sanitizer_allocator.cpp
8.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//===-- sanitizer_allocator.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
// This allocator is used inside run-times.
//===----------------------------------------------------------------------===//
#include "sanitizer_allocator.h"
#include "sanitizer_allocator_checks.h"
#include "sanitizer_allocator_internal.h"
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
namespace __sanitizer {
// Default allocator names.
const char *PrimaryAllocatorName = "SizeClassAllocator";
const char *SecondaryAllocatorName = "LargeMmapAllocator";
// ThreadSanitizer for Go uses libc malloc/free.
#if defined(SANITIZER_USE_MALLOC)
# if SANITIZER_LINUX && !SANITIZER_ANDROID
extern "C" void *__libc_malloc(uptr size);
# if !SANITIZER_GO
extern "C" void *__libc_memalign(uptr alignment, uptr size);
# endif
extern "C" void *__libc_realloc(void *ptr, uptr size);
extern "C" void __libc_free(void *ptr);
# else
# include <stdlib.h>
# define __libc_malloc malloc
# if !SANITIZER_GO
static void *__libc_memalign(uptr alignment, uptr size) {
void *p;
uptr error = posix_memalign(&p, alignment, size);
if (error) return nullptr;
return p;
}
# endif
# define __libc_realloc realloc
# define __libc_free free
# endif
static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache,
uptr alignment) {
(void)cache;
#if !SANITIZER_GO
if (alignment == 0)
return __libc_malloc(size);
else
return __libc_memalign(alignment, size);
#else
// Windows does not provide __libc_memalign/posix_memalign. It provides
// __aligned_malloc, but the allocated blocks can't be passed to free,
// they need to be passed to __aligned_free. InternalAlloc interface does
// not account for such requirement. Alignemnt does not seem to be used
// anywhere in runtime, so just call __libc_malloc for now.
DCHECK_EQ(alignment, 0);
return __libc_malloc(size);
#endif
}
static void *RawInternalRealloc(void *ptr, uptr size,
InternalAllocatorCache *cache) {
(void)cache;
return __libc_realloc(ptr, size);
}
static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
(void)cache;
__libc_free(ptr);
}
InternalAllocator *internal_allocator() {
return 0;
}
#else // SANITIZER_GO || defined(SANITIZER_USE_MALLOC)
static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)];
static atomic_uint8_t internal_allocator_initialized;
static StaticSpinMutex internal_alloc_init_mu;
static InternalAllocatorCache internal_allocator_cache;
static StaticSpinMutex internal_allocator_cache_mu;
InternalAllocator *internal_allocator() {
InternalAllocator *internal_allocator_instance =
reinterpret_cast<InternalAllocator *>(&internal_alloc_placeholder);
if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) {
SpinMutexLock l(&internal_alloc_init_mu);
if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) ==
0) {
internal_allocator_instance->Init(kReleaseToOSIntervalNever);
atomic_store(&internal_allocator_initialized, 1, memory_order_release);
}
}
return internal_allocator_instance;
}
static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache,
uptr alignment) {
if (alignment == 0) alignment = 8;
if (cache == 0) {
SpinMutexLock l(&internal_allocator_cache_mu);
return internal_allocator()->Allocate(&internal_allocator_cache, size,
alignment);
}
return internal_allocator()->Allocate(cache, size, alignment);
}
static void *RawInternalRealloc(void *ptr, uptr size,
InternalAllocatorCache *cache) {
uptr alignment = 8;
if (cache == 0) {
SpinMutexLock l(&internal_allocator_cache_mu);
return internal_allocator()->Reallocate(&internal_allocator_cache, ptr,
size, alignment);
}
return internal_allocator()->Reallocate(cache, ptr, size, alignment);
}
static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) {
if (!cache) {
SpinMutexLock l(&internal_allocator_cache_mu);
return internal_allocator()->Deallocate(&internal_allocator_cache, ptr);
}
internal_allocator()->Deallocate(cache, ptr);
}
#endif // SANITIZER_GO || defined(SANITIZER_USE_MALLOC)
namespace {
const u64 kBlockMagic = 0x6A6CB03ABCEBC041ull;
struct BlockHeader {
u64 magic;
};
} // namespace
static void NORETURN ReportInternalAllocatorOutOfMemory(uptr requested_size) {
SetAllocatorOutOfMemory();
Report("FATAL: %s: internal allocator is out of memory trying to allocate "
"0x%zx bytes\n", SanitizerToolName, requested_size);
Die();
}
void *InternalAlloc(uptr size, InternalAllocatorCache *cache, uptr alignment) {
uptr s = size + sizeof(BlockHeader);
if (s < size)
return nullptr;
BlockHeader *p = (BlockHeader *)RawInternalAlloc(s, cache, alignment);
if (UNLIKELY(!p))
ReportInternalAllocatorOutOfMemory(s);
p->magic = kBlockMagic;
return p + 1;
}
void *InternalRealloc(void *addr, uptr size, InternalAllocatorCache *cache) {
if (!addr)
return InternalAlloc(size, cache);
uptr s = size + sizeof(BlockHeader);
if (s < size)
return nullptr;
BlockHeader *p = (BlockHeader *)addr - 1;
CHECK_EQ(kBlockMagic, p->magic);
p = (BlockHeader *)RawInternalRealloc(p, s, cache);
if (UNLIKELY(!p))
ReportInternalAllocatorOutOfMemory(s);
return p + 1;
}
void *InternalReallocArray(void *addr, uptr count, uptr size,
InternalAllocatorCache *cache) {
if (UNLIKELY(CheckForCallocOverflow(count, size))) {
Report(
"FATAL: %s: reallocarray parameters overflow: count * size (%zd * %zd) "
"cannot be represented in type size_t\n",
SanitizerToolName, count, size);
Die();
}
return InternalRealloc(addr, count * size, cache);
}
void *InternalCalloc(uptr count, uptr size, InternalAllocatorCache *cache) {
if (UNLIKELY(CheckForCallocOverflow(count, size))) {
Report("FATAL: %s: calloc parameters overflow: count * size (%zd * %zd) "
"cannot be represented in type size_t\n", SanitizerToolName, count,
size);
Die();
}
void *p = InternalAlloc(count * size, cache);
if (LIKELY(p))
internal_memset(p, 0, count * size);
return p;
}
void InternalFree(void *addr, InternalAllocatorCache *cache) {
if (!addr)
return;
BlockHeader *p = (BlockHeader *)addr - 1;
CHECK_EQ(kBlockMagic, p->magic);
p->magic = 0;
RawInternalFree(p, cache);
}
// LowLevelAllocator
constexpr uptr kLowLevelAllocatorDefaultAlignment = 8;
static uptr low_level_alloc_min_alignment = kLowLevelAllocatorDefaultAlignment;
static LowLevelAllocateCallback low_level_alloc_callback;
void *LowLevelAllocator::Allocate(uptr size) {
// Align allocation size.
size = RoundUpTo(size, low_level_alloc_min_alignment);
if (allocated_end_ - allocated_current_ < (sptr)size) {
uptr size_to_allocate = RoundUpTo(size, GetPageSizeCached());
allocated_current_ =
(char*)MmapOrDie(size_to_allocate, __func__);
allocated_end_ = allocated_current_ + size_to_allocate;
if (low_level_alloc_callback) {
low_level_alloc_callback((uptr)allocated_current_,
size_to_allocate);
}
}
CHECK(allocated_end_ - allocated_current_ >= (sptr)size);
void *res = allocated_current_;
allocated_current_ += size;
return res;
}
void SetLowLevelAllocateMinAlignment(uptr alignment) {
CHECK(IsPowerOfTwo(alignment));
low_level_alloc_min_alignment = Max(alignment, low_level_alloc_min_alignment);
}
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) {
low_level_alloc_callback = callback;
}
// Allocator's OOM and other errors handling support.
static atomic_uint8_t allocator_out_of_memory = {0};
static atomic_uint8_t allocator_may_return_null = {0};
bool IsAllocatorOutOfMemory() {
return atomic_load_relaxed(&allocator_out_of_memory);
}
void SetAllocatorOutOfMemory() {
atomic_store_relaxed(&allocator_out_of_memory, 1);
}
bool AllocatorMayReturnNull() {
return atomic_load(&allocator_may_return_null, memory_order_relaxed);
}
void SetAllocatorMayReturnNull(bool may_return_null) {
atomic_store(&allocator_may_return_null, may_return_null,
memory_order_relaxed);
}
void PrintHintAllocatorCannotReturnNull() {
Report("HINT: if you don't care about these errors you may set "
"allocator_may_return_null=1\n");
}
} // namespace __sanitizer