dma-generate.mlir
28.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-data-copy-generate="generate-dma fast-mem-space=2 skip-non-unit-stride-loops" -verify-diagnostics | FileCheck %s
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-data-copy-generate="generate-dma fast-mem-capacity=16 fast-mem-space=2" | FileCheck %s --check-prefix FAST-MEM-16KB
// We run most test cases with -copy-skip-non-unit-stride-loops to allow testing
// DMA generation at inner levels easily - since the DMA generation would
// otherwise always generate DMAs at the outermost level (default for fast mem
// capacity is infinite). Using a specific capacity makes it harder to write
// a test case as one would have to calculate total footprints. With
// -copy-skip-non-unit-stride-loops, non-unit strides will always be skipped and
// its inner loops will be traversed till a unit stride loop is found (or the
// innermost block is reached).
// -----
// Index of the buffer for the second DMA is remapped.
// CHECK-DAG: [[MAP0:#map[0-9]+]] = affine_map<(d0) -> (d0)>
// CHECK-LABEL: func @loop_nest_1d() {
func @loop_nest_1d() {
%A = alloc() : memref<256 x f32>
%B = alloc() : memref<512 x f32>
%F = alloc() : memref<256 x f32, 2>
// First DMA buffer.
// CHECK: alloc() : memref<256xf32>
// CHECK: alloc() : memref<256xf32, 2>
// Tag for first DMA.
// CHECK: alloc() : memref<1xi32>
// First DMA transfer.
// CHECK: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<256xf32, 2>, memref<1xi32>
// CHECK: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// Second DMA buffer.
// CHECK: alloc() : memref<256xf32, 2>
// Tag for second DMA.
// CHECK: alloc() : memref<1xi32>
// Second DMA transfer.
// CHECK: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<512xf32>, memref<256xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK: affine.for %[[IV:.*]] = 0 to 256 {
// CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<256xf32, 2>
// Buffer for '%{{.*}}' in faster memref space is of smaller size: 256xf32
// Affine map for load on B is composed and becomes identity.
// CHECK: affine.load %{{.*}}[%[[IV]]] : memref<256xf32, 2>
// Already in faster memory space.
// CHECK: affine.load %{{.*}}[%[[IV]]] : memref<256xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<256xf32, 2>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<256xf32, 2>
// CHECK-NEXT: return
affine.for %i = 0 to 256 {
affine.load %A[%i] : memref<256 x f32>
%idx = affine.apply affine_map<(d0) -> (d0 + 256)>(%i)
affine.load %B[%idx] : memref<512 x f32>
affine.load %F[%i] : memref<256 x f32, 2>
}
return
}
// -----
// CHECK-LABEL: func @loop_nest_high_d
// CHECK: %{{.*}} = constant 16384 : index
// CHECK-DAG: [[BUFB:%[0-9]+]] = alloc() : memref<512x32xf32, 2>
// CHECK-DAG: [[BUFA:%[0-9]+]] = alloc() : memref<512x32xf32, 2>
// CHECK-DAG: [[BUFC:%[0-9]+]] = alloc() : memref<512x32xf32, 2>
// CHECK-DAG: [[TAGB:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-DAG: [[TAGA:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-DAG: [[TAGC:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-DAG: [[TAGC_W:%[0-9]+]] = alloc() : memref<1xi32>
// INCOMING DMA for B
// CHECK-DAG: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], [[BUFB]][%{{.*}}, %{{.*}}], [[TAGB]][%{{.*}}], %{{.*}} : memref<512x32xf32>, memref<512x32xf32, 2>, memref<1xi32>
// CHECK-DAG: affine.dma_wait [[TAGB]][%{{.*}}], %{{.*}} : memref<1xi32>
// INCOMING DMA for A.
// CHECK-DAG: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], [[BUFA]][%{{.*}}, %{{.*}}], [[TAGA]][%{{.*}}], %{{.*}} : memref<512x32xf32>, memref<512x32xf32, 2>, memref<1xi32>
// CHECK-DAG: affine.dma_wait [[TAGA]][%{{.*}}], %{{.*}} : memref<1xi32>
// INCOMING DMA for C.
// CHECK-DAG: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], [[BUFC]][%{{.*}}, %{{.*}}], [[TAGC]][%{{.*}}], %{{.*}} : memref<512x32xf32>, memref<512x32xf32, 2>, memref<1xi32>
// CHECK-DAG: affine.dma_wait [[TAGC]][%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 16 {
// CHECK: affine.load [[BUFB]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT: "foo"(%{{.*}}) : (f32) -> ()
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %{{.*}} = 0 to 16 {
// CHECK: affine.load [[BUFA]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT: "bar"(%{{.*}}) : (f32) -> ()
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %{{.*}} = 0 to 16 {
// CHECK-NEXT: "abc_compute"() : () -> f32
// CHECK: affine.load [[BUFC]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT: "addf32"(%{{.*}}, %{{.*}}) : (f32, f32) -> f32
// CHECK-NEXT: affine.store %{{.*}}, [[BUFC]][%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<512x32xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: "foobar"() : () -> ()
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// OUTGOING DMA for C.
// CHECK-NEXT: affine.dma_start [[BUFC]][%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], [[TAGC_W]][%{{.*}}], %{{.*}} : memref<512x32xf32, 2>, memref<512x32xf32>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait [[TAGC_W]][%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc [[TAGC_W]] : memref<1xi32>
// CHECK-NEXT: dealloc [[TAGC]] : memref<1xi32>
// CHECK-NEXT: dealloc [[BUFC]] : memref<512x32xf32, 2>
// CHECK-NEXT: dealloc [[TAGA]] : memref<1xi32>
// CHECK-NEXT: dealloc [[BUFA]] : memref<512x32xf32, 2>
// CHECK-NEXT: dealloc [[TAGB]] : memref<1xi32>
// CHECK-NEXT: dealloc [[BUFB]] : memref<512x32xf32, 2>
// CHECK-NEXT: return
// CHECK-NEXT:}
func @loop_nest_high_d(%A: memref<512 x 32 x f32>,
%B: memref<512 x 32 x f32>, %C: memref<512 x 32 x f32>) {
// DMAs will be performed at this level (jT is the first loop without a stride).
// A and B are read, while C is both read and written. A total of three new buffers
// are allocated and existing load's/store's are replaced by accesses to those buffers.
affine.for %jT = 0 to 32 {
affine.for %kT = 0 to 32 {
affine.for %iT = 0 to 32 {
affine.for %kk = 0 to 16 { // k intratile
%k = affine.apply affine_map<(d0, d1) -> (16*d0 + d1)> (%kT, %kk)
%v0 = affine.load %B[%k, %jT] : memref<512 x 32 x f32>
"foo"(%v0) : (f32) -> ()
}
affine.for %ii = 0 to 16 { // i intratile.
%i = affine.apply affine_map<(d0, d1) -> (16*d0 + d1)>(%iT, %ii)
%v1 = affine.load %A[%i, %kT] : memref<512 x 32 x f32>
"bar"(%v1) : (f32) -> ()
}
affine.for %ii_ = 0 to 16 { // i intratile.
%v2 = "abc_compute"() : () -> f32
%i_ = affine.apply affine_map<(d0, d1) -> (16*d0 + d1)>(%iT, %ii_)
%v3 = affine.load %C[%i_, %jT] : memref<512 x 32 x f32>
%v4 = "addf32"(%v2, %v3) : (f32, f32) -> (f32)
affine.store %v4, %C[%i_, %jT] : memref<512 x 32 x f32>
}
"foobar"() : () -> ()
}
}
}
return
}
// -----
// A loop nest with a modulo 2 access. A strided DMA is not needed here a 1x2
// region within a 256 x 8 memref.
//
// CHECK-LABEL: func @loop_nest_modulo() {
// CHECK: alloc() : memref<256x8xf32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 32 step 4 {
// CHECK: alloc() : memref<1x2xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// Composition of the affine map for '%{{.*}}' causes '%{{.*}}' to be added as a symbol.
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, 0], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256x8xf32>, memref<1x2xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 8 {
// ...
// ...
// CHECK: }
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<1x2xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: return
func @loop_nest_modulo() {
%A = alloc() : memref<256 x 8 x f32>
affine.for %i = 0 to 32 step 4 {
// DMAs will be performed at this level (%j is the first unit stride loop)
affine.for %j = 0 to 8 {
%idx = affine.apply affine_map<(d0) -> (d0 mod 2)> (%j)
// A buffer of size 32 x 2 will be allocated (original buffer was 256 x 8).
%v = affine.load %A[%i, %idx] : memref<256 x 8 x f32>
}
}
return
}
// -----
// DMA on tiled loop nest. This also tests the case where the bounds are
// dependent on outer loop IVs.
// CHECK-LABEL: func @loop_nest_tiled() -> memref<256x1024xf32> {
func @loop_nest_tiled() -> memref<256x1024xf32> {
%0 = alloc() : memref<256x1024xf32>
affine.for %i0 = 0 to 256 step 32 {
affine.for %i1 = 0 to 1024 step 32 {
// CHECK: alloc() : memref<32x32xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// Strided DMA here: 32 x 32 tile in a 256 x 1024 memref.
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}, %{{.*}} : memref<256x1024xf32>, memref<32x32xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait
// CHECK-NEXT: affine.for %{{.*}} = #map
// CHECK-NEXT: affine.for %{{.*}} = #map
affine.for %i2 = affine_map<(d0) -> (d0)>(%i0) to affine_map<(d0) -> (d0 + 32)>(%i0) {
affine.for %i3 = affine_map<(d0) -> (d0)>(%i1) to affine_map<(d0) -> (d0 + 32)>(%i1) {
// CHECK: affine.load %{{.*}}[-%{{.*}} + %{{.*}}, -%{{.*}} + %{{.*}}] : memref<32x32xf32, 2>
%1 = affine.load %0[%i2, %i3] : memref<256x1024xf32>
} // CHECK-NEXT: }
}
}
}
return %0 : memref<256x1024xf32>
}
// -----
// CHECK-LABEL: func @dma_constant_dim_access
func @dma_constant_dim_access(%A : memref<100x100xf32>) {
%one = constant 1 : index
%N = constant 100 : index
// CHECK: alloc() : memref<1x100xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// No strided DMA needed here.
// CHECK: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<100x100xf32>, memref<1x100xf32, 2>,
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
affine.for %i = 0 to 100 {
affine.for %j = 0 to affine_map<()[s0] -> (s0)> ()[%N] {
// CHECK: affine.load %{{.*}}[0, %{{.*}}] : memref<1x100xf32, 2>
affine.load %A[%one, %j] : memref<100 x 100 x f32>
}
}
return
}
// -----
// CHECK-LABEL: func @dma_with_symbolic_accesses
func @dma_with_symbolic_accesses(%A : memref<100x100xf32>, %M : index) {
%N = constant 9 : index
affine.for %i = 0 to 100 {
affine.for %j = 0 to 100 {
%idy = affine.apply affine_map<(d0, d1) [s0, s1] -> (d1 + s0 + s1)>(%i, %j)[%M, %N]
affine.load %A[%i, %idy] : memref<100 x 100 x f32>
}
}
return
// CHECK: alloc() : memref<100x100xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[0, symbol(%{{.*}}) + 9], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}}
// CHECK-NEXT: affine.for %[[IV0:.*]] = 0 to 100 {
// CHECK-NEXT: affine.for %[[IV1:.*]] = 0 to 100 {
// CHECK: affine.load %{{.*}}[%[[IV0]], %[[IV1]]] : memref<100x100xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK: return
}
// -----
// CHECK-LABEL: func @dma_with_symbolic_loop_bounds
func @dma_with_symbolic_loop_bounds(%A : memref<100x100xf32>, %M : index, %N: index) {
%K = constant 9 : index
// The buffer size can't be bound by a constant smaller than the original
// memref size; so the DMA buffer is the entire 100x100.
// CHECK: alloc() : memref<100x100xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<100x100xf32>, memref<100x100xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
affine.for %i = 0 to 100 {
affine.for %j = %M to %N {
%idy = affine.apply affine_map<(d1) [s0] -> (d1 + s0)>(%j)[%K]
affine.load %A[%i, %idy] : memref<100 x 100 x f32>
}
}
return
}
// -----
// CHECK-LABEL: func @dma_unknown_size
func @dma_unknown_size(%arg0: memref<?x?xf32>) {
%c0 = constant 0 : index
%M = dim %arg0, %c0 : memref<? x ? x f32>
%N = dim %arg0, %c0 : memref<? x ? x f32>
affine.for %i = 0 to %M {
affine.for %j = 0 to %N {
// If this loop nest isn't tiled, the access requires a non-constant DMA
// size -- not yet implemented.
// CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
affine.load %arg0[%i, %j] : memref<? x ? x f32>
// expected-error@-6 {{copy generation failed for one or more memref's in this block}}
}
}
return
}
// -----
// CHECK-LABEL: func @dma_memref_3d
func @dma_memref_3d(%arg0: memref<1024x1024x1024xf32>) {
affine.for %i = 0 to 1024 {
affine.for %j = 0 to 1024 {
affine.for %k = 0 to 1024 {
%idx = affine.apply affine_map<(d0) -> (d0 mod 128)>(%i)
%idy = affine.apply affine_map<(d0) -> (d0 mod 128)>(%j)
%idz = affine.apply affine_map<(d0) -> (d0 mod 128)>(%k)
// DMA with nested striding (or emulating with loop around strided DMA)
// not yet implemented.
// CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<1024x1024x1024xf32>
%v = affine.load %arg0[%idx, %idy, %idz] : memref<1024 x 1024 x 1024 x f32>
// expected-error@-10 {{copy generation failed for one or more memref's in this block}}
}
}
}
return
}
// -----
// The first load accesses ([2,258), [128,384))
// The second load accesses ([64,320), [2,258))
// The first store writes to ([2,258), [192,448))
// The second store writes to ([128,320), [2,258))
// The union of all these regions is of size 318 x 446 and has its origin at (2,
// 2), i.e., the window ([2,320), [2,448)) in the original space.
// CHECK-LABEL: func @multi_load_store_union() {
func @multi_load_store_union() {
%A = alloc() : memref<512 x 512 x f32>
affine.for %i = 0 to 256 {
affine.for %j = 0 to 256 {
%idx = affine.apply affine_map<(d0) -> (d0 + 64)>(%i)
%idy = affine.apply affine_map<(d0) -> (d0 + 128)>(%j)
%ishift = affine.apply affine_map<(d0) -> (d0 + 2)>(%i)
%jshift = affine.apply affine_map<(d0) -> (d0 + 2)>(%j)
%u = affine.load %A[%ishift, %idy] : memref<512 x 512 x f32>
%v = affine.load %A[%idx, %jshift] : memref<512 x 512 x f32>
%sidx = affine.apply affine_map<(d0) -> (d0 + 128)>(%i)
%sidy = affine.apply affine_map<(d0) -> (d0 + 192)>(%j)
affine.store %u, %A[%ishift, %sidy] : memref<512 x 512 x f32>
affine.store %v, %A[%sidx, %jshift] : memref<512 x 512 x f32>
}
}
return
}
// CHECK: alloc() : memref<512x512xf32>
// CHECK-NEXT: alloc() : memref<382x446xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}, %{{.*}} : memref<512x512xf32>, memref<382x446xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 256 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 256 {
// CHECK: affine.load %{{.*}}[%{{.*}}, %{{.*}} + 126] : memref<382x446xf32, 2>
// CHECK-NEXT: affine.load %{{.*}}[%{{.*}} + 62, %{{.*}}] : memref<382x446xf32, 2>
// CHECK: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}} + 190] : memref<382x446xf32, 2>
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} + 126, %{{.*}}] : memref<382x446xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}, %{{.*}} : memref<382x446xf32, 2>, memref<512x512xf32>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<382x446xf32, 2>
// CHECK-NEXT: return
// CHECK-NEXT:}
// -----
// CHECK-LABEL: func @dma_loop_straightline_interspersed() {
func @dma_loop_straightline_interspersed() {
%c0 = constant 0 : index
%c255 = constant 255 : index
%A = alloc() : memref<256 x f32>
%v = affine.load %A[%c0] : memref<256 x f32>
affine.for %i = 1 to 255 {
affine.load %A[%i] : memref<256 x f32>
}
%l = affine.load %A[%c255] : memref<256 x f32>
affine.store %l, %A[%c0] : memref<256 x f32>
return
}
// There are three regions here - the 'load' preceding the loop, the loop
// itself, and the operations appearing after the scf.
// CHECK: alloc() : memref<256xf32>
// CHECK-NEXT: alloc() : memref<1xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<1xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: affine.load %{{.*}}[0] : memref<1xf32, 2>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xf32, 2>
// CHECK-NEXT: alloc() : memref<254xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<254xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 1 to 255 {
// CHECK-NEXT: affine.load %{{.*}}[%{{.*}} - 1] : memref<254xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<254xf32, 2>
// CHECK-NEXT: alloc() : memref<256xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<256xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.load %{{.*}}[255] : memref<256xf32, 2>
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<256xf32, 2>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32, 2>, memref<256xf32>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<1xi32>
// CHECK-NEXT: dealloc %{{.*}} : memref<256xf32, 2>
// CHECK-NEXT: return
// -----
// CHECK-LABEL: func @dma_mixed_loop_blocks() {
func @dma_mixed_loop_blocks() {
%c0 = constant 0 : index
%A = alloc() : memref<256 x 256 x vector<8 x f32>>
affine.for %i = 0 to 256 {
%v = affine.load %A[%c0, %c0] : memref<256 x 256 x vector<8 x f32>>
"foo"(%v) : (vector<8 x f32>) -> ()
affine.for %j = 0 to 256 {
%w = affine.load %A[%i, %j] : memref<256 x 256 x vector<8 x f32>>
"bar"(%w) : (vector<8 x f32>) -> ()
}
}
return
}
// CHECK-DAG: [[MEM:%[0-9]+]] = alloc() : memref<256x256xvector<8xf32>>
// CHECK-DAG: [[BUF:%[0-9]+]] = alloc() : memref<256x256xvector<8xf32>, 2>
// CHECK-DAG: [[TAG:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK: affine.dma_start [[MEM]][%{{.*}}, %{{.*}}], [[BUF]][%{{.*}}, %{{.*}}], [[TAG]][%{{.*}}], %{{.*}} : memref<256x256xvector<8xf32>>, memref<256x256xvector<8xf32>, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait [[TAG]][%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 256 {
// CHECK: affine.load [[BUF]][0, 0] : memref<256x256xvector<8xf32>, 2>
// CHECK: affine.for %{{.*}} = 0 to 256 {
// CHECK-NEXT: affine.load [[BUF]][%{{.*}}, %{{.*}}] : memref<256x256xvector<8xf32>, 2>
// -----
// CHECK-LABEL: func @relative_loop_bounds
func @relative_loop_bounds(%arg0: memref<1027xf32>) {
affine.for %i0 = 0 to 1024 {
affine.for %i2 = affine_map<(d0) -> (d0)>(%i0) to affine_map<(d0) -> (d0 + 4)>(%i0) {
%0 = constant 0.0 : f32
affine.store %0, %arg0[%i2] : memref<1027xf32>
}
}
return
}
// CHECK: [[BUF:%[0-9]+]] = alloc() : memref<1027xf32, 2>
// CHECK-NEXT: [[MEM:%[0-9]+]] = alloc() : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 {
// CHECK-NEXT: affine.for %[[I2:.*]] = {{#map[0-9]+}}(%{{.*}}) to {{#map[0-9]+}}(%{{.*}}) {
// CHECK: affine.store %{{.*}}, [[BUF]][%[[I2]]] : memref<1027xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: affine.dma_start [[BUF]][%{{.*}}], %{{.*}}[%{{.*}}], [[MEM]][%{{.*}}], %{{.*}} : memref<1027xf32, 2>, memref<1027xf32>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait [[MEM]][%{{.*}}], %{{.*}} : memref<1xi32>
// -----
func @test_read_write_region_union() {
%0 = alloc() : memref<256xf32>
affine.for %i0 = 0 to 10 {
// memref dims: [0, 256)
// read region: [100, 110)
// write region: [25, 35)
// union region: [25, 110)
%a0 = affine.apply affine_map<(d0) -> (d0 + 100)>(%i0)
%a1 = affine.apply affine_map<(d0) -> (d0 + 25)>(%i0)
%1 = affine.load %0[%a0] : memref<256xf32>
affine.store %1, %0[%a1] : memref<256xf32>
}
return
}
// CHECK: alloc() : memref<256xf32>
// CHECK-NEXT: alloc() : memref<85xf32, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<256xf32>, memref<85xf32, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 10 {
// CHECK: affine.load %{{.*}}[%{{.*}} + 75] : memref<85xf32, 2>
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<85xf32, 2>
// CHECK-NEXT: }
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<85xf32, 2>, memref<256xf32>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// -----
// This should create a buffer of size 2 affine.for %arg2.
#map_lb = affine_map<(d0) -> (d0)>
#map_ub = affine_map<(d0) -> (d0 + 3)>
#map_acc = affine_map<(d0) -> (d0 floordiv 8)>
// CHECK-LABEL: func @test_analysis_util
func @test_analysis_util(%arg0: memref<4x4x16x1xf32>, %arg1: memref<144x9xf32>, %arg2: memref<2xf32>) -> (memref<144x9xf32>, memref<2xf32>) {
%c0 = constant 0 : index
%0 = alloc() : memref<64x1xf32>
%1 = alloc() : memref<144x4xf32>
%2 = constant 0.0 : f32
affine.for %i8 = 0 to 9 step 3 {
affine.for %i9 = #map_lb(%i8) to #map_ub(%i8) {
affine.for %i17 = 0 to 64 {
%23 = affine.apply #map_acc(%i9)
%25 = affine.load %arg2[%23] : memref<2xf32>
%26 = affine.apply #map_lb(%i17)
%27 = affine.load %0[%26, %c0] : memref<64x1xf32>
affine.store %27, %arg2[%23] : memref<2xf32>
}
}
}
return %arg1, %arg2 : memref<144x9xf32>, memref<2xf32>
}
// CHECK: affine.for %{{.*}} = 0 to 9 step 3 {
// CHECK: [[BUF:%[0-9]+]] = alloc() : memref<2xf32, 2>
// CHECK: affine.dma_start %{{.*}}[%{{.*}} floordiv 8], [[BUF]]
// CHECK: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// CHECK: affine.for %{{.*}} =
// -----
#map3 = affine_map<(d0) -> (d0)>
#map12 = affine_map<(d0) -> (d0 + 3)>
#map14 = affine_map<(d0, d1) -> ((d0 + d1 * 72) floordiv 2304 + ((((d0 + d1 * 72) mod 2304) mod 1152) mod 9) floordiv 3)>
#map15 = affine_map<(d0, d1) -> ((d0 + d1 * 72) mod 2304 - (((d0 + d1 * 72) mod 2304) floordiv 1152) * 1151 - ((((d0 + d1 * 72) mod 2304) mod 1152) floordiv 9) * 9 - (((((d0 + d1 * 72) mod 2304) mod 1152) mod 9) floordiv 3) * 3)>
#map16 = affine_map<(d0, d1) -> (((((d0 + d1 * 72) mod 2304) mod 1152) floordiv 9) floordiv 8)>
// Test for test case in b/128303048 #4.
// CHECK-LABEL: func @test_memref_bounds
func @test_memref_bounds(%arg0: memref<4x4x16x1xvector<8x128xf32>>, %arg1: memref<144x9xvector<8x128xf32>>, %arg2: memref<2xvector<8x128xf32>>) -> (memref<144x9xvector<8x128xf32>>, memref<2xvector<8x128xf32>>) {
%c0 = constant 0 : index
affine.for %i8 = 0 to 9 step 3 {
affine.for %i9 = #map3(%i8) to #map12(%i8) {
affine.for %i10 = 0 to 64 {
%10 = affine.apply #map14(%i9, %i10)
%11 = affine.apply #map15(%i9, %i10)
%12 = affine.apply #map16(%i9, %i10)
%13 = affine.load %arg0[%10, %11, %12, %c0] : memref<4x4x16x1xvector<8x128xf32>>
}
}
}
return %arg1, %arg2 : memref<144x9xvector<8x128xf32>>, memref<2xvector<8x128xf32>>
}
// CHECK: alloc() : memref<4x4x16x1xvector<8x128xf32>, 2>
// CHECK-NEXT: alloc() : memref<1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} : memref<4x4x16x1xvector<8x128xf32>>, memref<4x4x16x1xvector<8x128xf32>, 2>, memref<1xi32>
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xi32>
// -----
// Since the fast memory size is 4 KB, DMA generation will happen right under
// %i0.
// FAST-MEM-16KB-LABEL: func @load_store_same_memref
func @load_store_same_memref(%arg0: memref<256x1024xf32>) {
// FAST-MEM-16KB: affine.for %{{.*}} = 0 to 256 step 4
affine.for %i0 = 0 to 256 step 4 {
// FAST-MEM-16KB: [[BUF:%[0-9]+]] = alloc() : memref<4x1024xf32, 2>
// FAST-MEM-16KB: affine.dma_start %{{.*}}
// FAST-MEM-16KB-NEXT: affine.dma_wait
// FAST-MEM-16KB: affine.for %{{.*}}
affine.for %i1 = 0 to 1024 step 4 {
// FAST-MEM-16KB: affine.for %{{.*}}
affine.for %i2 = affine_map<(d0) -> (d0)>(%i0) to affine_map<(d0) -> (d0 + 4)>(%i0) {
// FAST-MEM-16KB: affine.for %{{.*}}
affine.for %i3 = affine_map<(d0) -> (d0)>(%i1) to affine_map<(d0) -> (d0 + 4)>(%i1) {
%3 = affine.load %arg0[%i2, %i3] : memref<256x1024xf32>
%4 = mulf %3, %3 : f32
affine.store %4, %arg0[%i2, %i3] : memref<256x1024xf32>
} // FAST-MEM-16KB: }
} // FAST-MEM-16KB: }
} // FAST-MEM-16KB: }
// FAST-MEM-16KB: affine.dma_start [[BUF]]
// FAST-MEM-16KB-NEXT: affine.dma_wait
}
return
}
// -----
// This a 3-d loop nest tiled by 4 x 4 x 4. Under %i, %j, %k, the size of a
// tile of arg0, arg1, and arg2 accessed is 4 KB (each), i.e., 12 KB in total.
// With fast mem capacity set to 16 KB, the DMAs if placed under %k will fit.
// However, the region of arg2 accessed is invariant w.r.t the %k loop unlike
// %arg0 and %arg1. So, its DMA can be hoisted one level up and placed under
// %j, while the DMAs for arg0 and arg1 appear right under the %k scf.
#map0 = affine_map<(d0) -> (d0)>
#map1 = affine_map<(d0) -> (d0 + 4)>
// FAST-MEM-16KB-LABEL: func @simple_matmul
func @simple_matmul(%arg0: memref<8x8xvector<64xf32>>, %arg1: memref<8x8xvector<64xf32>>, %arg2: memref<8x8xvector<64xf32>>) -> memref<8x8xvector<64xf32>> {
affine.for %i = 0 to 8 step 4 {
affine.for %j = 0 to 8 step 4 {
affine.for %k = 0 to 8 step 4 {
affine.for %ii = #map0(%i) to #map1(%i) {
affine.for %jj = #map0(%j) to #map1(%j) {
affine.for %kk = #map0(%k) to #map1(%k) {
%5 = affine.load %arg0[%ii, %kk] : memref<8x8xvector<64xf32>>
%6 = affine.load %arg1[%kk, %jj] : memref<8x8xvector<64xf32>>
%7 = affine.load %arg2[%ii, %jj] : memref<8x8xvector<64xf32>>
%8 = mulf %5, %6 : vector<64xf32>
%9 = addf %7, %8 : vector<64xf32>
affine.store %9, %arg2[%ii, %jj] : memref<8x8xvector<64xf32>>
}
}
}
}
}
}
return %arg2 : memref<8x8xvector<64xf32>>
}
// FAST-MEM-16KB: affine.for %{{.*}} = 0 to 8 step 4 {
// FAST-MEM-16KB: affine.for %{{.*}} = 0 to 8 step 4 {
// FAST-MEM-16KB: affine.dma_start %{{.*}}
// FAST-MEM-16KB: affine.dma_wait
// FAST-MEM-16KB: affine.for %{{.*}} = 0 to 8 step 4 {
// FAST-MEM-16KB: affine.dma_start %{{.*}}
// FAST-MEM-16KB: affine.dma_wait
// FAST-MEM-16KB: affine.dma_start %{{.*}}
// FAST-MEM-16KB: affine.dma_wait
// FAST-MEM-16KB: affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to #map{{[0-9]+}}(%{{.*}}) {
// FAST-MEM-16KB-NEXT: affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to #map{{[0-9]+}}(%{{.*}}) {
// FAST-MEM-16KB-NEXT: affine.for %{{.*}} = #map{{[0-9]+}}(%{{.*}}) to #map{{[0-9]+}}(%{{.*}}) {
// FAST-MEM-16KB: }
// FAST-MEM-16KB: }
// FAST-MEM-16KB: }
// FAST-MEM-16KB: }
// FAST-MEM-16KB: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}
// FAST-MEM-16KB: affine.dma_wait