simplify-affine-structures.mlir
13 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -simplify-affine-structures | FileCheck %s
// CHECK-DAG: #[[$SET_EMPTY:.*]] = affine_set<() : (1 == 0)>
// CHECK-DAG: #[[$SET_2D:.*]] = affine_set<(d0, d1) : (d0 - 100 == 0, d1 - 10 == 0, -d0 + 100 >= 0, d1 >= 0)>
// CHECK-DAG: #[[$SET_7_11:.*]] = affine_set<(d0, d1) : (d0 * 7 + d1 * 5 + 88 == 0, d0 * 5 - d1 * 11 + 60 == 0, d0 * 11 + d1 * 7 - 24 == 0, d0 * 7 + d1 * 5 + 88 == 0)>
// An external function that we will use in bodies to avoid DCE.
func @external() -> ()
// CHECK-LABEL: func @test_gaussian_elimination_empty_set0() {
func @test_gaussian_elimination_empty_set0() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1) : (2 == 0)>(%arg0, %arg1) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_gaussian_elimination_empty_set1() {
func @test_gaussian_elimination_empty_set1() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1) : (1 >= 0, -1 >= 0)> (%arg0, %arg1) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_gaussian_elimination_non_empty_set2() {
func @test_gaussian_elimination_non_empty_set2() {
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: #[[$SET_2D]](%arg0, %arg1)
affine.if affine_set<(d0, d1) : (d0 - 100 == 0, d1 - 10 == 0, -d0 + 100 >= 0, d1 >= 0, d1 + 101 >= 0)>(%arg0, %arg1) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_gaussian_elimination_empty_set3() {
func @test_gaussian_elimination_empty_set3() {
%c7 = constant 7 : index
%c11 = constant 11 : index
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1)[s0, s1] : (d0 - s0 == 0, d0 + s0 == 0, s0 - 1 == 0)>(%arg0, %arg1)[%c7, %c11] {
call @external() : () -> ()
}
}
}
return
}
// Set for test case: test_gaussian_elimination_non_empty_set4
#set_2d_non_empty = affine_set<(d0, d1)[s0, s1] : (d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 * 5 - d1 * 11 + s0 * 7 + s1 == 0,
d0 * 11 + d1 * 7 - s0 * 5 + s1 == 0,
d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0)>
// CHECK-LABEL: func @test_gaussian_elimination_non_empty_set4() {
func @test_gaussian_elimination_non_empty_set4() {
%c7 = constant 7 : index
%c11 = constant 11 : index
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: #[[$SET_7_11]](%arg0, %arg1)
affine.if #set_2d_non_empty(%arg0, %arg1)[%c7, %c11] {
call @external() : () -> ()
}
}
}
return
}
// Add invalid constraints to previous non-empty set to make it empty.
#set_2d_empty = affine_set<(d0, d1)[s0, s1] : (d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 * 5 - d1 * 11 + s0 * 7 + s1 == 0,
d0 * 11 + d1 * 7 - s0 * 5 + s1 == 0,
d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
d0 - 1 == 0, d0 + 2 == 0)>
// CHECK-LABEL: func @test_gaussian_elimination_empty_set5() {
func @test_gaussian_elimination_empty_set5() {
%c7 = constant 7 : index
%c11 = constant 11 : index
affine.for %arg0 = 1 to 10 {
affine.for %arg1 = 1 to 100 {
// CHECK: #[[$SET_EMPTY]]()
affine.if #set_2d_empty(%arg0, %arg1)[%c7, %c11] {
call @external() : () -> ()
}
}
}
return
}
// This is an artificially created system to exercise the worst case behavior of
// FM elimination - as a safeguard against improperly constructed constraint
// systems or fuzz input.
#set_fuzz_virus = affine_set<(d0, d1, d2, d3, d4, d5) : (
1089234*d0 + 203472*d1 + 82342 >= 0,
-55*d0 + 24*d1 + 238*d2 - 234*d3 - 9743 >= 0,
-5445*d0 - 284*d1 + 23*d2 + 34*d3 - 5943 >= 0,
-5445*d0 + 284*d1 + 238*d2 - 34*d3 >= 0,
445*d0 + 284*d1 + 238*d2 + 39*d3 >= 0,
-545*d0 + 214*d1 + 218*d2 - 94*d3 >= 0,
44*d0 - 184*d1 - 231*d2 + 14*d3 >= 0,
-45*d0 + 284*d1 + 138*d2 - 39*d3 >= 0,
154*d0 - 84*d1 + 238*d2 - 34*d3 >= 0,
54*d0 - 284*d1 - 223*d2 + 384*d3 >= 0,
-55*d0 + 284*d1 + 23*d2 + 34*d3 >= 0,
54*d0 - 84*d1 + 28*d2 - 34*d3 >= 0,
54*d0 - 24*d1 - 23*d2 + 34*d3 >= 0,
-55*d0 + 24*d1 + 23*d2 + 4*d3 >= 0,
15*d0 - 84*d1 + 238*d2 - 3*d3 >= 0,
5*d0 - 24*d1 - 223*d2 + 84*d3 >= 0,
-5*d0 + 284*d1 + 23*d2 - 4*d3 >= 0,
14*d0 + 4*d2 + 7234 >= 0,
-174*d0 - 534*d2 + 9834 >= 0,
194*d0 - 954*d2 + 9234 >= 0,
47*d0 - 534*d2 + 9734 >= 0,
-194*d0 - 934*d2 + 984 >= 0,
-947*d0 - 953*d2 + 234 >= 0,
184*d0 - 884*d2 + 884 >= 0,
-174*d0 + 834*d2 + 234 >= 0,
844*d0 + 634*d2 + 9874 >= 0,
-797*d2 - 79*d3 + 257 >= 0,
2039*d0 + 793*d2 - 99*d3 - 24*d4 + 234*d5 >= 0,
78*d2 - 788*d5 + 257 >= 0,
d3 - (d5 + 97*d0) floordiv 423 >= 0,
234* (d0 + d3 mod 5 floordiv 2342) mod 2309
+ (d0 + 2038*d3) floordiv 208 >= 0,
239* (d0 + 2300 * d3) floordiv 2342
mod 2309 mod 239423 == 0,
d0 + d3 mod 2642 + (d3 + 2*d0) mod 1247
mod 2038 mod 2390 mod 2039 floordiv 55 >= 0
)>
// CHECK-LABEL: func @test_fuzz_explosion
func @test_fuzz_explosion(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) {
affine.for %arg4 = 1 to 10 {
affine.for %arg5 = 1 to 100 {
affine.if #set_fuzz_virus(%arg4, %arg5, %arg0, %arg1, %arg2, %arg3) {
call @external() : () -> ()
}
}
}
return
}
// CHECK-LABEL: func @test_empty_set(%arg0: index) {
func @test_empty_set(%N : index) {
affine.for %i = 0 to 10 {
affine.for %j = 0 to 10 {
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1) : (d0 - d1 >= 0, d1 - d0 - 1 >= 0)>(%i, %j) {
"foo"() : () -> ()
}
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0) : (d0 >= 0, -d0 - 1 >= 0)>(%i) {
"bar"() : () -> ()
}
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0) : (d0 >= 0, -d0 - 1 >= 0)>(%i) {
"foo"() : () -> ()
}
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0)[s0, s1] : (d0 >= 0, -d0 + s0 - 1 >= 0, -s0 >= 0)>(%i)[%N, %N] {
"bar"() : () -> ()
}
// CHECK: affine.if #[[$SET_EMPTY]]()
// The set below implies d0 = d1; so d1 >= d0, but d0 >= d1 + 1.
affine.if affine_set<(d0, d1, d2) : (d0 - d1 == 0, d2 - d0 >= 0, d0 - d1 - 1 >= 0)>(%i, %j, %N) {
"foo"() : () -> ()
}
// CHECK: affine.if #[[$SET_EMPTY]]()
// The set below has rational solutions but no integer solutions; GCD test catches it.
affine.if affine_set<(d0, d1) : (d0*2 -d1*2 - 1 == 0, d0 >= 0, -d0 + 100 >= 0, d1 >= 0, -d1 + 100 >= 0)>(%i, %j) {
"foo"() : () -> ()
}
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1) : (d1 == 0, d0 - 1 >= 0, - d0 - 1 >= 0)>(%i, %j) {
"foo"() : () -> ()
}
}
}
// The tests below test GCDTightenInequalities().
affine.for %k = 0 to 10 {
affine.for %l = 0 to 10 {
// Empty because no multiple of 8 lies between 4 and 7.
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0)>(%k) {
"foo"() : () -> ()
}
// Same as above but with equalities and inequalities.
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1) : (d0 - 4*d1 == 0, 4*d1 - 5 >= 0, -4*d1 + 7 >= 0)>(%k, %l) {
"foo"() : () -> ()
}
// Same as above but with a combination of multiple identifiers. 4*d0 +
// 8*d1 here is a multiple of 4, and so can't lie between 9 and 11. GCD
// tightening will tighten constraints to 4*d0 + 8*d1 >= 12 and 4*d0 +
// 8*d1 <= 8; hence infeasible.
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1) : (4*d0 + 8*d1 - 9 >= 0, -4*d0 - 8*d1 + 11 >= 0)>(%k, %l) {
"foo"() : () -> ()
}
// Same as above but with equalities added into the mix.
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0, d1, d2) : (d0 - 4*d2 == 0, d0 + 8*d1 - 9 >= 0, -d0 - 8*d1 + 11 >= 0)>(%k, %k, %l) {
"foo"() : () -> ()
}
}
}
affine.for %m = 0 to 10 {
// CHECK: affine.if #[[$SET_EMPTY]]()
affine.if affine_set<(d0) : (d0 mod 2 - 3 == 0)> (%m) {
"foo"() : () -> ()
}
}
return
}
// -----
// An external function that we will use in bodies to avoid DCE.
func @external() -> ()
// CHECK-DAG: #[[$SET:.*]] = affine_set<()[s0] : (s0 >= 0, -s0 + 50 >= 0)
// CHECK-DAG: #[[$EMPTY_SET:.*]] = affine_set<() : (1 == 0)
// CHECK-DAG: #[[$UNIV_SET:.*]] = affine_set<() : (0 == 0)
// CHECK-LABEL: func @simplify_set
func @simplify_set(%a : index, %b : index) {
// CHECK: affine.if #[[$SET]]
affine.if affine_set<(d0, d1) : (d0 - d1 + d1 + d0 >= 0, 2 >= 0, d0 >= 0, -d0 + 50 >= 0, -d0 + 100 >= 0)>(%a, %b) {
call @external() : () -> ()
}
// CHECK: affine.if #[[$EMPTY_SET]]
affine.if affine_set<(d0, d1) : (d0 mod 2 - 1 == 0, d0 - 2 * (d0 floordiv 2) == 0)>(%a, %b) {
call @external() : () -> ()
}
// CHECK: affine.if #[[$UNIV_SET]]
affine.if affine_set<(d0, d1) : (1 >= 0, 3 >= 0)>(%a, %b) {
call @external() : () -> ()
}
return
}
// -----
// CHECK-DAG: -> (s0 * 2 + 1)
// Test "op local" simplification on affine.apply. DCE on addi will not happen.
func @affine.apply(%N : index) {
%v = affine.apply affine_map<(d0, d1) -> (d0 + d1 + 1)>(%N, %N)
addi %v, %v : index
// CHECK: affine.apply #map{{.*}}()[%arg0]
// CHECK-NEXT: addi
return
}
// -----
// CHECK-DAG: #[[MAP_0D:.*]] = affine_map<() -> ()>
// CHECK-LABEL: func @simplify_zero_dim_map
func @simplify_zero_dim_map(%in : memref<f32>) -> f32 {
%out = affine.load %in[] : memref<f32>
return %out : f32
}
// -----
// Tests the simplification of a semi-affine expression in various cases.
// CHECK-DAG: #[[$map0:.*]] = affine_map<()[s0, s1] -> (-(s1 floordiv s0) + 2)>
// CHECK-DAG: #[[$map1:.*]] = affine_map<()[s0, s1] -> (-(s1 floordiv s0) + 42)>
// Tests the simplification of a semi-affine expression with a modulo operation on a floordiv and multiplication.
// CHECK-LABEL: func @semiaffine_mod
func @semiaffine_mod(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + s0 * s0) mod s0)> (%arg0)[%arg1]
// CHECK: %[[CST:.*]] = constant 0
return %a : index
}
// Tests the simplification of a semi-affine expression with a nested floordiv and a floordiv on modulo operation.
// CHECK-LABEL: func @semiaffine_floordiv
func @semiaffine_floordiv(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + ((2 * s0) mod (3 * s0))) floordiv s0)> (%arg0)[%arg1]
// CHECK: affine.apply #[[$map0]]()[%arg1, %arg0]
return %a : index
}
// Tests the simplification of a semi-affine expression with a ceildiv operation and a division of constant 0 by a symbol.
// CHECK-LABEL: func @semiaffine_ceildiv
func @semiaffine_ceildiv(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + s0 * 42 + ((5-5) floordiv s0)) ceildiv s0)> (%arg0)[%arg1]
// CHECK: affine.apply #[[$map1]]()[%arg1, %arg0]
return %a : index
}
// Tests the simplification of a semi-affine expression with a nested ceildiv operation and further simplifications after performing ceildiv.
// CHECK-LABEL: func @semiaffine_composite_floor
func @semiaffine_composite_floor(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->(((((s0 * 2) ceildiv 4) * 5) + s0 * 42) ceildiv s0)> (%arg0)[%arg1]
// CHECK: %[[CST:.*]] = constant 47
return %a : index
}
// Tests the simplification of a semi-affine expression with a modulo operation with a second operand that simplifies to symbol.
// CHECK-LABEL: func @semiaffine_unsimplified_symbol
func @semiaffine_unsimplified_symbol(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->(s0 mod (2 * s0 - s0))> (%arg0)[%arg1]
// CHECK: %[[CST:.*]] = constant 0
return %a : index
}