32 is not supported on Fuchsia");
PossibleRegions.initLinkerInitialized();
MinRegionIndex = NumRegions; // MaxRegionIndex is already initialized to 0.
u32 Seed;
const u64 Time = getMonotonicTime();
if (UNLIKELY(!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed))))
Seed = static_cast<u32>(
Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
const uptr PageSize = getPageSizeCached();
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
Sci->RandState = getRandomU32(&Seed);
// See comment in the 64-bit primary about releasing smaller size classes.
Sci->CanRelease = (I != SizeClassMap::BatchClassId) &&
(getSizeByClassId(I) >= (PageSize / 32));
if (Sci->CanRelease)
Sci->ReleaseInfo.LastReleaseAtNs = Time;
}
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void init(s32 ReleaseToOsInterval) {
memset(this, 0, sizeof(*this));
initLinkerInitialized(ReleaseToOsInterval);
}
void unmapTestOnly() {
while (NumberOfStashedRegions > 0)
unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
RegionSize);
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
if (PossibleRegions[I])
unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
PossibleRegions.unmapTestOnly();
}
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
ScopedLock L(Sci->Mutex);
TransferBatch *B = Sci->FreeList.front();
if (B) {
Sci->FreeList.pop_front();
} else {
B = populateFreeList(C, ClassId, Sci);
if (UNLIKELY(!B))
return nullptr;
}
DCHECK_GT(B->getCount(), 0);
Sci->Stats.PoppedBlocks += B->getCount();
return B;
}
void pushBatch(uptr ClassId, TransferBatch *B) {
DCHECK_LT(ClassId, NumClasses);
DCHECK_GT(B->getCount(), 0);
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
ScopedLock L(Sci->Mutex);
Sci->FreeList.push_front(B);
Sci->Stats.PushedBlocks += B->getCount();
if (Sci->CanRelease)
releaseToOSMaybe(Sci, ClassId);
}
void disable() {
// The BatchClassId must be locked last since other classes can use it.
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
continue;
getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
}
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
RegionsStashMutex.lock();
PossibleRegions.disable();
}
void enable() {
PossibleRegions.enable();
RegionsStashMutex.unlock();
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
getSizeClassInfo(I)->Mutex.unlock();
}
}
template <typename F> void iterateOverBlocks(F Callback) {
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
if (PossibleRegions[I] &&
(PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
const uptr From = I * RegionSize;
const uptr To = From + (RegionSize / BlockSize) * BlockSize;
for (uptr Block = From; Block < To; Block += BlockSize)
Callback(Block);
}
}
void getStats(ScopedString *Str) {
// TODO(kostyak): get the RSS per region.
uptr TotalMapped = 0;
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
TotalMapped += Sci->AllocatedUser;
PoppedBlocks += Sci->Stats.PoppedBlocks;
PushedBlocks += Sci->Stats.PushedBlocks;
}
Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
"remains %zu\n",
TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
for (uptr I = 0; I < NumClasses; I++)
getStats(Str, I, 0);
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval =
Max(Min(static_cast<s32>(Value), MaxReleaseToOsIntervalMs),
MinReleaseToOsIntervalMs);
atomic_store(&ReleaseToOsIntervalMs, Interval, memory_order_relaxed);
return true;
}
// Not supported by the Primary, but not an error either.
return true;
}
uptr releaseToOS() {
uptr TotalReleasedBytes = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
TotalReleasedBytes += releaseToOSMaybe(Sci, I, /*Force=*/true);
}
return TotalReleasedBytes;
}
static bool useMemoryTagging(Options Options) {
(void)Options;
return false;
}
void disableMemoryTagging() {}
const char *getRegionInfoArrayAddress() const { return nullptr; }
static uptr getRegionInfoArraySize() { return 0; }
static BlockInfo findNearestBlock(const char *RegionInfoData, uptr Ptr) {
(void)RegionInfoData;
(void)Ptr;
return {};
}
AtomicOptions Options;
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr RegionSize = 1UL << RegionSizeLog;
static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >> RegionSizeLog;
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
typedef FlatByteMap<NumRegions> ByteMap;
struct SizeClassStats {
uptr PoppedBlocks;
uptr PushedBlocks;
};
struct ReleaseToOsInfo {
uptr PushedBlocksAtLastRelease;
uptr RangesReleased;
uptr LastReleasedBytes;
u64 LastReleaseAtNs;
};
struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
HybridMutex Mutex;
SinglyLinkedList<TransferBatch> FreeList;
uptr CurrentRegion;
uptr CurrentRegionAllocated;
SizeClassStats Stats;
bool CanRelease;
u32 RandState;
uptr AllocatedUser;
ReleaseToOsInfo ReleaseInfo;
};
static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
uptr computeRegionId(uptr Mem) {
const uptr Id = Mem >> RegionSizeLog;
CHECK_LT(Id, NumRegions);
return Id;
}
uptr allocateRegionSlow() {
uptr MapSize = 2 * RegionSize;
const uptr MapBase = reinterpret_cast<uptr>(
map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
if (UNLIKELY(!MapBase))
return 0;
const uptr MapEnd = MapBase + MapSize;
uptr Region = MapBase;
if (isAligned(Region, RegionSize)) {
ScopedLock L(RegionsStashMutex);
if (NumberOfStashedRegions < MaxStashedRegions)
RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
else
MapSize = RegionSize;
} else {
Region = roundUpTo(MapBase, RegionSize);
unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
MapSize = RegionSize;
}
const uptr End = Region + MapSize;
if (End != MapEnd)
unmap(reinterpret_cast<void *>(End), MapEnd - End);
return Region;
}
uptr allocateRegion(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
uptr Region = 0;
{
ScopedLock L(RegionsStashMutex);
if (NumberOfStashedRegions > 0)
Region = RegionsStash[--NumberOfStashedRegions];
}
if (!Region)
Region = allocateRegionSlow();
if (LIKELY(Region)) {
const uptr RegionIndex = computeRegionId(Region);
if (RegionIndex < MinRegionIndex)
MinRegionIndex = RegionIndex;
if (RegionIndex > MaxRegionIndex)
MaxRegionIndex = RegionIndex;
PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
}
return Region;
}
SizeClassInfo *getSizeClassInfo(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
return &SizeClassInfoArray[ClassId];
}
bool populateBatches(CacheT *C, SizeClassInfo *Sci, uptr ClassId,
TransferBatch **CurrentBatch, u32 MaxCount,
void **PointersArray, u32 Count) {
if (ClassId != SizeClassMap::BatchClassId)
shuffle(PointersArray, Count, &Sci->RandState);
TransferBatch *B = *CurrentBatch;
for (uptr I = 0; I < Count; I++) {
if (B && B->getCount() == MaxCount) {
Sci->FreeList.push_back(B);
B = nullptr;
}
if (!B) {
B = C->createBatch(ClassId, PointersArray[I]);
if (UNLIKELY(!B))
return false;
B->clear();
}
B->add(PointersArray[I]);
}
*CurrentBatch = B;
return true;
}
NOINLINE TransferBatch *populateFreeList(CacheT *C, uptr ClassId,
SizeClassInfo *Sci) {
uptr Region;
uptr Offset;
// If the size-class currently has a region associated to it, use it. The
// newly created blocks will be located after the currently allocated memory
// for that region (up to RegionSize). Otherwise, create a new region, where
// the new blocks will be carved from the beginning.
if (Sci->CurrentRegion) {
Region = Sci->CurrentRegion;
DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
Offset = Sci->CurrentRegionAllocated;
} else {
DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
Region = allocateRegion(ClassId);
if (UNLIKELY(!Region))
return nullptr;
C->getStats().add(StatMapped, RegionSize);
Sci->CurrentRegion = Region;
Offset = 0;
}
const uptr Size = getSizeByClassId(ClassId);
const u32 MaxCount = TransferBatch::getMaxCached(Size);
DCHECK_GT(MaxCount, 0U);
// The maximum number of blocks we should carve in the region is dictated
// by the maximum number of batches we want to fill, and the amount of
// memory left in the current region (we use the lowest of the two). This
// will not be 0 as we ensure that a region can at least hold one block (via
// static_assert and at the end of this function).
const u32 NumberOfBlocks =
Min(MaxNumBatches * MaxCount,
static_cast<u32>((RegionSize - Offset) / Size));
DCHECK_GT(NumberOfBlocks, 0U);
TransferBatch *B = nullptr;
constexpr u32 ShuffleArraySize =
MaxNumBatches * TransferBatch::MaxNumCached;
// Fill the transfer batches and put them in the size-class freelist. We
// need to randomize the blocks for security purposes, so we first fill a
// local array that we then shuffle before populating the batches.
void *ShuffleArray[ShuffleArraySize];
u32 Count = 0;
const uptr AllocatedUser = Size * NumberOfBlocks;
for (uptr I = Region + Offset; I < Region + Offset + AllocatedUser;
I += Size) {
ShuffleArray[Count++] = reinterpret_cast<void *>(I);
if (Count == ShuffleArraySize) {
if (UNLIKELY(!populateBatches(C, Sci, ClassId, &B, MaxCount,
ShuffleArray, Count)))
return nullptr;
Count = 0;
}
}
if (Count) {
if (UNLIKELY(!populateBatches(C, Sci, ClassId, &B, MaxCount, ShuffleArray,
Count)))
return nullptr;
}
DCHECK(B);
if (!Sci->FreeList.empty()) {
Sci->FreeList.push_back(B);
B = Sci->FreeList.front();
Sci->FreeList.pop_front();
}
DCHECK_GT(B->getCount(), 0);
C->getStats().add(StatFree, AllocatedUser);
DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
// If there is not enough room in the region currently associated to fit
// more blocks, we deassociate the region by resetting CurrentRegion and
// CurrentRegionAllocated. Otherwise, update the allocated amount.
if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
Sci->CurrentRegion = 0;
Sci->CurrentRegionAllocated = 0;
} else {
Sci->CurrentRegionAllocated += AllocatedUser;
}
Sci->AllocatedUser += AllocatedUser;
return B;
}
void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
if (Sci->AllocatedUser == 0)
return;
const uptr InUse = Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks;
const uptr AvailableChunks = Sci->AllocatedUser / getSizeByClassId(ClassId);
Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
"inuse: %6zu avail: %6zu rss: %6zuK releases: %6zu\n",
ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks, InUse,
AvailableChunks, Rss >> 10, Sci->ReleaseInfo.RangesReleased);
}
NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
bool Force = false) {
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr PageSize = getPageSizeCached();
CHECK_GE(Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks);
const uptr BytesInFreeList =
Sci->AllocatedUser -
(Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks) * BlockSize;
if (BytesInFreeList < PageSize)
return 0; // No chance to release anything.
const uptr BytesPushed =
(Sci->Stats.PushedBlocks - Sci->ReleaseInfo.PushedBlocksAtLastRelease) *
BlockSize;
if (BytesPushed < PageSize)
return 0; // Nothing new to release.
// Releasing smaller blocks is expensive, so we want to make sure that a
// significant amount of bytes are free, and that there has been a good
// amount of batches pushed to the freelist before attempting to release.
if (BlockSize < PageSize / 16U) {
if (!Force && BytesPushed < Sci->AllocatedUser / 16U)
return 0;
// We want 8x% to 9x% free bytes (the larger the bock, the lower the %).
if ((BytesInFreeList * 100U) / Sci->AllocatedUser <
(100U - 1U - BlockSize / 16U))
return 0;
}
if (!Force) {
const s32 IntervalMs =
atomic_load(&ReleaseToOsIntervalMs, memory_order_relaxed);
if (IntervalMs < 0)
return 0;
if (Sci->ReleaseInfo.LastReleaseAtNs +
static_cast<u64>(IntervalMs) * 1000000 >
getMonotonicTime()) {
return 0; // Memory was returned recently.
}
}
DCHECK_GT(MinRegionIndex, 0U);
uptr First = 0;
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
if (PossibleRegions[I] - 1U == ClassId) {
First = I;
break;
}
}
uptr Last = 0;
for (uptr I = MaxRegionIndex; I >= MinRegionIndex; I--) {
if (PossibleRegions[I] - 1U == ClassId) {
Last = I;
break;
}
}
uptr TotalReleasedBytes = 0;
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
};
if (First && Last) {
const uptr Base = First * RegionSize;
const uptr NumberOfRegions = Last - First + 1U;
ReleaseRecorder Recorder(Base);
releaseFreeMemoryToOS(Sci->FreeList, Base, RegionSize, NumberOfRegions,
BlockSize, &Recorder, SkipRegion);
if (Recorder.getReleasedRangesCount() > 0) {
Sci->ReleaseInfo.PushedBlocksAtLastRelease = Sci->Stats.PushedBlocks;
Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
}
}
Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
return TotalReleasedBytes;
}
SizeClassInfo SizeClassInfoArray[NumClasses];
// Track the regions in use, 0 is unused, otherwise store ClassId + 1.
ByteMap PossibleRegions;
// Keep track of the lowest & highest regions allocated to avoid looping
// through the whole NumRegions.
uptr MinRegionIndex;
uptr MaxRegionIndex;
atomic_s32 ReleaseToOsIntervalMs;
// Unless several threads request regions simultaneously from different size
// classes, the stash rarely contains more than 1 entry.
static constexpr uptr MaxStashedRegions = 4;
HybridMutex RegionsStashMutex;
uptr NumberOfStashedRegions;
uptr RegionsStash[MaxStashedRegions];
};
} // namespace scudo
#endif // SCUDO_PRIMARY32_H_