dma-generate.mlir 28.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-data-copy-generate="generate-dma fast-mem-space=2 skip-non-unit-stride-loops" -verify-diagnostics | FileCheck %s
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-data-copy-generate="generate-dma fast-mem-capacity=16 fast-mem-space=2" | FileCheck %s --check-prefix FAST-MEM-16KB

// We run most test cases with -copy-skip-non-unit-stride-loops to allow testing
// DMA generation at inner levels easily - since the DMA generation would
// otherwise always generate DMAs at the outermost level (default for fast mem
// capacity is infinite). Using a specific capacity makes it harder to write
// a test case as one would have to calculate total footprints. With
// -copy-skip-non-unit-stride-loops, non-unit strides will always be skipped and
// its inner loops will be traversed till a unit stride loop is found (or the
// innermost block is reached).

// -----

// Index of the buffer for the second DMA is remapped.
// CHECK-DAG: [[MAP0:#map[0-9]+]] = affine_map<(d0) -> (d0)>

// CHECK-LABEL: func @loop_nest_1d() {
func @loop_nest_1d() {
  %A = alloc() : memref<256 x f32>
  %B = alloc() : memref<512 x f32>
  %F = alloc() : memref<256 x f32, 2>
  // First DMA buffer.
  // CHECK:  alloc() : memref<256xf32>
  // CHECK:  alloc() : memref<256xf32, 2>
  // Tag for first DMA.
  // CHECK:  alloc() : memref<1xi32>
  // First DMA transfer.
  // CHECK:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<256xf32, 2>, memref<1xi32>
  // CHECK:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
  // Second DMA buffer.
  // CHECK:  alloc() : memref<256xf32, 2>
  // Tag for second DMA.
  // CHECK:  alloc() : memref<1xi32>
  // Second DMA transfer.
  // CHECK:       affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<512xf32>, memref<256xf32, 2>, memref<1xi32>
  // CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
  // CHECK: affine.for %[[IV:.*]] = 0 to 256 {
      // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<256xf32, 2>
      // Buffer for '%{{.*}}' in faster memref space is of smaller size: 256xf32
      // Affine map for load on B is composed and becomes identity.
      // CHECK:      affine.load %{{.*}}[%[[IV]]] : memref<256xf32, 2>
      // Already in faster memory space.
      // CHECK:     affine.load %{{.*}}[%[[IV]]] : memref<256xf32, 2>
  // CHECK-NEXT: }
  // CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
  // CHECK-NEXT: dealloc %{{.*}} : memref<256xf32, 2>
  // CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
  // CHECK-NEXT: dealloc %{{.*}} : memref<256xf32, 2>
  // CHECK-NEXT: return
  affine.for %i = 0 to 256 {
    affine.load %A[%i] : memref<256 x f32>
    %idx = affine.apply affine_map<(d0) -> (d0 + 256)>(%i)
    affine.load %B[%idx] : memref<512 x f32>
    affine.load %F[%i] : memref<256 x f32, 2>
  }
  return
}

// -----

// CHECK-LABEL: func @loop_nest_high_d
// CHECK:      %{{.*}} = constant 16384 : index
// CHECK-DAG:  [[BUFB:%[0-9]+]] = alloc() : memref<512x32xf32, 2>
// CHECK-DAG:  [[BUFA:%[0-9]+]] = alloc() : memref<512x32xf32, 2>
// CHECK-DAG:  [[BUFC:%[0-9]+]] = alloc() : memref<512x32xf32, 2>
// CHECK-DAG:  [[TAGB:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-DAG:  [[TAGA:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-DAG:  [[TAGC:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-DAG:  [[TAGC_W:%[0-9]+]] = alloc() : memref<1xi32>
// INCOMING DMA for B
// CHECK-DAG:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], [[BUFB]][%{{.*}}, %{{.*}}], [[TAGB]][%{{.*}}], %{{.*}} : memref<512x32xf32>, memref<512x32xf32, 2>, memref<1xi32>
// CHECK-DAG:  affine.dma_wait [[TAGB]][%{{.*}}], %{{.*}} : memref<1xi32>
// INCOMING DMA for A.
// CHECK-DAG:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], [[BUFA]][%{{.*}}, %{{.*}}], [[TAGA]][%{{.*}}], %{{.*}} : memref<512x32xf32>, memref<512x32xf32, 2>, memref<1xi32>
// CHECK-DAG:  affine.dma_wait [[TAGA]][%{{.*}}], %{{.*}} : memref<1xi32>
// INCOMING DMA for C.
// CHECK-DAG:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], [[BUFC]][%{{.*}}, %{{.*}}], [[TAGC]][%{{.*}}], %{{.*}} : memref<512x32xf32>, memref<512x32xf32, 2>, memref<1xi32>
// CHECK-DAG:  affine.dma_wait [[TAGC]][%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT:    affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT:      affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT:        affine.for %{{.*}} = 0 to 16 {
// CHECK:               affine.load [[BUFB]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT:          "foo"(%{{.*}}) : (f32) -> ()
// CHECK-NEXT:        }
// CHECK-NEXT:        affine.for %{{.*}} = 0 to 16 {
// CHECK:               affine.load [[BUFA]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT:          "bar"(%{{.*}}) : (f32) -> ()
// CHECK-NEXT:        }
// CHECK-NEXT:        affine.for %{{.*}} = 0 to 16 {
// CHECK-NEXT:          "abc_compute"() : () -> f32
// CHECK:               affine.load [[BUFC]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT:          "addf32"(%{{.*}}, %{{.*}}) : (f32, f32) -> f32
// CHECK-NEXT:          affine.store %{{.*}}, [[BUFC]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT:        }
// CHECK-NEXT:        "foobar"() : () -> ()
// CHECK-NEXT:      }
// CHECK-NEXT:    }
// CHECK-NEXT:  }
// OUTGOING DMA for C.
// CHECK-NEXT:  affine.dma_start [[BUFC]][%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], [[TAGC_W]][%{{.*}}], %{{.*}} : memref<512x32xf32, 2>, memref<512x32xf32>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait [[TAGC_W]][%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc [[TAGC_W]] : memref<1xi32>
// CHECK-NEXT:  dealloc [[TAGC]] : memref<1xi32>
// CHECK-NEXT:  dealloc [[BUFC]] : memref<512x32xf32, 2>
// CHECK-NEXT:  dealloc [[TAGA]] : memref<1xi32>
// CHECK-NEXT:  dealloc [[BUFA]] : memref<512x32xf32, 2>
// CHECK-NEXT:  dealloc [[TAGB]] : memref<1xi32>
// CHECK-NEXT:  dealloc [[BUFB]] : memref<512x32xf32, 2>
// CHECK-NEXT:  return
// CHECK-NEXT:}
func @loop_nest_high_d(%A: memref<512 x 32 x f32>,
    %B: memref<512 x 32 x f32>, %C: memref<512 x 32 x f32>) {
  // DMAs will be performed at this level (jT is the first loop without a stride).
  // A and B are read, while C is both read and written. A total of three new buffers
  // are allocated and existing load's/store's are replaced by accesses to those buffers.
  affine.for %jT = 0 to 32 {
    affine.for %kT = 0 to 32 {
      affine.for %iT = 0 to 32 {
        affine.for %kk = 0 to 16 { // k intratile
          %k = affine.apply affine_map<(d0, d1) -> (16*d0 + d1)> (%kT, %kk)
          %v0 = affine.load %B[%k, %jT] : memref<512 x 32 x f32>
          "foo"(%v0) : (f32) -> ()
        }
        affine.for %ii = 0 to 16 { // i intratile.
          %i = affine.apply affine_map<(d0, d1) -> (16*d0 + d1)>(%iT, %ii)
          %v1 = affine.load %A[%i, %kT] : memref<512 x 32 x f32>
          "bar"(%v1) : (f32) -> ()
        }
        affine.for %ii_ = 0 to 16 { // i intratile.
          %v2 = "abc_compute"() : () -> f32
          %i_ = affine.apply affine_map<(d0, d1) -> (16*d0 + d1)>(%iT, %ii_)
          %v3 =  affine.load %C[%i_, %jT] : memref<512 x 32 x f32>
          %v4 = "addf32"(%v2, %v3) : (f32, f32) -> (f32)
          affine.store %v4, %C[%i_, %jT] : memref<512 x 32 x f32>
        }
        "foobar"() : () -> ()
      }
    }
  }
  return
}

// -----

// A loop nest with a modulo 2 access. A strided DMA is not needed here a 1x2
// region within a 256 x 8 memref.
//
// CHECK-LABEL: func @loop_nest_modulo() {
// CHECK:       alloc() : memref<256x8xf32>
// CHECK-NEXT:    affine.for %{{.*}} = 0 to 32 step 4 {
// CHECK:           alloc() : memref<1x2xf32, 2>
// CHECK-NEXT:      alloc() : memref<1xi32>
// Composition of the affine map for '%{{.*}}' causes '%{{.*}}' to be added as a symbol.
// CHECK-NEXT:      affine.dma_start %{{.*}}[%{{.*}}, 0], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256x8xf32>, memref<1x2xf32, 2>, memref<1xi32>
// CHECK-NEXT:      affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:      affine.for %{{.*}} = 0 to 8 {
//                    ...
//                    ...
// CHECK:           }
// CHECK-NEXT:      dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:      dealloc %{{.*}} : memref<1x2xf32, 2>
// CHECK-NEXT:    }
// CHECK-NEXT:    return
func @loop_nest_modulo() {
  %A = alloc() : memref<256 x 8 x f32>
  affine.for %i = 0 to 32 step 4 {
    // DMAs will be performed at this level (%j is the first unit stride loop)
    affine.for %j = 0 to 8 {
      %idx = affine.apply affine_map<(d0) -> (d0 mod 2)> (%j)
      // A buffer of size 32 x 2 will be allocated (original buffer was 256 x 8).
      %v = affine.load %A[%i, %idx] : memref<256 x 8 x f32>
    }
  }
  return
}

// -----

// DMA on tiled loop nest. This also tests the case where the bounds are
// dependent on outer loop IVs.
// CHECK-LABEL: func @loop_nest_tiled() -> memref<256x1024xf32> {
func @loop_nest_tiled() -> memref<256x1024xf32> {
  %0 = alloc() : memref<256x1024xf32>
  affine.for %i0 = 0 to 256 step 32 {
    affine.for %i1 = 0 to 1024 step 32 {
// CHECK:      alloc() : memref<32x32xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// Strided DMA here: 32 x 32 tile in a 256 x 1024 memref.
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}, %{{.*}} : memref<256x1024xf32>, memref<32x32xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait
// CHECK-NEXT: affine.for %{{.*}} = #map
// CHECK-NEXT:   affine.for %{{.*}} = #map
      affine.for %i2 = affine_map<(d0) -> (d0)>(%i0) to affine_map<(d0) -> (d0 + 32)>(%i0) {
        affine.for %i3 = affine_map<(d0) -> (d0)>(%i1) to affine_map<(d0) -> (d0 + 32)>(%i1) {
          // CHECK: affine.load %{{.*}}[-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<32x32xf32, 2>
          %1 = affine.load %0[%i2, %i3] : memref<256x1024xf32>
        } // CHECK-NEXT: }
      }
    }
  }
  return %0 : memref<256x1024xf32>
}

// -----

// CHECK-LABEL: func @dma_constant_dim_access
func @dma_constant_dim_access(%A : memref<100x100xf32>) {
  %one = constant 1 : index
  %N = constant 100 : index
  // CHECK:      alloc() : memref<1x100xf32, 2>
  // CHECK-NEXT: alloc() : memref<1xi32>
  // No strided DMA needed here.
  // CHECK:      affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}  : memref<100x100xf32>, memref<1x100xf32, 2>,
  // CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
  affine.for %i = 0 to 100 {
    affine.for %j = 0 to affine_map<()[s0] -> (s0)> ()[%N] {
      // CHECK: affine.load %{{.*}}[0, %{{.*}}] : memref<1x100xf32, 2>
      affine.load %A[%one, %j] : memref<100 x 100 x f32>
    }
  }
  return
}

// -----

// CHECK-LABEL: func @dma_with_symbolic_accesses
func @dma_with_symbolic_accesses(%A : memref<100x100xf32>, %M : index) {
  %N = constant 9 : index
  affine.for %i = 0 to 100 {
    affine.for %j = 0 to 100 {
      %idy = affine.apply affine_map<(d0, d1) [s0, s1] -> (d1 + s0 + s1)>(%i, %j)[%M, %N]
      affine.load %A[%i, %idy] : memref<100 x 100 x f32>
    }
  }
  return
// CHECK:       alloc() : memref<100x100xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[0, symbol(%{{.*}}) + 9], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}}
// CHECK-NEXT:  affine.for %[[IV0:.*]] = 0 to 100 {
// CHECK-NEXT:    affine.for %[[IV1:.*]] = 0 to 100 {
// CHECK:           affine.load %{{.*}}[%[[IV0]], %[[IV1]]] : memref<100x100xf32, 2>
// CHECK-NEXT:    }
// CHECK-NEXT:  }
// CHECK:       return
}

// -----

// CHECK-LABEL: func @dma_with_symbolic_loop_bounds
func @dma_with_symbolic_loop_bounds(%A : memref<100x100xf32>, %M : index, %N: index) {
  %K = constant 9 : index
// The buffer size can't be bound by a constant smaller than the original
// memref size; so the DMA buffer is the entire 100x100.
// CHECK:       alloc() : memref<100x100xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<100x100xf32>, memref<100x100xf32, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
  affine.for %i = 0 to 100 {
    affine.for %j = %M to %N {
      %idy = affine.apply affine_map<(d1) [s0] -> (d1 + s0)>(%j)[%K]
      affine.load %A[%i, %idy] : memref<100 x 100 x f32>
    }
  }
  return
}

// -----

// CHECK-LABEL: func @dma_unknown_size
func @dma_unknown_size(%arg0: memref<?x?xf32>) {
  %c0 = constant 0 : index
  %M = dim %arg0, %c0 : memref<? x ? x f32>
  %N = dim %arg0, %c0 : memref<? x ? x f32>
  affine.for %i = 0 to %M {
    affine.for %j = 0 to %N {
      // If this loop nest isn't tiled, the access requires a non-constant DMA
      // size -- not yet implemented.
      // CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
      affine.load %arg0[%i, %j] : memref<? x ? x f32>
      // expected-error@-6 {{copy generation failed for one or more memref's in this block}}
    }
  }
  return
}

// -----

// CHECK-LABEL: func @dma_memref_3d
func @dma_memref_3d(%arg0: memref<1024x1024x1024xf32>) {
  affine.for %i = 0 to 1024 {
    affine.for %j = 0 to 1024 {
      affine.for %k = 0 to 1024 {
        %idx = affine.apply affine_map<(d0) -> (d0 mod 128)>(%i)
        %idy = affine.apply affine_map<(d0) -> (d0 mod 128)>(%j)
        %idz = affine.apply affine_map<(d0) -> (d0 mod 128)>(%k)
        // DMA with nested striding (or emulating with loop around strided DMA)
        // not yet implemented.
        // CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<1024x1024x1024xf32>
        %v = affine.load %arg0[%idx, %idy, %idz] : memref<1024 x 1024 x 1024 x f32>
        // expected-error@-10 {{copy generation failed for one or more memref's in this block}}
      }
    }
  }
  return
}

// -----

// The first load accesses ([2,258), [128,384))
// The second load accesses ([64,320), [2,258))
// The first store writes to ([2,258), [192,448))
// The second store writes to ([128,320), [2,258))
// The union of all these regions is of size 318 x 446 and has its origin at (2,
// 2), i.e., the window ([2,320), [2,448)) in the original space.

// CHECK-LABEL: func @multi_load_store_union() {
func @multi_load_store_union() {
  %A = alloc() : memref<512 x 512 x f32>
  affine.for %i = 0 to 256 {
    affine.for %j = 0 to 256 {
      %idx = affine.apply affine_map<(d0) -> (d0 + 64)>(%i)
      %idy = affine.apply affine_map<(d0) -> (d0 + 128)>(%j)
      %ishift = affine.apply affine_map<(d0) -> (d0 + 2)>(%i)
      %jshift = affine.apply affine_map<(d0) -> (d0 + 2)>(%j)

      %u = affine.load %A[%ishift, %idy] : memref<512 x 512 x f32>
      %v = affine.load %A[%idx, %jshift] : memref<512 x 512 x f32>

      %sidx = affine.apply affine_map<(d0) -> (d0 + 128)>(%i)
      %sidy = affine.apply affine_map<(d0) -> (d0 + 192)>(%j)

      affine.store %u, %A[%ishift, %sidy] : memref<512 x 512 x f32>
      affine.store %v, %A[%sidx, %jshift] : memref<512 x 512 x f32>
    }
  }
  return
}
// CHECK:       alloc() : memref<512x512xf32>
// CHECK-NEXT:  alloc() : memref<382x446xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}, %{{.*}} : memref<512x512xf32>, memref<382x446xf32, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.for %{{.*}} = 0 to 256 {
// CHECK-NEXT:    affine.for %{{.*}} = 0 to 256 {
// CHECK:           affine.load %{{.*}}[%{{.*}}, %{{.*}} + 126] : memref<382x446xf32, 2>
// CHECK-NEXT:      affine.load %{{.*}}[%{{.*}} + 62, %{{.*}}] : memref<382x446xf32, 2>
// CHECK:           affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}} + 190] : memref<382x446xf32, 2>
// CHECK-NEXT:      affine.store %{{.*}}, %{{.*}}[%{{.*}} + 126, %{{.*}}] : memref<382x446xf32, 2>
// CHECK-NEXT:    }
// CHECK-NEXT:  }
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}, %{{.*}} : memref<382x446xf32, 2>, memref<512x512xf32>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<382x446xf32, 2>
// CHECK-NEXT:  return
// CHECK-NEXT:}

// -----

// CHECK-LABEL: func @dma_loop_straightline_interspersed() {
func @dma_loop_straightline_interspersed() {
  %c0 = constant 0 : index
  %c255 = constant 255 : index
  %A = alloc() : memref<256 x f32>
  %v = affine.load %A[%c0] : memref<256 x f32>
  affine.for %i = 1 to 255 {
    affine.load %A[%i] : memref<256 x f32>
  }
  %l = affine.load %A[%c255] : memref<256 x f32>
  affine.store %l, %A[%c0] : memref<256 x f32>
  return
}
// There are three regions here - the 'load' preceding the loop, the loop
// itself, and the operations appearing after the scf.
// CHECK:       alloc() : memref<256xf32>
// CHECK-NEXT:  alloc() : memref<1xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<1xf32, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  affine.load %{{.*}}[0] : memref<1xf32, 2>
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xf32, 2>
// CHECK-NEXT:  alloc() : memref<254xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<254xf32, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  affine.for %{{.*}} = 1 to 255 {
// CHECK-NEXT:    affine.load %{{.*}}[%{{.*}} - 1] : memref<254xf32, 2>
// CHECK-NEXT:  }
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<254xf32, 2>
// CHECK-NEXT:  alloc() : memref<256xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<256xf32, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.load %{{.*}}[255] : memref<256xf32, 2>
// CHECK-NEXT:  affine.store %{{.*}}, %{{.*}}[0] : memref<256xf32, 2>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32, 2>, memref<256xf32>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT:  dealloc %{{.*}} : memref<256xf32, 2>
// CHECK-NEXT:  return

// -----

// CHECK-LABEL: func @dma_mixed_loop_blocks() {
func @dma_mixed_loop_blocks() {
  %c0 = constant 0 : index
  %A = alloc() : memref<256 x 256 x vector<8 x f32>>
  affine.for %i = 0 to 256 {
    %v = affine.load %A[%c0, %c0] : memref<256 x 256 x vector<8 x f32>>
    "foo"(%v) : (vector<8 x f32>) -> ()
    affine.for %j = 0 to 256 {
      %w = affine.load %A[%i, %j] : memref<256 x 256 x vector<8 x f32>>
      "bar"(%w) : (vector<8 x f32>) -> ()
    }
  }
  return
}
// CHECK-DAG:   [[MEM:%[0-9]+]] = alloc() : memref<256x256xvector<8xf32>>
// CHECK-DAG:   [[BUF:%[0-9]+]] = alloc() : memref<256x256xvector<8xf32>, 2>
// CHECK-DAG:   [[TAG:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK:       affine.dma_start [[MEM]][%{{.*}}, %{{.*}}], [[BUF]][%{{.*}}, %{{.*}}], [[TAG]][%{{.*}}], %{{.*}} : memref<256x256xvector<8xf32>>, memref<256x256xvector<8xf32>, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait [[TAG]][%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  affine.for %{{.*}} = 0 to 256 {
// CHECK:         affine.load [[BUF]][0, 0] : memref<256x256xvector<8xf32>, 2>
// CHECK:         affine.for %{{.*}} = 0 to 256 {
// CHECK-NEXT:      affine.load [[BUF]][%{{.*}}, %{{.*}}] : memref<256x256xvector<8xf32>, 2>

// -----

// CHECK-LABEL: func @relative_loop_bounds
func @relative_loop_bounds(%arg0: memref<1027xf32>) {
  affine.for %i0 = 0 to 1024 {
    affine.for %i2 = affine_map<(d0) -> (d0)>(%i0) to affine_map<(d0) -> (d0 + 4)>(%i0) {
      %0 = constant 0.0 : f32
      affine.store %0, %arg0[%i2] : memref<1027xf32>
    }
  }
  return
}
// CHECK:      [[BUF:%[0-9]+]] = alloc() : memref<1027xf32, 2>
// CHECK-NEXT: [[MEM:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 {
// CHECK-NEXT:    affine.for %[[I2:.*]] = {{#map[0-9]+}}(%{{.*}}) to {{#map[0-9]+}}(%{{.*}}) {
// CHECK:           affine.store %{{.*}}, [[BUF]][%[[I2]]] : memref<1027xf32, 2>
// CHECK-NEXT:    }
// CHECK-NEXT:  }
// CHECK-NEXT:  affine.dma_start [[BUF]][%{{.*}}], %{{.*}}[%{{.*}}], [[MEM]][%{{.*}}], %{{.*}}  : memref<1027xf32, 2>, memref<1027xf32>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait [[MEM]][%{{.*}}], %{{.*}} : memref<1xi32>

// -----

func @test_read_write_region_union() {
  %0 = alloc() : memref<256xf32>
  affine.for %i0 = 0 to 10 {
    // memref dims:  [0, 256)
    // read region:  [100, 110)
    // write region: [25, 35)
    // union region: [25, 110)
    %a0 = affine.apply affine_map<(d0) -> (d0 + 100)>(%i0)
    %a1 = affine.apply affine_map<(d0) -> (d0 + 25)>(%i0)
    %1 = affine.load %0[%a0] : memref<256xf32>
    affine.store %1, %0[%a1] : memref<256xf32>
  }
  return
}

// CHECK:       alloc() : memref<256xf32>
// CHECK-NEXT:  alloc() : memref<85xf32, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<85xf32, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.for %{{.*}} = 0 to 10 {
// CHECK:         affine.load %{{.*}}[%{{.*}} + 75] : memref<85xf32, 2>
// CHECK-NEXT:    affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<85xf32, 2>
// CHECK-NEXT:  }
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<85xf32, 2>, memref<256xf32>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>

// -----

// This should create a buffer of size 2 affine.for %arg2.

#map_lb = affine_map<(d0) -> (d0)>
#map_ub = affine_map<(d0) -> (d0 + 3)>
#map_acc = affine_map<(d0) -> (d0 floordiv 8)>
// CHECK-LABEL: func @test_analysis_util
func @test_analysis_util(%arg0: memref<4x4x16x1xf32>, %arg1: memref<144x9xf32>, %arg2: memref<2xf32>) -> (memref<144x9xf32>, memref<2xf32>) {
  %c0 = constant 0 : index
  %0 = alloc() : memref<64x1xf32>
  %1 = alloc() : memref<144x4xf32>
  %2 =  constant 0.0 : f32
  affine.for %i8 = 0 to 9 step 3 {
    affine.for %i9 = #map_lb(%i8) to #map_ub(%i8) {
      affine.for %i17 = 0 to 64 {
        %23 = affine.apply #map_acc(%i9)
        %25 = affine.load %arg2[%23] : memref<2xf32>
        %26 = affine.apply #map_lb(%i17)
        %27 = affine.load %0[%26, %c0] : memref<64x1xf32>
        affine.store %27, %arg2[%23] : memref<2xf32>
      }
    }
  }
  return %arg1, %arg2 : memref<144x9xf32>, memref<2xf32>
}
// CHECK:       affine.for %{{.*}} = 0 to 9 step 3 {
// CHECK:         [[BUF:%[0-9]+]] = alloc() : memref<2xf32, 2>
// CHECK:         affine.dma_start %{{.*}}[%{{.*}} floordiv 8], [[BUF]]
// CHECK:         affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK:         affine.for %{{.*}} =

// -----

#map3 = affine_map<(d0) -> (d0)>
#map12 = affine_map<(d0) -> (d0 + 3)>
#map14 = affine_map<(d0, d1) -> ((d0 + d1 * 72) floordiv 2304 + ((((d0 + d1 * 72) mod 2304) mod 1152) mod 9) floordiv 3)>
#map15 = affine_map<(d0, d1) -> ((d0 + d1 * 72) mod 2304 - (((d0 + d1 * 72) mod 2304) floordiv 1152) * 1151 - ((((d0 + d1 * 72) mod 2304) mod 1152) floordiv 9) * 9 - (((((d0 + d1 * 72) mod 2304) mod 1152) mod 9) floordiv 3) * 3)>
#map16 = affine_map<(d0, d1) -> (((((d0 + d1 * 72) mod 2304) mod 1152) floordiv 9) floordiv 8)>
// Test for test case in b/128303048 #4.
// CHECK-LABEL: func @test_memref_bounds
func @test_memref_bounds(%arg0: memref<4x4x16x1xvector<8x128xf32>>, %arg1: memref<144x9xvector<8x128xf32>>, %arg2: memref<2xvector<8x128xf32>>) -> (memref<144x9xvector<8x128xf32>>, memref<2xvector<8x128xf32>>) {
  %c0 = constant 0 : index
  affine.for %i8 = 0 to 9 step 3 {
    affine.for %i9 = #map3(%i8) to #map12(%i8) {
      affine.for %i10 = 0 to 64 {
        %10 = affine.apply #map14(%i9, %i10)
        %11 = affine.apply #map15(%i9, %i10)
        %12 = affine.apply #map16(%i9, %i10)
        %13 = affine.load %arg0[%10, %11, %12, %c0] : memref<4x4x16x1xvector<8x128xf32>>
      }
    }
  }
  return %arg1, %arg2 : memref<144x9xvector<8x128xf32>>, memref<2xvector<8x128xf32>>
}

// CHECK:       alloc() : memref<4x4x16x1xvector<8x128xf32>, 2>
// CHECK-NEXT:  alloc() : memref<1xi32>
// CHECK-NEXT:  affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<4x4x16x1xvector<8x128xf32>>, memref<4x4x16x1xvector<8x128xf32>, 2>, memref<1xi32>
// CHECK-NEXT:  affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>

// -----

// Since the fast memory size is 4 KB, DMA generation will happen right under
// %i0.

// FAST-MEM-16KB-LABEL: func @load_store_same_memref
func @load_store_same_memref(%arg0: memref<256x1024xf32>) {
  // FAST-MEM-16KB:  affine.for %{{.*}} = 0 to 256 step 4
  affine.for %i0 = 0 to 256 step 4 {
    // FAST-MEM-16KB: [[BUF:%[0-9]+]] = alloc() : memref<4x1024xf32, 2>
    // FAST-MEM-16KB:    affine.dma_start %{{.*}}
    // FAST-MEM-16KB-NEXT: affine.dma_wait
    // FAST-MEM-16KB:  affine.for %{{.*}}
    affine.for %i1 = 0 to 1024 step 4 {
      // FAST-MEM-16KB:  affine.for %{{.*}}
      affine.for %i2 = affine_map<(d0) -> (d0)>(%i0) to affine_map<(d0) -> (d0 + 4)>(%i0) {
        // FAST-MEM-16KB:  affine.for %{{.*}}
        affine.for %i3 = affine_map<(d0) -> (d0)>(%i1) to affine_map<(d0) -> (d0 + 4)>(%i1) {
          %3 = affine.load %arg0[%i2, %i3] : memref<256x1024xf32>
          %4 = mulf %3, %3 : f32
          affine.store %4, %arg0[%i2, %i3] : memref<256x1024xf32>
        } // FAST-MEM-16KB: }
      } // FAST-MEM-16KB: }
    } // FAST-MEM-16KB: }
    // FAST-MEM-16KB:    affine.dma_start [[BUF]]
    // FAST-MEM-16KB-NEXT: affine.dma_wait
  }
  return
}

// -----

// This a 3-d loop nest tiled by 4 x 4 x 4. Under %i, %j, %k, the size of a
// tile of arg0, arg1, and arg2 accessed is 4 KB (each), i.e., 12 KB in total.
// With fast mem capacity set to 16 KB, the DMAs if placed under %k will fit.
// However, the region of arg2 accessed is invariant w.r.t the %k loop unlike
// %arg0 and %arg1. So, its DMA can be hoisted one level up and placed under
// %j, while the DMAs for arg0 and arg1 appear right under the %k scf.

#map0 = affine_map<(d0) -> (d0)>
#map1 = affine_map<(d0) -> (d0 + 4)>
// FAST-MEM-16KB-LABEL: func @simple_matmul
func @simple_matmul(%arg0: memref<8x8xvector<64xf32>>, %arg1: memref<8x8xvector<64xf32>>, %arg2: memref<8x8xvector<64xf32>>) -> memref<8x8xvector<64xf32>> {
  affine.for %i = 0 to 8 step 4 {
    affine.for %j = 0 to 8 step 4 {
      affine.for %k = 0 to 8 step 4 {
        affine.for %ii = #map0(%i) to #map1(%i) {
          affine.for %jj = #map0(%j) to #map1(%j) {
            affine.for %kk = #map0(%k) to #map1(%k) {
              %5 = affine.load %arg0[%ii, %kk] : memref<8x8xvector<64xf32>>
              %6 = affine.load %arg1[%kk, %jj] : memref<8x8xvector<64xf32>>
              %7 = affine.load %arg2[%ii, %jj] : memref<8x8xvector<64xf32>>
              %8 = mulf %5, %6 : vector<64xf32>
              %9 = addf %7, %8 : vector<64xf32>
              affine.store %9, %arg2[%ii, %jj] : memref<8x8xvector<64xf32>>
            }
          }
        }
      }
    }
  }
  return %arg2 : memref<8x8xvector<64xf32>>
}
// FAST-MEM-16KB: affine.for %{{.*}} = 0 to 8 step 4 {
// FAST-MEM-16KB:   affine.for %{{.*}} = 0 to 8 step 4 {
// FAST-MEM-16KB:     affine.dma_start %{{.*}}
// FAST-MEM-16KB:     affine.dma_wait
// FAST-MEM-16KB:     affine.for %{{.*}} = 0 to 8 step 4 {
// FAST-MEM-16KB:       affine.dma_start %{{.*}}
// FAST-MEM-16KB:       affine.dma_wait
// FAST-MEM-16KB:       affine.dma_start %{{.*}}
// FAST-MEM-16KB:       affine.dma_wait
// FAST-MEM-16KB:       affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to #map{{[0-9]+}}(%{{.*}}) {
// FAST-MEM-16KB-NEXT:    affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to #map{{[0-9]+}}(%{{.*}}) {
// FAST-MEM-16KB-NEXT:      affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to #map{{[0-9]+}}(%{{.*}}) {
// FAST-MEM-16KB:           }
// FAST-MEM-16KB:         }
// FAST-MEM-16KB:       }
// FAST-MEM-16KB:     }
// FAST-MEM-16KB:     affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}
// FAST-MEM-16KB:     affine.dma_wait