dfdiv.S 9.62 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Double Precision Divide

#define A r1:0
#define AH r1
#define AL r0

#define B r3:2
#define BH r3
#define BL r2

#define Q r5:4
#define QH r5
#define QL r4

#define PROD r7:6
#define PRODHI r7
#define PRODLO r6

#define SFONE r8
#define SFDEN r9
#define SFERROR r10
#define SFRECIP r11

#define EXPBA r13:12
#define EXPB r13
#define EXPA r12

#define REMSUB2 r15:14



#define SIGN r28

#define Q_POSITIVE p3
#define NORMAL p2
#define NO_OVF_UNF p1
#define P_TMP p0

#define RECIPEST_SHIFT 3
#define QADJ 61

#define DFCLASS_NORMAL 0x02
#define DFCLASS_NUMBER 0x0F
#define DFCLASS_INFINITE 0x08
#define DFCLASS_ZERO 0x01
#define DFCLASS_NONZERO (DFCLASS_NUMBER ^ DFCLASS_ZERO)
#define DFCLASS_NONINFINITE (DFCLASS_NUMBER ^ DFCLASS_INFINITE)

#define DF_MANTBITS 52
#define DF_EXPBITS 11
#define SF_MANTBITS 23
#define SF_EXPBITS 8
#define DF_BIAS 0x3ff

#define SR_ROUND_OFF 22

#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG

	.text
	.global __hexagon_divdf3
	.type __hexagon_divdf3,@function
	Q6_ALIAS(divdf3)
        FAST_ALIAS(divdf3)
        FAST2_ALIAS(divdf3)
	.p2align 5
__hexagon_divdf3:
	{
		NORMAL = dfclass(A,#DFCLASS_NORMAL)
		NORMAL = dfclass(B,#DFCLASS_NORMAL)
		EXPBA = combine(BH,AH)
		SIGN = xor(AH,BH)
	}
#undef A
#undef AH
#undef AL
#undef B
#undef BH
#undef BL
#define REM r1:0
#define REMHI r1
#define REMLO r0
#define DENOM r3:2
#define DENOMHI r3
#define DENOMLO r2
	{
		if (!NORMAL) jump .Ldiv_abnormal
		PROD = extractu(DENOM,#SF_MANTBITS,#DF_MANTBITS-SF_MANTBITS)
		SFONE = ##0x3f800001
	}
	{
		SFDEN = or(SFONE,PRODLO)
		EXPB = extractu(EXPB,#DF_EXPBITS,#DF_MANTBITS-32)
		EXPA = extractu(EXPA,#DF_EXPBITS,#DF_MANTBITS-32)
		Q_POSITIVE = cmp.gt(SIGN,#-1)
	}
#undef SIGN
#define ONE r28
.Ldenorm_continue:
	{
		SFRECIP,P_TMP = sfrecipa(SFONE,SFDEN)
		SFERROR = and(SFONE,#-2)
		ONE = #1
		EXPA = sub(EXPA,EXPB)
	}
#undef EXPB
#define RECIPEST r13
	{
		SFERROR -= sfmpy(SFRECIP,SFDEN):lib
		REMHI = insert(ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)
		RECIPEST = ##0x00800000 << RECIPEST_SHIFT
	}
	{
		SFRECIP += sfmpy(SFRECIP,SFERROR):lib
		DENOMHI = insert(ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)
		SFERROR = and(SFONE,#-2)
	}
	{
		SFERROR -= sfmpy(SFRECIP,SFDEN):lib
		QH = #-DF_BIAS+1
		QL = #DF_BIAS-1
	}
	{
		SFRECIP += sfmpy(SFRECIP,SFERROR):lib
		NO_OVF_UNF = cmp.gt(EXPA,QH)
		NO_OVF_UNF = !cmp.gt(EXPA,QL)
	}
	{
		RECIPEST = insert(SFRECIP,#SF_MANTBITS,#RECIPEST_SHIFT)
		Q = #0
		EXPA = add(EXPA,#-QADJ)
	}
#undef SFERROR
#undef SFRECIP
#define TMP r10
#define TMP1 r11
	{
		RECIPEST = add(RECIPEST,#((-3) << RECIPEST_SHIFT))
	}

#define DIV_ITER1B(QSHIFTINSN,QSHIFT,REMSHIFT,EXTRA) \
	{ \
		PROD = mpyu(RECIPEST,REMHI); \
		REM = asl(REM,# ## ( REMSHIFT )); \
	}; \
	{ \
		PRODLO = # ## 0; \
		REM -= mpyu(PRODHI,DENOMLO); \
		REMSUB2 = mpyu(PRODHI,DENOMHI); \
	}; \
	{ \
		Q += QSHIFTINSN(PROD, # ## ( QSHIFT )); \
		REM -= asl(REMSUB2, # ## 32); \
		EXTRA \
	}


	DIV_ITER1B(ASL,14,15,)
	DIV_ITER1B(ASR,1,15,)
	DIV_ITER1B(ASR,16,15,)
	DIV_ITER1B(ASR,31,15,PROD=# ( 0 );)

#undef REMSUB2
#define TMPPAIR r15:14
#define TMPPAIRHI r15
#define TMPPAIRLO r14
#undef RECIPEST
#define EXPB r13
	{
		// compare or sub with carry
		TMPPAIR = sub(REM,DENOM)
		P_TMP = cmp.gtu(DENOM,REM)
		// set up amt to add to q
		if (!P_TMP.new) PRODLO  = #2
	}
	{
		Q = add(Q,PROD)
		if (!P_TMP) REM = TMPPAIR
		TMPPAIR = #0
	}
	{
		P_TMP = cmp.eq(REM,TMPPAIR)
		if (!P_TMP.new) QL = or(QL,ONE)
	}
	{
		PROD = neg(Q)
	}
	{
		if (!Q_POSITIVE) Q = PROD
	}
#undef REM
#undef REMHI
#undef REMLO
#undef DENOM
#undef DENOMLO
#undef DENOMHI
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
	{
		A = convert_d2df(Q)
		if (!NO_OVF_UNF) jump .Ldiv_ovf_unf
	}
	{
		AH += asl(EXPA,#DF_MANTBITS-32)
		jumpr r31
	}

.Ldiv_ovf_unf:
	{
		AH += asl(EXPA,#DF_MANTBITS-32)
		EXPB = extractu(AH,#DF_EXPBITS,#DF_MANTBITS-32)
	}
	{
		PROD = abs(Q)
		EXPA = add(EXPA,EXPB)
	}
	{
		P_TMP = cmp.gt(EXPA,##DF_BIAS+DF_BIAS)		// overflow
		if (P_TMP.new) jump:nt .Ldiv_ovf
	}
	{
		P_TMP = cmp.gt(EXPA,#0)
		if (P_TMP.new) jump:nt .Lpossible_unf		// round up to normal possible...
	}
	// Underflow
	// We know what the infinite range exponent should be (EXPA)
	// Q is 2's complement, PROD is abs(Q)
	// Normalize Q, shift right, add a high bit, convert, change exponent

#define FUDGE1 7	// how much to shift right
#define FUDGE2 4	// how many guard/round to keep at lsbs

	{
		EXPB = add(clb(PROD),#-1)			// doesn't need to be added in since
		EXPA = sub(#FUDGE1,EXPA)			// we extract post-converted exponent
		TMP = USR
		TMP1 = #63
	}
	{
		EXPB = min(EXPA,TMP1)
		TMP1 = or(TMP,#0x030)
		PROD = asl(PROD,EXPB)
		EXPA = #0
	}
	{
		TMPPAIR = extractu(PROD,EXPBA)				// bits that will get shifted out
		PROD = lsr(PROD,EXPB)					// shift out bits
		B = #1
	}
	{
		P_TMP = cmp.gtu(B,TMPPAIR)
		if (!P_TMP.new) PRODLO = or(BL,PRODLO)
		PRODHI = setbit(PRODHI,#DF_MANTBITS-32+FUDGE2)
	}
	{
		Q = neg(PROD)
		P_TMP = bitsclr(PRODLO,#(1<<FUDGE2)-1)
		if (!P_TMP.new) TMP = TMP1
	}
	{
		USR = TMP
		if (Q_POSITIVE) Q = PROD
		TMP = #-DF_BIAS-(DF_MANTBITS+FUDGE2)
	}
	{
		A = convert_d2df(Q)
	}
	{
		AH += asl(TMP,#DF_MANTBITS-32)
		jumpr r31
	}


.Lpossible_unf:
	// If upper parts of Q were all F's, but abs(A) == 0x00100000_00000000, we rounded up to min_normal
	// The answer is correct, but we need to raise Underflow
	{
		B = extractu(A,#63,#0)
		TMPPAIR = combine(##0x00100000,#0)		// min normal
		TMP = #0x7FFF
	}
	{
		P_TMP = dfcmp.eq(TMPPAIR,B)		// Is everything zero in the rounded value...
		P_TMP = bitsset(PRODHI,TMP)		// but a bunch of bits set in the unrounded abs(quotient)?
	}

#if (__HEXAGON_ARCH__ == 60)
		TMP = USR		// If not, just return
		if (!P_TMP) jumpr r31   // Else, we want to set Unf+Inexact
					// Note that inexact is already set...
#else
	{
		if (!P_TMP) jumpr r31			// If not, just return
		TMP = USR				// Else, we want to set Unf+Inexact
	}						// Note that inexact is already set...
#endif
	{
		TMP = or(TMP,#0x30)
	}
	{
		USR = TMP
	}
	{
		p0 = dfcmp.eq(A,A)
		jumpr r31
	}

.Ldiv_ovf:

	// Raise Overflow, and choose the correct overflow value (saturated normal or infinity)

	{
		TMP = USR
		B = combine(##0x7fefffff,#-1)
		AH = mux(Q_POSITIVE,#0,#-1)
	}
	{
		PROD = combine(##0x7ff00000,#0)
		QH = extractu(TMP,#2,#SR_ROUND_OFF)
		TMP = or(TMP,#0x28)
	}
	{
		USR = TMP
		QH ^= lsr(AH,#31)
		QL = QH
	}
	{
		p0 = !cmp.eq(QL,#1)		// if not round-to-zero
		p0 = !cmp.eq(QH,#2)		// and not rounding the other way
		if (p0.new) B = PROD		// go to inf
		p0 = dfcmp.eq(B,B)		// get exceptions
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}

#undef ONE
#define SIGN r28
#undef NORMAL
#undef NO_OVF_UNF
#define P_INF p1
#define P_ZERO p2
.Ldiv_abnormal:
	{
		P_TMP = dfclass(A,#DFCLASS_NUMBER)
		P_TMP = dfclass(B,#DFCLASS_NUMBER)
		Q_POSITIVE = cmp.gt(SIGN,#-1)
	}
	{
		P_INF = dfclass(A,#DFCLASS_INFINITE)
		P_INF = dfclass(B,#DFCLASS_INFINITE)
	}
	{
		P_ZERO = dfclass(A,#DFCLASS_ZERO)
		P_ZERO = dfclass(B,#DFCLASS_ZERO)
	}
	{
		if (!P_TMP) jump .Ldiv_nan
		if (P_INF) jump .Ldiv_invalid
	}
	{
		if (P_ZERO) jump .Ldiv_invalid
	}
	{
		P_ZERO = dfclass(A,#DFCLASS_NONZERO)		// nonzero
		P_ZERO = dfclass(B,#DFCLASS_NONINFINITE)	// non-infinite
	}
	{
		P_INF = dfclass(A,#DFCLASS_NONINFINITE)	// non-infinite
		P_INF = dfclass(B,#DFCLASS_NONZERO)	// nonzero
	}
	{
		if (!P_ZERO) jump .Ldiv_zero_result
		if (!P_INF) jump .Ldiv_inf_result
	}
	// Now we've narrowed it down to (de)normal / (de)normal
	// Set up A/EXPA B/EXPB and go back
#undef P_ZERO
#undef P_INF
#define P_TMP2 p1
	{
		P_TMP = dfclass(A,#DFCLASS_NORMAL)
		P_TMP2 = dfclass(B,#DFCLASS_NORMAL)
		TMP = ##0x00100000
	}
	{
		EXPBA = combine(BH,AH)
		AH = insert(TMP,#DF_EXPBITS+1,#DF_MANTBITS-32)		// clear out hidden bit, sign bit
		BH = insert(TMP,#DF_EXPBITS+1,#DF_MANTBITS-32)		// clear out hidden bit, sign bit
	}
	{
		if (P_TMP) AH = or(AH,TMP)				// if normal, add back in hidden bit
		if (P_TMP2) BH = or(BH,TMP)				// if normal, add back in hidden bit
	}
	{
		QH = add(clb(A),#-DF_EXPBITS)
		QL = add(clb(B),#-DF_EXPBITS)
		TMP = #1
	}
	{
		EXPA = extractu(EXPA,#DF_EXPBITS,#DF_MANTBITS-32)
		EXPB = extractu(EXPB,#DF_EXPBITS,#DF_MANTBITS-32)
	}
	{
		A = asl(A,QH)
		B = asl(B,QL)
		if (!P_TMP) EXPA = sub(TMP,QH)
		if (!P_TMP2) EXPB = sub(TMP,QL)
	}	// recreate values needed by resume coke
	{
		PROD = extractu(B,#SF_MANTBITS,#DF_MANTBITS-SF_MANTBITS)
	}
	{
		SFDEN = or(SFONE,PRODLO)
		jump .Ldenorm_continue
	}

.Ldiv_zero_result:
	{
		AH = xor(AH,BH)
		B = #0
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}
.Ldiv_inf_result:
	{
		p2 = dfclass(B,#DFCLASS_ZERO)
		p2 = dfclass(A,#DFCLASS_NONINFINITE)
	}
	{
		TMP = USR
		if (!p2) jump 1f
		AH = xor(AH,BH)
	}
	{
		TMP = or(TMP,#0x04)		// DBZ
	}
	{
		USR = TMP
	}
1:
	{
		B = combine(##0x7ff00000,#0)
		p0 = dfcmp.uo(B,B)		// take possible exception
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}
.Ldiv_nan:
	{
		p0 = dfclass(A,#0x10)
		p1 = dfclass(B,#0x10)
		if (!p0.new) A = B
		if (!p1.new) B = A
	}
	{
		QH = convert_df2sf(A)	// get possible invalid exceptions
		QL = convert_df2sf(B)
	}
	{
		A = #-1
		jumpr r31
	}

.Ldiv_invalid:
	{
		TMP = ##0x7f800001
	}
	{
		A = convert_sf2df(TMP)		// get invalid, get DF qNaN
		jumpr r31
	}
END(__hexagon_divdf3)