dfmul.S 9.31 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Double Precision Multiply
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2

#define BTMP r5:4
#define BTMPH r5
#define BTMPL r4

#define PP_ODD r7:6
#define PP_ODD_H r7
#define PP_ODD_L r6

#define ONE r9:8
#define S_ONE r8
#define S_ZERO r9

#define PP_HH r11:10
#define PP_HH_H r11
#define PP_HH_L r10

#define ATMP r13:12
#define ATMPH r13
#define ATMPL r12

#define PP_LL r15:14
#define PP_LL_H r15
#define PP_LL_L r14

#define TMP r28

#define MANTBITS 52
#define HI_MANTBITS 20
#define EXPBITS 11
#define BIAS 1024
#define MANTISSA_TO_INT_BIAS 52

// Some constant to adjust normalization amount in error code
// Amount to right shift the partial product to get to a denorm
#define FUDGE 5

#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG

#define SR_ROUND_OFF 22
	.text
	.global __hexagon_muldf3
	.type __hexagon_muldf3,@function
	Q6_ALIAS(muldf3)
  FAST_ALIAS(muldf3)
  FAST2_ALIAS(muldf3)
	.p2align 5
__hexagon_muldf3:
	{
		p0 = dfclass(A,#2)
		p0 = dfclass(B,#2)
		ATMP = combine(##0x40000000,#0)
	}
	{
		ATMP = insert(A,#MANTBITS,#EXPBITS-1)
		BTMP = asl(B,#EXPBITS-1)
		TMP = #-BIAS
		ONE = #1
	}
	{
		PP_ODD = mpyu(BTMPL,ATMPH)
		BTMP = insert(ONE,#2,#62)
	}
	// since we know that the MSB of the H registers is zero, we should never carry
	// H <= 2^31-1.  L <= 2^32-1.  Therefore, HL <= 2^63-2^32-2^31+1
	// Adding 2 HLs, we get 2^64-3*2^32+2 maximum.
	// Therefore, we can add 3 2^32-1 values safely without carry.  We only need one.
	{
		PP_LL = mpyu(ATMPL,BTMPL)
		PP_ODD += mpyu(ATMPL,BTMPH)
	}
	{
		PP_ODD += lsr(PP_LL,#32)
		PP_HH = mpyu(ATMPH,BTMPH)
		BTMP = combine(##BIAS+BIAS-4,#0)
	}
	{
		PP_HH += lsr(PP_ODD,#32)
		if (!p0) jump .Lmul_abnormal
		p1 = cmp.eq(PP_LL_L,#0)		// 64 lsb's 0?
		p1 = cmp.eq(PP_ODD_L,#0)	// 64 lsb's 0?
	}

	// PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts
	// PP_HH can have a minimum of 0x1000_0000_0000_0000 or so

#undef PP_ODD
#undef PP_ODD_H
#undef PP_ODD_L
#define EXP10 r7:6
#define EXP1 r7
#define EXP0 r6
	{
		if (!p1) PP_HH_L = or(PP_HH_L,S_ONE)
		EXP0 = extractu(AH,#EXPBITS,#HI_MANTBITS)
		EXP1 = extractu(BH,#EXPBITS,#HI_MANTBITS)
	}
	{
		PP_LL = neg(PP_HH)
		EXP0 += add(TMP,EXP1)
		TMP = xor(AH,BH)
	}
	{
		if (!p2.new) PP_HH = PP_LL
		p2 = cmp.gt(TMP,#-1)
		p0 = !cmp.gt(EXP0,BTMPH)
		p0 = cmp.gt(EXP0,BTMPL)
		if (!p0.new) jump:nt .Lmul_ovf_unf
	}
	{
		A = convert_d2df(PP_HH)
		EXP0 = add(EXP0,#-BIAS-58)
	}
	{
		AH += asl(EXP0,#HI_MANTBITS)
		jumpr r31
	}

	.falign
.Lpossible_unf:
	// We end up with a positive exponent
	// But we may have rounded up to an exponent of 1.
	// If the exponent is 1, if we rounded up to it
	// we need to also raise underflow
	// Fortunately, this is pretty easy to detect, we must have +/- 0x0010_0000_0000_0000
	// And the PP should also have more than one bit set
	//
	// Note: ATMP should have abs(PP_HH)
	// Note: BTMPL should have 0x7FEFFFFF
	{
		p0 = cmp.eq(AL,#0)
		p0 = bitsclr(AH,BTMPL)
		if (!p0.new) jumpr:t r31
		BTMPH = #0x7fff
	}
	{
		p0 = bitsset(ATMPH,BTMPH)
		BTMPL = USR
		BTMPH = #0x030
	}
	{
		if (p0) BTMPL = or(BTMPL,BTMPH)
	}
	{
		USR = BTMPL
	}
	{
		p0 = dfcmp.eq(A,A)
		jumpr r31
	}
	.falign
.Lmul_ovf_unf:
	{
		A = convert_d2df(PP_HH)
		ATMP = abs(PP_HH)			// take absolute value
		EXP1 = add(EXP0,#-BIAS-58)
	}
	{
		AH += asl(EXP1,#HI_MANTBITS)
		EXP1 = extractu(AH,#EXPBITS,#HI_MANTBITS)
		BTMPL = ##0x7FEFFFFF
	}
	{
		EXP1 += add(EXP0,##-BIAS-58)
		//BTMPH = add(clb(ATMP),#-2)
		BTMPH = #0
	}
	{
		p0 = cmp.gt(EXP1,##BIAS+BIAS-2)	// overflow
		if (p0.new) jump:nt .Lmul_ovf
	}
	{
		p0 = cmp.gt(EXP1,#0)
		if (p0.new) jump:nt .Lpossible_unf
		BTMPH = sub(EXP0,BTMPH)
		TMP = #63				// max amount to shift
	}
	// Underflow
	//
	// PP_HH has the partial product with sticky LSB.
	// PP_HH can have a maximum of 0x3FFF_FFFF_FFFF_FFFF or thereabouts
	// PP_HH can have a minimum of 0x1000_0000_0000_0000 or so
	// The exponent of PP_HH is in  EXP1, which is non-positive (0 or negative)
	// That's the exponent that happens after the normalization
	//
	// EXP0 has the exponent that, when added to the normalized value, is out of range.
	//
	// Strategy:
	//
	// * Shift down bits, with sticky bit, such that the bits are aligned according
	//   to the LZ count and appropriate exponent, but not all the way to mantissa
	//   field, keep around the last few bits.
	// * Put a 1 near the MSB
	// * Check the LSBs for inexact; if inexact also set underflow
	// * Convert [u]d2df -- will correctly round according to rounding mode
	// * Replace exponent field with zero

	{
		BTMPL = #0	 			// offset for extract
		BTMPH = sub(#FUDGE,BTMPH)		// amount to right shift
	}
	{
		p3 = cmp.gt(PP_HH_H,#-1)		// is it positive?
		BTMPH = min(BTMPH,TMP)			// Don't shift more than 63
		PP_HH = ATMP
	}
	{
		TMP = USR
		PP_LL = extractu(PP_HH,BTMP)
	}
	{
		PP_HH = asr(PP_HH,BTMPH)
		BTMPL = #0x0030					// underflow flag
		AH = insert(S_ZERO,#EXPBITS,#HI_MANTBITS)
	}
	{
		p0 = cmp.gtu(ONE,PP_LL)				// Did we extract all zeros?
		if (!p0.new) PP_HH_L = or(PP_HH_L,S_ONE)	// add sticky bit
		PP_HH_H = setbit(PP_HH_H,#HI_MANTBITS+3)	// Add back in a bit so we can use convert instruction
	}
	{
		PP_LL = neg(PP_HH)
		p1 = bitsclr(PP_HH_L,#0x7)		// Are the LSB's clear?
		if (!p1.new) TMP = or(BTMPL,TMP)	// If not, Inexact+Underflow
	}
	{
		if (!p3) PP_HH = PP_LL
		USR = TMP
	}
	{
		A = convert_d2df(PP_HH)			// Do rounding
		p0 = dfcmp.eq(A,A)			// realize exception
	}
	{
		AH = insert(S_ZERO,#EXPBITS-1,#HI_MANTBITS+1)		// Insert correct exponent
		jumpr r31
	}
	.falign
.Lmul_ovf:
	// We get either max finite value or infinity.  Either way, overflow+inexact
	{
		TMP = USR
		ATMP = combine(##0x7fefffff,#-1)	// positive max finite
		A = PP_HH
	}
	{
		PP_LL_L = extractu(TMP,#2,#SR_ROUND_OFF)	// rounding bits
		TMP = or(TMP,#0x28)			// inexact + overflow
		BTMP = combine(##0x7ff00000,#0)		// positive infinity
	}
	{
		USR = TMP
		PP_LL_L ^= lsr(AH,#31)			// Does sign match rounding?
		TMP = PP_LL_L				// unmodified rounding mode
	}
	{
		p0 = !cmp.eq(TMP,#1)			// If not round-to-zero and
		p0 = !cmp.eq(PP_LL_L,#2)		// Not rounding the other way,
		if (p0.new) ATMP = BTMP			// we should get infinity
		p0 = dfcmp.eq(A,A)			// Realize FP exception if enabled
	}
	{
		A = insert(ATMP,#63,#0)			// insert inf/maxfinite, leave sign
		jumpr r31
	}

.Lmul_abnormal:
	{
		ATMP = extractu(A,#63,#0)		// strip off sign
		BTMP = extractu(B,#63,#0)		// strip off sign
	}
	{
		p3 = cmp.gtu(ATMP,BTMP)
		if (!p3.new) A = B			// sort values
		if (!p3.new) B = A			// sort values
	}
	{
		// Any NaN --> NaN, possibly raise invalid if sNaN
		p0 = dfclass(A,#0x0f)		// A not NaN?
		if (!p0.new) jump:nt .Linvalid_nan
		if (!p3) ATMP = BTMP
		if (!p3) BTMP = ATMP
	}
	{
		// Infinity * nonzero number is infinity
		p1 = dfclass(A,#0x08)		// A is infinity
		p1 = dfclass(B,#0x0e)		// B is nonzero
	}
	{
		// Infinity * zero --> NaN, raise invalid
		// Other zeros return zero
		p0 = dfclass(A,#0x08)		// A is infinity
		p0 = dfclass(B,#0x01)		// B is zero
	}
	{
		if (p1) jump .Ltrue_inf
		p2 = dfclass(B,#0x01)
	}
	{
		if (p0) jump .Linvalid_zeroinf
		if (p2) jump .Ltrue_zero		// so return zero
		TMP = ##0x7c000000
	}
	// We are left with a normal or subnormal times a subnormal. A > B
	// If A and B are both very small (exp(a) < BIAS-MANTBITS),
	// we go to a single sticky bit, which we can round easily.
	// If A and B might multiply to something bigger, decrease A exponent and increase
	// B exponent and try again
	{
		p0 = bitsclr(AH,TMP)
		if (p0.new) jump:nt .Lmul_tiny
	}
	{
		TMP = cl0(BTMP)
	}
	{
		TMP = add(TMP,#-EXPBITS)
	}
	{
		BTMP = asl(BTMP,TMP)
	}
	{
		B = insert(BTMP,#63,#0)
		AH -= asl(TMP,#HI_MANTBITS)
	}
	jump __hexagon_muldf3
.Lmul_tiny:
	{
		TMP = USR
		A = xor(A,B)				// get sign bit
	}
	{
		TMP = or(TMP,#0x30)			// Inexact + Underflow
		A = insert(ONE,#63,#0)			// put in rounded up value
		BTMPH = extractu(TMP,#2,#SR_ROUND_OFF)	// get rounding mode
	}
	{
		USR = TMP
		p0 = cmp.gt(BTMPH,#1)			// Round towards pos/neg inf?
		if (!p0.new) AL = #0			// If not, zero
		BTMPH ^= lsr(AH,#31)			// rounding my way --> set LSB
	}
	{
		p0 = cmp.eq(BTMPH,#3)			// if rounding towards right inf
		if (!p0.new) AL = #0			// don't go to zero
		jumpr r31
	}
.Linvalid_zeroinf:
	{
		TMP = USR
	}
	{
		A = #-1
		TMP = or(TMP,#2)
	}
	{
		USR = TMP
	}
	{
		p0 = dfcmp.uo(A,A)			// force exception if enabled
		jumpr r31
	}
.Linvalid_nan:
	{
		p0 = dfclass(B,#0x0f)			// if B is not NaN
		TMP = convert_df2sf(A)			// will generate invalid if sNaN
		if (p0.new) B = A 			// make it whatever A is
	}
	{
		BL = convert_df2sf(B)			// will generate invalid if sNaN
		A = #-1
		jumpr r31
	}
	.falign
.Ltrue_zero:
	{
		A = B
		B = A
	}
.Ltrue_inf:
	{
		BH = extract(BH,#1,#31)
	}
	{
		AH ^= asl(BH,#31)
		jumpr r31
	}
END(__hexagon_muldf3)

#undef ATMP
#undef ATMPL
#undef ATMPH
#undef BTMP
#undef BTMPL
#undef BTMPH