folding07.f90
19 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
! RUN: %S/test_folding.sh %s %t %f18
! Test numeric model inquiry intrinsics
module m
integer, parameter :: &
bs1 = bit_size(0_1), &
bs2 = bit_size(0_2), &
bs4 = bit_size(0_4), &
bs8 = bit_size(0_8), &
bs16 = bit_size(0_16)
logical, parameter :: test_bit_size_1 = bs1 == 8
logical, parameter :: test_bit_size_2 = bs2 == 16
logical, parameter :: test_bit_size_4 = bs4 == 32
logical, parameter :: test_bit_size_8 = bs8 == 64
logical, parameter :: test_bit_size_16 = bs16 == 128
real(2), parameter :: &
eps2 = epsilon(0._2), zeps2 = real(z'1000', kind=2), deps2 = 4.8828125e-4_2
real(3), parameter :: &
eps3 = epsilon(0._3), zeps3 = real(z'3b80', kind=3), deps3 = 3.90625e-3_3
real(4), parameter :: &
eps4 = epsilon(0._4), zeps4 = real(z'33800000', kind=4), &
deps4 = 5.9604644775390625e-8_4
real(8), parameter :: &
eps8 = epsilon(0._8), zeps8 = real(z'3ca0000000000000', kind=8), &
deps8 = 1.1102230246251565404236316680908203125e-16_8
real(10), parameter :: &
eps10 = epsilon(0._10), zeps10 = real(z'3fbf8000000000000000', kind=10), &
deps10 = 5.42101086242752217003726400434970855712890625e-20_10
real(16), parameter :: &
eps16 = epsilon(0._16), &
zeps16 = real(z'3f8e0000000000000000000000000000', kind=16), &
deps16 = 9.629649721936179265279889712924636592690508241076940976199693977832794189453125e-35_16
logical, parameter :: test_eps2 = eps2 == zeps2 .and. eps2 == deps2
logical, parameter :: test_eps3 = eps3 == zeps3 .and. eps3 == deps3
logical, parameter :: test_eps4 = eps4 == zeps4 .and. eps4 == deps4
logical, parameter :: test_eps8 = eps8 == zeps8 .and. eps8 == deps8
logical, parameter :: test_eps10 = eps10 == zeps10 .and. eps10 == deps10
logical, parameter :: test_eps16 = eps16 == zeps16 .and. eps16 == deps16
integer(1), parameter :: &
ihuge1 = huge(0_1), zihuge1 = int(z'7f', kind=1), dihuge1 = 127_1
integer(2), parameter :: &
ihuge2 = huge(0_2), zihuge2 = int(z'7fff', kind=2), dihuge2 = 32767_2
integer(4), parameter :: &
ihuge4 = huge(0_4), zihuge4 = int(z'7fffffff', kind=4), &
dihuge4 = 2147483647_4
integer(8), parameter :: &
ihuge8 = huge(0_8), zihuge8 = int(z'7fffffffffffffff', kind=8), &
dihuge8 = 9223372036854775807_8
integer(16), parameter :: &
ihuge16 = huge(0_16), &
zihuge16 = int(z'7fffffffffffffffffffffffffffffff', kind=16), &
dihuge16 = 170141183460469231731687303715884105727_16
logical, parameter :: test_ihuge1 = ihuge1 == zihuge1 .and. ihuge1 == dihuge1
logical, parameter :: test_ihuge2 = ihuge2 == zihuge2 .and. ihuge2 == dihuge2
logical, parameter :: test_ihuge4 = ihuge4 == zihuge4 .and. ihuge4 == dihuge4
logical, parameter :: test_ihuge8 = ihuge8 == zihuge8 .and. ihuge8 == dihuge8
logical, parameter :: test_ihuge16 = ihuge16 == zihuge16 .and. ihuge16 == dihuge16
real(2), parameter :: &
ahuge2 = huge(0._2), zahuge2 = real(z'7bff', kind=2), dahuge2 = 6.5504e4_2
real(3), parameter :: &
ahuge3 = huge(0._3), zahuge3 = real(z'7f7f', kind=3), &
dahuge3 = 3.3895313892515354759047080037148786688e38_3
real(4), parameter :: &
ahuge4 = huge(0._4), zahuge4 = real(z'7f7fffff', kind=4), &
dahuge4 = 3.4028234663852885981170418348451692544e38_4
real(8), parameter :: &
ahuge8 = huge(0._8), zahuge8 = real(z'7fefffffffffffff', kind=8), &
dahuge8 = 1.7976931348623157081452742373170435679807056752584499659891747680315726078002853876058955863276687817&
&1540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868&
&5084551339423045832369032229481658085593321233482747978262041447231687381771809192998812504040261841&
&24858368e308_8
real(10), parameter :: &
ahuge10 = huge(0._10), zahuge10 = real(z'7ffeffffffffffffffff', kind=10), &
dahuge10 = 1.1897314953572317650212638530309702051690633222946242004403237338917370055229707226164102903365288828&
&5354569780749557731442744315367028843419812557385374367867359320070697326320191591828296152436552951&
&0646791086614311790632169778838896134786560600399148753433211454911160088679845154866512852340149773&
&0376000091254793939662231513836224178385427439178381387178058894875405751682263476592355769748051137&
&2564902088485522249479139937758502601177354918009979622602685950855888360815984690023564513234659447&
&6384939859276456284579661772930407806609229102715046085388087959327781622986827547830768080040150694&
&9423034117289577771003357140105597752421240573470073862516601108283791196230084692772009651535002084&
&7447079244384854591288672300061908512647211195136146752763351956292759795725027800298079590419313960&
&3021470997035276467445530922022679656280991498232083329641241038509239184734786121921697210543484287&
&0483534081130425730022164213489173471742348007148807510020643905172342476560047217680964861079949434&
&1570347632064355862420744350442438056613601760883747816538902780957697597728686007148702828795556714&
&1404632615832623602762896316173978484254486860609948270867968048078702511858930838546584223040908805&
&9962945945862019037660484467909260022254105307759010657606713472001258464069570302571389609837579989&
&2695455305236856075868317922311363951946885088077187210470520395758748001314313144425494391994017575&
&3169339392366881856189129931729104252921236835159922322050998001677102784035360140829296398115122877&
&7681357060457893435354516965395612540488464471697868932116710872290880827783505182288576460622187397&
&0285165508372099234948333443522898475123275372663606621390228126470623407535207172405866507951821730&
&3463782631353393706774901950197841690441824738063162828586857741432581165364040218402724913393320949&
&2194984224427304270198730445366203502623869578046820036014472919971230955300572061418669748528468561&
&8651483271597448120312194675168637934309618961510733006555242148519520176285859509105183947250286387&
&1632494167613804996319791441870254302706758495192008837915169401581740046711477877201459644461175204&
&0594535047647218079757611117208462736392796003396704700376133745095531841500737964126050479232516613&
&5484129188421134082301547330475406707281876350361733290800595189632520707167390454777712968226520622&
&5651439919376804400292380903112437912614776255964694221981375146967079446870358004392507659451618379&
&8118593920495440361149153107822510726914869798092409467721427270124043771874092167566136349389004512&
&3235166814608932240069799317601780533819184998193300841098599393876029260139091141452600372028487213&
&2411955424282101831204216104467404621635336900583664606591156298764745525068145003932941404131495400&
&6776029510059622530228230036314738246810596484424413248645731374375950964161680480241293518762046681&
&3563687753281467553879887177183651289394719533506188500326760735438867336800207438784965701457609034&
&9857571243045102038730494854256702479339322809110526041538528994849203991091946129912491633289917998&
&0943803378795220931314669461497059396641523759492858909604899161219449899863848370224866722491489246&
&7841020618336462741696957630763248023558797524525373703543388296086275342774001633343405508353704850&
&7374544819754722228975281083020898682633020285259923084168054539687911418297629988964576482765287504&
&5628549242651652177507995162596692291149777889623566709566271384820181913483216879958636526376209782&
&8507009933729439678463987902491451422274252700636394232799848397673998715441855420156224415492665301&
&4515504685489258620276085761837129763358761215382565129633538141663949516556000264159186554850057052&
&6114319529199188079545223946496276356301785808966922264062353828985358675959906470083856871238103295&
&9192649484625076899225841930548076362021508902214922052806984201835084058693849381549890944546197789&
&3029113576516775406232278298314033473276603952231603422824717528181818844304880921321933550869873395&
&8612760736708666523755556758031714901084773200964243187800700087973460329062789435537435644488519071&
&9161645514115576193939969076741515640282654366402676009508752394550734155613586793306603174472092444&
&6513532366647649735400851967040771103640538150073486891798364049570606189535005089840913826869535090&
&0667833244725787121966044152849248400418509328119089636341757398971665960007594878006191640948543387&
&5852065711654107226099628815012314437794400874930194474433078438899570184271000480830501217712356062&
&2895076269042856800047718893158089358515593863176652948089031267747029662545110861548958395087796755&
&4641379448959605279752098748138397625785921057562844017593493241621483395653501891968113890918437957&
&3470326940634289008780584694035245347939808067427323629788710086717580253156130235606487870925986528&
&8416350972529537091114317204887747405539054009425375424119317944175137064689643861517718849867010341&
&5325423859110896247108853858086888377772586485641459342621210866475884892600317623459607695088491496&
&6244415660441955208681198977024e4932_10
real(16), parameter :: &
ahuge16 = huge(0._16), zahuge16 = real(z'7ffeffffffffffffffffffffffffffff', kind=16), &
dahuge16 = 1.1897314953572317650857593266280070161964690526416940455296988842121635797553123923249740128484620735&
&2590203356474912685975526543357380446267269875194526149085346195872502126284586579940540449357468156&
&6096686172574953791792292256220777095858112702436475442537092608935138247345677279593806773692330094&
&6157461197257841728898925219399207576542048645656733564522472781522888677006389355954564966995114417&
&5290960687851325094831139688610052683309212868397475219226638679188087369434307734815556410166997113&
&8512786874753496996549221727686770196551512812712488289469952298031867469924683981576664562667786719&
&0614996396303416570983054252372208766646300878087672561828032202122199248523759030495209113959109189&
&2120527349676858811903011159301878936803923201167140417584510885470696521560577711351625740481881769&
&5075025715299705916714352103671782759119316034498392169720631800164034124698918142227577300459309880&
&4547151796062998955075830758511951858579711731676769660579988993526318854177162953020146688023840758&
&4603622660648014297759540713505037980864913015716402406031178690879637251033587351277479527574859541&
&7572920936651398752709055215663939505589207804914540432978557623565645991208599669097180808881920063&
&7227714312184890119222096790535459636284173260024397328029395243137866685140273814343210366365711716&
&7042358647275956123197079396783927914728272019537706060212263845788320480934171752680963925353944773&
&0280863675704796054050525162959099932535265586464682793821550087166946662209865086040990507131145474&
&2674110428395423227629949387596131127438371928396826762575553883728144908453957471281620658715882191&
&0888724011665136196205080002917629993882608241754751673226993047313326125892184551681523545535431045&
&8114528303607394526100730578774092094736822286015459361126642549541799645333882549670764145955017051&
&3308000612538651401801532119293614565003435147928902055320217600618822326157365533772949809740595905&
&2018796145979938674151302850593441045360348019238334932111517181105100410859283099181138255290906487&
&3029533418691087118107895004426881765865961841419267486232005929789956207494587649901662172318722999&
&4845123258260870315619363836897406865052797752967893316136838227985970406516005241290251498948731531&
&9694209505667084746692764481259650670012944357951247923062137397808873125708979962290218382410541293&
&0483065603459863120371744282301377070153823878609951218937542956964157950988060608985782910656238116&
&1422035741047574518281708048752574462041283485138290827317223641893804935883389476643706232798207558&
&3164620541748839306283820178954721954319445090211369992596537690819279215212221282457887933650687528&
&8617303469517112245451315447164280392523574962804175375927948971096983905242318797695347043690474223&
&8132665056397611644388442665313646268512196339944341540985621273959361844218214442734315345078601616&
&1428702272098406156966033337278824103713153807737748015267058325792053556997331818811268567331899796&
&7497786786001251403873023920127717626858627038170562807276699687356274072773403132694104831615879354&
&3958115858251128378415632227616233344591881315378823557324830300859768903829697344762145934281912127&
&1714133304757786755221851743106484876037319629031012446614508707837714052853304868420427879959665251&
&4009368964527494988719996088230065668196236298805733689960371306226158464997243490564472254071897564&
&1441285398399860960455632647712855850663041779957201017448443871583297673755604162078008788300720724&
&1390865785566723954636935777578134428819598917631335685641784543423281488674422674670706697975557712&
&1788798468777700116472954103621810567107869855646414713502627836321256957407217461738363552424248762&
&4364780853518109957492932381740813319050481446127009055414257022203025376114948242287653245779337785&
&1981877869734028258091278067497905893806255685600107605770598216668682475603756961576049761981948205&
&2758118532729333127733603742149847001463931981340719681330844408263017545241644293372483217234561694&
&2639378557592944486629790954192274518015884259778696940266014279196551684158959230431151917518727133&
&4609575263460825447598815416225495259785319903964588374219923638761039583094807436598839770784963225&
&2080920941206268114832425403540515474312327876180802357701527842702008781378306569508588571830140611&
&0980426830095308627974030153554643774062498539644810004022317716657008936075218040845236685686491032&
&5886266629337247244143556352059546170104239050079561583450594483732665254246744436486149918427509748&
&5253621979537504128523848241127715641240965261646703516395599407360083455079665191393229410544185167&
&9990997876554244625589008743884056491694537267393122602348155432978423086460721901479480729284567258&
&3503954612118213364077776992584180757905173583882311275962271406750966991364528828189455892561297242&
&5252452248453502562347348900936766966136332741088135837550717443838484760651019872222926016920811114&
&6169371432077434885046020127763642567468723152059526010722289706864609324352227544963417635351891055&
&48847634608972381760403137363968e4932_16
logical, parameter :: test_ahuge2 = ahuge2 == zahuge2 .and. ahuge2 == dahuge2
logical, parameter :: test_ahuge3 = ahuge3 == zahuge3 .and. ahuge3 == dahuge3
logical, parameter :: test_ahuge4 = ahuge4 == zahuge4 .and. ahuge4 == dahuge4
logical, parameter :: test_ahuge8 = ahuge8 == zahuge8 .and. ahuge8 == dahuge8
logical, parameter :: test_ahuge10 = ahuge10 == zahuge10 .and. ahuge10 == dahuge10
logical, parameter :: test_ahuge16 = ahuge16 == zahuge16 .and. ahuge16 == dahuge16
real(2), parameter :: tiny2 = tiny(0._2), ztiny2 = real(z'0400', kind=2)
real(3), parameter :: tiny3 = tiny(0._3), ztiny3 = real(z'0080', kind=3)
real(4), parameter :: tiny4 = tiny(0._4), ztiny4 = real(z'00800000', kind=4)
real(8), parameter :: tiny8 = tiny(0._8), ztiny8 = real(z'0010000000000000', kind=8)
real(10), parameter :: tiny10 = tiny(0._10), ztiny10 = real(z'00018000000000000000', kind=10)
real(16), parameter :: tiny16 = tiny(0._16), ztiny16 = real(z'00010000000000000000000000000000', kind=16)
logical, parameter :: test_tiny2 = tiny2 == ztiny2
logical, parameter :: test_tiny3 = tiny3 == ztiny3
logical, parameter :: test_tiny4 = tiny4 == ztiny4
logical, parameter :: test_tiny8 = tiny8 == ztiny8
logical, parameter :: test_tiny10 = tiny10 == ztiny10
logical, parameter :: test_tiny16 = tiny16 == ztiny16
integer, parameter :: &
max2 = maxexponent(0._2), &
max3 = maxexponent(0._3), &
max4 = maxexponent(0._4), &
max8 = maxexponent(0._8), &
max10 = maxexponent(0._10), &
max16 = maxexponent(0._16)
logical, parameter :: test_max2 = max2 == 15
logical, parameter :: test_max3 = max3 == 127
logical, parameter :: test_max4 = max4 == 127
logical, parameter :: test_max8 = max8 == 1023
logical, parameter :: test_max10 = max10 == 16383
logical, parameter :: test_max16 = max16 == 16383
integer, parameter :: &
min2 = minexponent(0._2), &
min3 = minexponent(0._3), &
min4 = minexponent(0._4), &
min8 = minexponent(0._8), &
min10 = minexponent(0._10), &
min16 = minexponent(0._16)
logical, parameter :: test_min2 = min2 == -14
logical, parameter :: test_min3 = min3 == -126
logical, parameter :: test_min4 = min4 == -126
logical, parameter :: test_min8 = min8 == -1022
logical, parameter :: test_min10 = min10 == -16382
logical, parameter :: test_min16 = min16 == -16382
integer, parameter :: &
irange1 = range(0_1), &
irange2 = range(0_2), &
irange4 = range(0_4), &
irange8 = range(0_8), &
irange16 = range(0_16)
logical, parameter :: test_irange1 = irange1 == 2
logical, parameter :: test_irange2 = irange2 == 4
logical, parameter :: test_irange4 = irange4 == 9
logical, parameter :: test_irange8 = irange8 == 18
logical, parameter :: test_irange16 = irange16 == 38
integer, parameter :: &
arange2 = range(0._2), zrange2 = range((0._2,0._2)), &
arange3 = range(0._3), zrange3 = range((0._3, 0._3)), &
arange4 = range(0._4), zrange4 = range((0._4, 0._4)), &
arange8 = range(0._8), zrange8 = range((0._8, 0._8)), &
arange10 = range(0._10), zrange10 = range((0._10, 0._10)), &
arange16 = range(0._16), zrange16 = range((0._16, 0._16))
logical, parameter :: test_arange2 = arange2 == 4 .and. zrange2 == 4
logical, parameter :: test_arange3 = arange3 == 37 .and. zrange3 == 37
logical, parameter :: test_zrange4 = arange4 == 37 .and. zrange4 == 37
logical, parameter :: test_zrange8 = arange8 == 307 .and. zrange8 == 307
logical, parameter :: test_zrange10 = arange10 == 4931 .and. zrange10 == 4931
logical, parameter :: test_zrange16 = arange16 == 4931 .and. zrange16 == 4931
end module