Traits.cpp
8.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//===- Traits.cpp - Common op traits shared by dialects -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
bool OpTrait::util::staticallyKnownBroadcastable(ArrayRef<int64_t> shape1,
ArrayRef<int64_t> shape2) {
// Two dimensions are compatible when
// 1. they are defined and equal, or
// 2. one of them is 1
return llvm::all_of(llvm::zip(llvm::reverse(shape1), llvm::reverse(shape2)),
[](auto dimensions) {
auto dim1 = std::get<0>(dimensions);
auto dim2 = std::get<1>(dimensions);
if (dim1 == 1 || dim2 == 1)
return true;
if (dim1 == dim2 && !ShapedType::isDynamic(dim1))
return true;
return false;
});
}
bool OpTrait::util::getBroadcastedShape(ArrayRef<int64_t> shape1,
ArrayRef<int64_t> shape2,
SmallVectorImpl<int64_t> &resultShape) {
// To compute the result broadcasted shape, we compare operand shapes
// element-wise: starting with the trailing dimensions, and working the
// way backward. Two dimensions are compatible when
// 1. they are equal, or
// 2. one of them is 1
// The result shape has the maximum among the two inputs at every
// dimension index.
resultShape.clear();
if (shape1.size() > shape2.size()) {
std::copy(shape1.begin(), shape1.end(), std::back_inserter(resultShape));
} else {
std::copy(shape2.begin(), shape2.end(), std::back_inserter(resultShape));
}
auto i1 = shape1.rbegin(), e1 = shape1.rend();
auto i2 = shape2.rbegin(), e2 = shape2.rend();
auto iR = resultShape.rbegin();
// Check each dimension is consistent.
for (; i1 != e1 && i2 != e2; ++i1, ++i2, ++iR) {
if (*i1 == -1 || *i2 == -1) {
// One or both dimensions is unknown. Follow TensorFlow behavior:
// - If either dimension is greater than 1, we assume that the program is
// correct, and the other dimension will be broadcast to match it.
// - If either dimension is 1, the other dimension is the output.
if (*i1 > 1) {
*iR = *i1;
} else if (*i2 > 1) {
*iR = *i2;
} else if (*i1 == 1) {
*iR = *i2;
} else if (*i2 == 1) {
*iR = *i1;
} else {
*iR = -1;
}
} else {
if (*i1 == *i2 || *i2 == 1) {
*iR = *i1;
} else if (*i1 == 1) {
*iR = *i2;
} else {
// This dimension of the two operand types is incompatible.
resultShape.clear();
return false;
}
}
}
return true;
}
/// Returns the shape of the given type. Scalars will be considered as having a
/// shape with zero dimensions.
static ArrayRef<int64_t> getShape(Type type) {
if (auto sType = type.dyn_cast<ShapedType>())
return sType.getShape();
return {};
}
/// Returns the result broadcast composition type from the two given types by
/// following NumPy broadcast semantics. Returned type may have dynamic shape if
/// either of the input types has dynamic shape. Returns null type if the two
/// given types are not broadcast-compatible.
///
/// elementType, if specified, will be used as the element type of the
/// broadcasted result type. Otherwise it is required that the element type of
/// type1 and type2 is the same and this element type will be used as the
/// resultant element type.
Type OpTrait::util::getBroadcastedType(Type type1, Type type2,
Type elementType) {
// If the elementType is not specified, then the use the common element type
// of the inputs or fail if there is no common element type.
if (!elementType) {
elementType = getElementTypeOrSelf(type1);
if (elementType != getElementTypeOrSelf(type2))
return {};
}
// If one of the types is unranked tensor, then the other type shouldn't be
// vector and the result should have unranked tensor type.
if (type1.isa<UnrankedTensorType>() || type2.isa<UnrankedTensorType>()) {
if (type1.isa<VectorType>() || type2.isa<VectorType>())
return {};
return UnrankedTensorType::get(elementType);
}
// Returns the type kind if the given type is a vector or ranked tensor type.
// Returns llvm::None otherwise.
auto getCompositeTypeKind = [](Type type) -> Optional<TypeID> {
if (type.isa<VectorType, RankedTensorType>())
return type.getTypeID();
return llvm::None;
};
// Make sure the composite type, if has, is consistent.
Optional<TypeID> compositeKind1 = getCompositeTypeKind(type1);
Optional<TypeID> compositeKind2 = getCompositeTypeKind(type2);
Optional<TypeID> resultCompositeKind;
if (compositeKind1 && compositeKind2) {
// Disallow mixing vector and tensor.
if (compositeKind1 != compositeKind2)
return {};
resultCompositeKind = compositeKind1;
} else if (compositeKind1) {
resultCompositeKind = compositeKind1;
} else if (compositeKind2) {
resultCompositeKind = compositeKind2;
}
// Get the shape of each type.
SmallVector<int64_t, 4> resultShape;
if (!getBroadcastedShape(getShape(type1), getShape(type2), resultShape))
return {};
// Compose the final broadcasted type
if (resultCompositeKind == VectorType::getTypeID())
return VectorType::get(resultShape, elementType);
if (resultCompositeKind == RankedTensorType::getTypeID())
return RankedTensorType::get(resultShape, elementType);
return elementType;
}
/// Returns a tuple corresponding to whether range has tensor or vector type.
template <typename iterator_range>
static std::tuple<bool, bool> hasTensorOrVectorType(iterator_range types) {
return std::make_tuple(
llvm::any_of(types, [](Type t) { return t.isa<TensorType>(); }),
llvm::any_of(types, [](Type t) { return t.isa<VectorType>(); }));
}
static bool areCompatibleShapes(ArrayRef<int64_t> shape1,
ArrayRef<int64_t> shape2) {
auto isCompatible = [](int64_t dim1, int64_t dim2) {
return dim1 == dim2 || dim1 == -1 || dim2 == -1;
};
if (shape1.size() != shape2.size())
return false;
for (auto p : llvm::zip(shape1, shape2))
if (!isCompatible(std::get<0>(p), std::get<1>(p)))
return false;
return true;
}
static std::string getShapeString(ArrayRef<int64_t> shape) {
// TODO: should replace with printing shape more uniformly across here and
// when in type.
return std::string(
formatv("'{0:$[x]}'", llvm::make_range(shape.begin(), shape.end())));
}
LogicalResult OpTrait::impl::verifyCompatibleOperandBroadcast(Operation *op) {
// Ensure broadcasting only tensor or only vector types.
auto operandsHasTensorVectorType =
hasTensorOrVectorType(op->getOperandTypes());
auto resultsHasTensorVectorType = hasTensorOrVectorType(op->getResultTypes());
if ((std::get<0>(operandsHasTensorVectorType) ||
std::get<0>(resultsHasTensorVectorType)) &&
(std::get<1>(operandsHasTensorVectorType) ||
std::get<1>(resultsHasTensorVectorType)))
return op->emitError("cannot broadcast vector with tensor");
auto rankedOperands = make_filter_range(
op->getOperandTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
// If all operands are unranked, then all result shapes are possible.
if (rankedOperands.empty())
return success();
// Compute broadcasted shape of operands (which requires that operands are
// broadcast compatible). The results need to be broadcast compatible with
// this result shape.
SmallVector<int64_t, 4> resultShape;
(void)util::getBroadcastedShape(getShape(*rankedOperands.begin()), {},
resultShape);
for (auto other : make_early_inc_range(rankedOperands)) {
SmallVector<int64_t, 4> temp = resultShape;
if (!util::getBroadcastedShape(temp, getShape(other), resultShape))
return op->emitOpError("operands don't have broadcast-compatible shapes");
}
auto rankedResults = make_filter_range(
op->getResultTypes(), [](Type t) { return t.isa<RankedTensorType>(); });
// If all of the results are unranked then no further verification.
if (rankedResults.empty())
return success();
for (auto type : rankedResults) {
ArrayRef<int64_t> actualSuffix =
getShape(type).take_back(resultShape.size());
if (!areCompatibleShapes(actualSuffix, resultShape))
return op->emitOpError()
<< "result type " << getShapeString(getShape(type))
<< " not broadcast compatible with broadcasted operands's shapes "
<< getShapeString(resultShape);
}
return success();
}