Operator.cpp 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
//===- Operator.cpp - Operator class --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Operator wrapper to simplify using TableGen Record defining a MLIR Op.
//
//===----------------------------------------------------------------------===//

#include "mlir/TableGen/Operator.h"
#include "mlir/TableGen/OpTrait.h"
#include "mlir/TableGen/Predicate.h"
#include "mlir/TableGen/Type.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"

#define DEBUG_TYPE "mlir-tblgen-operator"

using namespace mlir;
using namespace mlir::tblgen;

using llvm::DagInit;
using llvm::DefInit;
using llvm::Record;

Operator::Operator(const llvm::Record &def)
    : dialect(def.getValueAsDef("opDialect")), def(def) {
  // The first `_` in the op's TableGen def name is treated as separating the
  // dialect prefix and the op class name. The dialect prefix will be ignored if
  // not empty. Otherwise, if def name starts with a `_`, the `_` is considered
  // as part of the class name.
  StringRef prefix;
  std::tie(prefix, cppClassName) = def.getName().split('_');
  if (prefix.empty()) {
    // Class name with a leading underscore and without dialect prefix
    cppClassName = def.getName();
  } else if (cppClassName.empty()) {
    // Class name without dialect prefix
    cppClassName = prefix;
  }

  populateOpStructure();
}

std::string Operator::getOperationName() const {
  auto prefix = dialect.getName();
  auto opName = def.getValueAsString("opName");
  if (prefix.empty())
    return std::string(opName);
  return std::string(llvm::formatv("{0}.{1}", prefix, opName));
}

std::string Operator::getAdaptorName() const {
  return std::string(llvm::formatv("{0}Adaptor", getCppClassName()));
}

StringRef Operator::getDialectName() const { return dialect.getName(); }

StringRef Operator::getCppClassName() const { return cppClassName; }

std::string Operator::getQualCppClassName() const {
  auto prefix = dialect.getCppNamespace();
  if (prefix.empty())
    return std::string(cppClassName);
  return std::string(llvm::formatv("{0}::{1}", prefix, cppClassName));
}

int Operator::getNumResults() const {
  DagInit *results = def.getValueAsDag("results");
  return results->getNumArgs();
}

StringRef Operator::getExtraClassDeclaration() const {
  constexpr auto attr = "extraClassDeclaration";
  if (def.isValueUnset(attr))
    return {};
  return def.getValueAsString(attr);
}

const llvm::Record &Operator::getDef() const { return def; }

bool Operator::skipDefaultBuilders() const {
  return def.getValueAsBit("skipDefaultBuilders");
}

auto Operator::result_begin() -> value_iterator { return results.begin(); }

auto Operator::result_end() -> value_iterator { return results.end(); }

auto Operator::getResults() -> value_range {
  return {result_begin(), result_end()};
}

TypeConstraint Operator::getResultTypeConstraint(int index) const {
  DagInit *results = def.getValueAsDag("results");
  return TypeConstraint(cast<DefInit>(results->getArg(index)));
}

StringRef Operator::getResultName(int index) const {
  DagInit *results = def.getValueAsDag("results");
  return results->getArgNameStr(index);
}

auto Operator::getResultDecorators(int index) const -> var_decorator_range {
  Record *result =
      cast<DefInit>(def.getValueAsDag("results")->getArg(index))->getDef();
  if (!result->isSubClassOf("OpVariable"))
    return var_decorator_range(nullptr, nullptr);
  return *result->getValueAsListInit("decorators");
}

unsigned Operator::getNumVariableLengthResults() const {
  return llvm::count_if(results, [](const NamedTypeConstraint &c) {
    return c.constraint.isVariableLength();
  });
}

unsigned Operator::getNumVariableLengthOperands() const {
  return llvm::count_if(operands, [](const NamedTypeConstraint &c) {
    return c.constraint.isVariableLength();
  });
}

bool Operator::hasSingleVariadicArg() const {
  return getNumArgs() == 1 && getArg(0).is<NamedTypeConstraint *>() &&
         getOperand(0).isVariadic();
}

Operator::arg_iterator Operator::arg_begin() const { return arguments.begin(); }

Operator::arg_iterator Operator::arg_end() const { return arguments.end(); }

Operator::arg_range Operator::getArgs() const {
  return {arg_begin(), arg_end()};
}

StringRef Operator::getArgName(int index) const {
  DagInit *argumentValues = def.getValueAsDag("arguments");
  return argumentValues->getArgName(index)->getValue();
}

auto Operator::getArgDecorators(int index) const -> var_decorator_range {
  Record *arg =
      cast<DefInit>(def.getValueAsDag("arguments")->getArg(index))->getDef();
  if (!arg->isSubClassOf("OpVariable"))
    return var_decorator_range(nullptr, nullptr);
  return *arg->getValueAsListInit("decorators");
}

const OpTrait *Operator::getTrait(StringRef trait) const {
  for (const auto &t : traits) {
    if (const auto *opTrait = dyn_cast<NativeOpTrait>(&t)) {
      if (opTrait->getTrait() == trait)
        return opTrait;
    } else if (const auto *opTrait = dyn_cast<InternalOpTrait>(&t)) {
      if (opTrait->getTrait() == trait)
        return opTrait;
    } else if (const auto *opTrait = dyn_cast<InterfaceOpTrait>(&t)) {
      if (opTrait->getTrait() == trait)
        return opTrait;
    }
  }
  return nullptr;
}

auto Operator::region_begin() const -> const_region_iterator {
  return regions.begin();
}
auto Operator::region_end() const -> const_region_iterator {
  return regions.end();
}
auto Operator::getRegions() const
    -> llvm::iterator_range<const_region_iterator> {
  return {region_begin(), region_end()};
}

unsigned Operator::getNumRegions() const { return regions.size(); }

const NamedRegion &Operator::getRegion(unsigned index) const {
  return regions[index];
}

unsigned Operator::getNumVariadicRegions() const {
  return llvm::count_if(regions,
                        [](const NamedRegion &c) { return c.isVariadic(); });
}

auto Operator::successor_begin() const -> const_successor_iterator {
  return successors.begin();
}
auto Operator::successor_end() const -> const_successor_iterator {
  return successors.end();
}
auto Operator::getSuccessors() const
    -> llvm::iterator_range<const_successor_iterator> {
  return {successor_begin(), successor_end()};
}

unsigned Operator::getNumSuccessors() const { return successors.size(); }

const NamedSuccessor &Operator::getSuccessor(unsigned index) const {
  return successors[index];
}

unsigned Operator::getNumVariadicSuccessors() const {
  return llvm::count_if(successors,
                        [](const NamedSuccessor &c) { return c.isVariadic(); });
}

auto Operator::trait_begin() const -> const_trait_iterator {
  return traits.begin();
}
auto Operator::trait_end() const -> const_trait_iterator {
  return traits.end();
}
auto Operator::getTraits() const -> llvm::iterator_range<const_trait_iterator> {
  return {trait_begin(), trait_end()};
}

auto Operator::attribute_begin() const -> attribute_iterator {
  return attributes.begin();
}
auto Operator::attribute_end() const -> attribute_iterator {
  return attributes.end();
}
auto Operator::getAttributes() const
    -> llvm::iterator_range<attribute_iterator> {
  return {attribute_begin(), attribute_end()};
}

auto Operator::operand_begin() -> value_iterator { return operands.begin(); }
auto Operator::operand_end() -> value_iterator { return operands.end(); }
auto Operator::getOperands() -> value_range {
  return {operand_begin(), operand_end()};
}

auto Operator::getArg(int index) const -> Argument { return arguments[index]; }

// Mapping from result index to combined argument and result index. Arguments
// are indexed to match getArg index, while the result indexes are mapped to
// avoid overlap.
static int resultIndex(int i) { return -1 - i; }

bool Operator::isVariadic() const {
  return any_of(llvm::concat<const NamedTypeConstraint>(operands, results),
                [](const NamedTypeConstraint &op) { return op.isVariadic(); });
}

void Operator::populateTypeInferenceInfo(
    const llvm::StringMap<int> &argumentsAndResultsIndex) {
  // If the type inference op interface is not registered, then do not attempt
  // to determine if the result types an be inferred.
  auto &recordKeeper = def.getRecords();
  auto *inferTrait = recordKeeper.getDef(inferTypeOpInterface);
  allResultsHaveKnownTypes = false;
  if (!inferTrait)
    return;

  // If there are no results, the skip this else the build method generated
  // overlaps with another autogenerated builder.
  if (getNumResults() == 0)
    return;

  // Skip for ops with variadic operands/results.
  // TODO: This can be relaxed.
  if (isVariadic())
    return;

  // Skip cases currently being custom generated.
  // TODO: Remove special cases.
  if (getTrait("::mlir::OpTrait::SameOperandsAndResultType"))
    return;

  // We create equivalence classes of argument/result types where arguments
  // and results are mapped into the same index space and indices corresponding
  // to the same type are in the same equivalence class.
  llvm::EquivalenceClasses<int> ecs;
  resultTypeMapping.resize(getNumResults());
  // Captures the argument whose type matches a given result type. Preference
  // towards capturing operands first before attributes.
  auto captureMapping = [&](int i) {
    bool found = false;
    ecs.insert(resultIndex(i));
    auto mi = ecs.findLeader(resultIndex(i));
    for (auto me = ecs.member_end(); mi != me; ++mi) {
      if (*mi < 0) {
        auto tc = getResultTypeConstraint(i);
        if (tc.getBuilderCall().hasValue()) {
          resultTypeMapping[i].emplace_back(tc);
          found = true;
        }
        continue;
      }

      if (getArg(*mi).is<NamedAttribute *>()) {
        // TODO: Handle attributes.
        continue;
      } else {
        resultTypeMapping[i].emplace_back(*mi);
        found = true;
      }
    }
    return found;
  };

  for (const OpTrait &trait : traits) {
    const llvm::Record &def = trait.getDef();
    // If the infer type op interface was manually added, then treat it as
    // intention that the op needs special handling.
    // TODO: Reconsider whether to always generate, this is more conservative
    // and keeps existing behavior so starting that way for now.
    if (def.isSubClassOf(
            llvm::formatv("{0}::Trait", inferTypeOpInterface).str()))
      return;
    if (const auto *opTrait = dyn_cast<InterfaceOpTrait>(&trait))
      if (&opTrait->getDef() == inferTrait)
        return;

    if (!def.isSubClassOf("AllTypesMatch"))
      continue;

    auto values = def.getValueAsListOfStrings("values");
    auto root = argumentsAndResultsIndex.lookup(values.front());
    for (StringRef str : values)
      ecs.unionSets(argumentsAndResultsIndex.lookup(str), root);
  }

  // Verifies that all output types have a corresponding known input type
  // and chooses matching operand or attribute (in that order) that
  // matches it.
  allResultsHaveKnownTypes =
      all_of(llvm::seq<int>(0, getNumResults()), captureMapping);

  // If the types could be computed, then add type inference trait.
  if (allResultsHaveKnownTypes)
    traits.push_back(OpTrait::create(inferTrait->getDefInit()));
}

void Operator::populateOpStructure() {
  auto &recordKeeper = def.getRecords();
  auto *typeConstraintClass = recordKeeper.getClass("TypeConstraint");
  auto *attrClass = recordKeeper.getClass("Attr");
  auto *derivedAttrClass = recordKeeper.getClass("DerivedAttr");
  auto *opVarClass = recordKeeper.getClass("OpVariable");
  numNativeAttributes = 0;

  DagInit *argumentValues = def.getValueAsDag("arguments");
  unsigned numArgs = argumentValues->getNumArgs();

  // Mapping from name of to argument or result index. Arguments are indexed
  // to match getArg index, while the results are negatively indexed.
  llvm::StringMap<int> argumentsAndResultsIndex;

  // Handle operands and native attributes.
  for (unsigned i = 0; i != numArgs; ++i) {
    auto *arg = argumentValues->getArg(i);
    auto givenName = argumentValues->getArgNameStr(i);
    auto *argDefInit = dyn_cast<DefInit>(arg);
    if (!argDefInit)
      PrintFatalError(def.getLoc(),
                      Twine("undefined type for argument #") + Twine(i));
    Record *argDef = argDefInit->getDef();
    if (argDef->isSubClassOf(opVarClass))
      argDef = argDef->getValueAsDef("constraint");

    if (argDef->isSubClassOf(typeConstraintClass)) {
      operands.push_back(
          NamedTypeConstraint{givenName, TypeConstraint(argDef)});
    } else if (argDef->isSubClassOf(attrClass)) {
      if (givenName.empty())
        PrintFatalError(argDef->getLoc(), "attributes must be named");
      if (argDef->isSubClassOf(derivedAttrClass))
        PrintFatalError(argDef->getLoc(),
                        "derived attributes not allowed in argument list");
      attributes.push_back({givenName, Attribute(argDef)});
      ++numNativeAttributes;
    } else {
      PrintFatalError(def.getLoc(), "unexpected def type; only defs deriving "
                                    "from TypeConstraint or Attr are allowed");
    }
    if (!givenName.empty())
      argumentsAndResultsIndex[givenName] = i;
  }

  // Handle derived attributes.
  for (const auto &val : def.getValues()) {
    if (auto *record = dyn_cast<llvm::RecordRecTy>(val.getType())) {
      if (!record->isSubClassOf(attrClass))
        continue;
      if (!record->isSubClassOf(derivedAttrClass))
        PrintFatalError(def.getLoc(),
                        "unexpected Attr where only DerivedAttr is allowed");

      if (record->getClasses().size() != 1) {
        PrintFatalError(
            def.getLoc(),
            "unsupported attribute modelling, only single class expected");
      }
      attributes.push_back(
          {cast<llvm::StringInit>(val.getNameInit())->getValue(),
           Attribute(cast<DefInit>(val.getValue()))});
    }
  }

  // Populate `arguments`. This must happen after we've finalized `operands` and
  // `attributes` because we will put their elements' pointers in `arguments`.
  // SmallVector may perform re-allocation under the hood when adding new
  // elements.
  int operandIndex = 0, attrIndex = 0;
  for (unsigned i = 0; i != numArgs; ++i) {
    Record *argDef = dyn_cast<DefInit>(argumentValues->getArg(i))->getDef();
    if (argDef->isSubClassOf(opVarClass))
      argDef = argDef->getValueAsDef("constraint");

    if (argDef->isSubClassOf(typeConstraintClass)) {
      attrOrOperandMapping.push_back(
          {OperandOrAttribute::Kind::Operand, operandIndex});
      arguments.emplace_back(&operands[operandIndex++]);
    } else {
      assert(argDef->isSubClassOf(attrClass));
      attrOrOperandMapping.push_back(
          {OperandOrAttribute::Kind::Attribute, attrIndex});
      arguments.emplace_back(&attributes[attrIndex++]);
    }
  }

  auto *resultsDag = def.getValueAsDag("results");
  auto *outsOp = dyn_cast<DefInit>(resultsDag->getOperator());
  if (!outsOp || outsOp->getDef()->getName() != "outs") {
    PrintFatalError(def.getLoc(), "'results' must have 'outs' directive");
  }

  // Handle results.
  for (unsigned i = 0, e = resultsDag->getNumArgs(); i < e; ++i) {
    auto name = resultsDag->getArgNameStr(i);
    auto *resultInit = dyn_cast<DefInit>(resultsDag->getArg(i));
    if (!resultInit) {
      PrintFatalError(def.getLoc(),
                      Twine("undefined type for result #") + Twine(i));
    }
    auto *resultDef = resultInit->getDef();
    if (resultDef->isSubClassOf(opVarClass))
      resultDef = resultDef->getValueAsDef("constraint");
    results.push_back({name, TypeConstraint(resultDef)});
    if (!name.empty())
      argumentsAndResultsIndex[name] = resultIndex(i);
  }

  // Handle successors
  auto *successorsDag = def.getValueAsDag("successors");
  auto *successorsOp = dyn_cast<DefInit>(successorsDag->getOperator());
  if (!successorsOp || successorsOp->getDef()->getName() != "successor") {
    PrintFatalError(def.getLoc(),
                    "'successors' must have 'successor' directive");
  }

  for (unsigned i = 0, e = successorsDag->getNumArgs(); i < e; ++i) {
    auto name = successorsDag->getArgNameStr(i);
    auto *successorInit = dyn_cast<DefInit>(successorsDag->getArg(i));
    if (!successorInit) {
      PrintFatalError(def.getLoc(),
                      Twine("undefined kind for successor #") + Twine(i));
    }
    Successor successor(successorInit->getDef());

    // Only support variadic successors if it is the last one for now.
    if (i != e - 1 && successor.isVariadic())
      PrintFatalError(def.getLoc(), "only the last successor can be variadic");
    successors.push_back({name, successor});
  }

  // Create list of traits, skipping over duplicates: appending to lists in
  // tablegen is easy, making them unique less so, so dedupe here.
  if (auto *traitList = def.getValueAsListInit("traits")) {
    // This is uniquing based on pointers of the trait.
    SmallPtrSet<const llvm::Init *, 32> traitSet;
    traits.reserve(traitSet.size());
    for (auto *traitInit : *traitList) {
      // Keep traits in the same order while skipping over duplicates.
      if (traitSet.insert(traitInit).second)
        traits.push_back(OpTrait::create(traitInit));
    }
  }

  populateTypeInferenceInfo(argumentsAndResultsIndex);

  // Handle regions
  auto *regionsDag = def.getValueAsDag("regions");
  auto *regionsOp = dyn_cast<DefInit>(regionsDag->getOperator());
  if (!regionsOp || regionsOp->getDef()->getName() != "region") {
    PrintFatalError(def.getLoc(), "'regions' must have 'region' directive");
  }

  for (unsigned i = 0, e = regionsDag->getNumArgs(); i < e; ++i) {
    auto name = regionsDag->getArgNameStr(i);
    auto *regionInit = dyn_cast<DefInit>(regionsDag->getArg(i));
    if (!regionInit) {
      PrintFatalError(def.getLoc(),
                      Twine("undefined kind for region #") + Twine(i));
    }
    Region region(regionInit->getDef());
    if (region.isVariadic()) {
      // Only support variadic regions if it is the last one for now.
      if (i != e - 1)
        PrintFatalError(def.getLoc(), "only the last region can be variadic");
      if (name.empty())
        PrintFatalError(def.getLoc(), "variadic regions must be named");
    }

    regions.push_back({name, region});
  }

  LLVM_DEBUG(print(llvm::dbgs()));
}

auto Operator::getSameTypeAsResult(int index) const -> ArrayRef<ArgOrType> {
  assert(allResultTypesKnown());
  return resultTypeMapping[index];
}

ArrayRef<llvm::SMLoc> Operator::getLoc() const { return def.getLoc(); }

bool Operator::hasDescription() const {
  return def.getValue("description") != nullptr;
}

StringRef Operator::getDescription() const {
  return def.getValueAsString("description");
}

bool Operator::hasSummary() const { return def.getValue("summary") != nullptr; }

StringRef Operator::getSummary() const {
  return def.getValueAsString("summary");
}

bool Operator::hasAssemblyFormat() const {
  auto *valueInit = def.getValueInit("assemblyFormat");
  return isa<llvm::CodeInit, llvm::StringInit>(valueInit);
}

StringRef Operator::getAssemblyFormat() const {
  return TypeSwitch<llvm::Init *, StringRef>(def.getValueInit("assemblyFormat"))
      .Case<llvm::StringInit, llvm::CodeInit>(
          [&](auto *init) { return init->getValue(); });
}

void Operator::print(llvm::raw_ostream &os) const {
  os << "op '" << getOperationName() << "'\n";
  for (Argument arg : arguments) {
    if (auto *attr = arg.dyn_cast<NamedAttribute *>())
      os << "[attribute] " << attr->name << '\n';
    else
      os << "[operand] " << arg.get<NamedTypeConstraint *>()->name << '\n';
  }
}

auto Operator::VariableDecoratorIterator::unwrap(llvm::Init *init)
    -> VariableDecorator {
  return VariableDecorator(cast<llvm::DefInit>(init)->getDef());
}

auto Operator::getArgToOperandOrAttribute(int index) const
    -> OperandOrAttribute {
  return attrOrOperandMapping[index];
}