Ops.cpp
142 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
// Pull in all enum type definitions and utility function declarations.
#include "mlir/Dialect/StandardOps/IR/OpsEnums.cpp.inc"
using namespace mlir;
//===----------------------------------------------------------------------===//
// StandardOpsDialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for handling inlining with standard
/// operations.
struct StdInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// All operations within standard ops can be inlined.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
//===--------------------------------------------------------------------===//
// Transformation Hooks
//===--------------------------------------------------------------------===//
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op, Block *newDest) const final {
// Only "std.return" needs to be handled here.
auto returnOp = dyn_cast<ReturnOp>(op);
if (!returnOp)
return;
// Replace the return with a branch to the dest.
OpBuilder builder(op);
builder.create<BranchOp>(op->getLoc(), newDest, returnOp.getOperands());
op->erase();
}
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Only "std.return" needs to be handled here.
auto returnOp = cast<ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &it : llvm::enumerate(returnOp.getOperands()))
valuesToRepl[it.index()].replaceAllUsesWith(it.value());
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// StandardOpsDialect
//===----------------------------------------------------------------------===//
/// A custom unary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardUnaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 1 && "unary op should have one operand");
assert(op->getNumResults() == 1 && "unary op should have one result");
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getOperand(0).getType();
}
/// A custom binary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardBinaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (op->getOperand(0).getType() != resultType ||
op->getOperand(1).getType() != resultType) {
p.printGenericOp(op);
return;
}
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << ", " << op->getOperand(1);
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << op->getResult(0).getType();
}
/// A custom cast operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardCastOp(Operation *op, OpAsmPrinter &p) {
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << " : " << op->getOperand(0).getType() << " to "
<< op->getResult(0).getType();
}
/// A custom cast operation verifier.
template <typename T>
static LogicalResult verifyCastOp(T op) {
auto opType = op.getOperand().getType();
auto resType = op.getType();
if (!T::areCastCompatible(opType, resType))
return op.emitError("operand type ") << opType << " and result type "
<< resType << " are cast incompatible";
return success();
}
void StandardOpsDialect::initialize() {
addOperations<DmaStartOp, DmaWaitOp,
#define GET_OP_LIST
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"
>();
addInterfaces<StdInlinerInterface>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *StandardOpsDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<ConstantOp>(loc, type, value);
}
void mlir::printDimAndSymbolList(Operation::operand_iterator begin,
Operation::operand_iterator end,
unsigned numDims, OpAsmPrinter &p) {
Operation::operand_range operands(begin, end);
p << '(' << operands.take_front(numDims) << ')';
if (operands.size() != numDims)
p << '[' << operands.drop_front(numDims) << ']';
}
// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
ParseResult mlir::parseDimAndSymbolList(OpAsmParser &parser,
SmallVectorImpl<Value> &operands,
unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser.parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
return failure();
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto indexTy = parser.getBuilder().getIndexType();
if (parser.parseOperandList(opInfos,
OpAsmParser::Delimiter::OptionalSquare) ||
parser.resolveOperands(opInfos, indexTy, operands))
return failure();
return success();
}
/// Matches a ConstantIndexOp.
/// TODO: This should probably just be a general matcher that uses m_Constant
/// and checks the operation for an index type.
static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() {
return detail::op_matcher<ConstantIndexOp>();
}
//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref_cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto cast = operand.get().getDefiningOp<MemRefCastOp>();
if (cast && !cast.getOperand().getType().isa<UnrankedMemRefType>()) {
operand.set(cast.getOperand());
folded = true;
}
}
return success(folded);
}
//===----------------------------------------------------------------------===//
// Common cast compatibility check for vector types.
//===----------------------------------------------------------------------===//
/// This method checks for cast compatibility of vector types.
/// If 'a' and 'b' are vector types, and they are cast compatible,
/// it calls the 'areElementsCastCompatible' function to check for
/// element cast compatibility.
/// Returns 'true' if the vector types are cast compatible, and 'false'
/// otherwise.
static bool areVectorCastSimpleCompatible(
Type a, Type b, function_ref<bool(Type, Type)> areElementsCastCompatible) {
if (auto va = a.dyn_cast<VectorType>())
if (auto vb = b.dyn_cast<VectorType>())
return va.getShape().equals(vb.getShape()) &&
areElementsCastCompatible(va.getElementType(),
vb.getElementType());
return false;
}
//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//
OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AddIOp
//===----------------------------------------------------------------------===//
OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
/// addi(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AllocOp / AllocaOp
//===----------------------------------------------------------------------===//
template <typename AllocLikeOp>
static void printAllocLikeOp(OpAsmPrinter &p, AllocLikeOp op, StringRef name) {
static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value,
"applies to only alloc or alloca");
p << name;
// Print dynamic dimension operands.
MemRefType type = op.getType();
printDimAndSymbolList(op.operand_begin(), op.operand_end(),
type.getNumDynamicDims(), p);
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"});
p << " : " << type;
}
static void print(OpAsmPrinter &p, AllocOp op) {
printAllocLikeOp(p, op, "alloc");
}
static void print(OpAsmPrinter &p, AllocaOp op) {
printAllocLikeOp(p, op, "alloca");
}
static ParseResult parseAllocLikeOp(OpAsmParser &parser,
OperationState &result) {
MemRefType type;
// Parse the dimension operands and optional symbol operands, followed by a
// memref type.
unsigned numDimOperands;
if (parseDimAndSymbolList(parser, result.operands, numDimOperands) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type))
return failure();
// Check numDynamicDims against number of question marks in memref type.
// Note: this check remains here (instead of in verify()), because the
// partition between dim operands and symbol operands is lost after parsing.
// Verification still checks that the total number of operands matches
// the number of symbols in the affine map, plus the number of dynamic
// dimensions in the memref.
if (numDimOperands != type.getNumDynamicDims())
return parser.emitError(parser.getNameLoc())
<< "dimension operand count does not equal memref dynamic dimension "
"count";
result.types.push_back(type);
return success();
}
template <typename AllocLikeOp>
static LogicalResult verify(AllocLikeOp op) {
static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value,
"applies to only alloc or alloca");
auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>();
if (!memRefType)
return op.emitOpError("result must be a memref");
unsigned numSymbols = 0;
if (!memRefType.getAffineMaps().empty()) {
// Store number of symbols used in affine map (used in subsequent check).
AffineMap affineMap = memRefType.getAffineMaps()[0];
numSymbols = affineMap.getNumSymbols();
}
// Check that the total number of operands matches the number of symbols in
// the affine map, plus the number of dynamic dimensions specified in the
// memref type.
unsigned numDynamicDims = memRefType.getNumDynamicDims();
if (op.getNumOperands() != numDynamicDims + numSymbols)
return op.emitOpError(
"operand count does not equal dimension plus symbol operand count");
// Verify that all operands are of type Index.
for (auto operandType : op.getOperandTypes())
if (!operandType.isIndex())
return op.emitOpError("requires operands to be of type Index");
if (std::is_same<AllocLikeOp, AllocOp>::value)
return success();
// An alloca op needs to have an ancestor with an allocation scope trait.
if (!op.template getParentWithTrait<OpTrait::AutomaticAllocationScope>())
return op.emitOpError(
"requires an ancestor op with AutomaticAllocationScope trait");
return success();
}
namespace {
/// Fold constant dimensions into an alloc like operation.
template <typename AllocLikeOp>
struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> {
using OpRewritePattern<AllocLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocLikeOp alloc,
PatternRewriter &rewriter) const override {
// Check to see if any dimensions operands are constants. If so, we can
// substitute and drop them.
if (llvm::none_of(alloc.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return failure();
auto memrefType = alloc.getType();
// Ok, we have one or more constant operands. Collect the non-constant ones
// and keep track of the resultant memref type to build.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
SmallVector<Value, 4> newOperands;
unsigned dynamicDimPos = 0;
for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (dimSize != -1) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = alloc.getOperand(dynamicDimPos).getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(-1);
newOperands.push_back(alloc.getOperand(dynamicDimPos));
}
dynamicDimPos++;
}
// Create new memref type (which will have fewer dynamic dimensions).
MemRefType newMemRefType =
MemRefType::Builder(memrefType).setShape(newShapeConstants);
assert(static_cast<int64_t>(newOperands.size()) ==
newMemRefType.getNumDynamicDims());
// Create and insert the alloc op for the new memref.
auto newAlloc = rewriter.create<AllocLikeOp>(alloc.getLoc(), newMemRefType,
newOperands, IntegerAttr());
// Insert a cast so we have the same type as the old alloc.
auto resultCast = rewriter.create<MemRefCastOp>(alloc.getLoc(), newAlloc,
alloc.getType());
rewriter.replaceOp(alloc, {resultCast});
return success();
}
};
/// Fold alloc operations with no uses. Alloc has side effects on the heap,
/// but can still be deleted if it has zero uses.
struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> {
using OpRewritePattern<AllocOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocOp alloc,
PatternRewriter &rewriter) const override {
if (alloc.use_empty()) {
rewriter.eraseOp(alloc);
return success();
}
return failure();
}
};
} // end anonymous namespace.
void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc>(context);
}
void AllocaOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyAllocConst<AllocaOp>>(context);
}
//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//
OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) {
/// and(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// and(x, allOnes) -> x
APInt intValue;
if (matchPattern(rhs(), m_ConstantInt(&intValue)) &&
intValue.isAllOnesValue())
return lhs();
/// and(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a & b; });
}
//===----------------------------------------------------------------------===//
// AssertOp
//===----------------------------------------------------------------------===//
namespace {
struct EraseRedundantAssertions : public OpRewritePattern<AssertOp> {
using OpRewritePattern<AssertOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AssertOp op,
PatternRewriter &rewriter) const override {
// Erase assertion if argument is constant true.
if (matchPattern(op.arg(), m_One())) {
rewriter.eraseOp(op);
return success();
}
return failure();
}
};
} // namespace
void AssertOp::getCanonicalizationPatterns(OwningRewritePatternList &patterns,
MLIRContext *context) {
patterns.insert<EraseRedundantAssertions>(context);
}
//===----------------------------------------------------------------------===//
// AssumeAlignmentOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AssumeAlignmentOp op) {
unsigned alignment = op.alignment();
if (!llvm::isPowerOf2_32(alignment))
return op.emitOpError("alignment must be power of 2");
return success();
}
//===----------------------------------------------------------------------===//
// AtomicRMWOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AtomicRMWOp op) {
if (op.getMemRefType().getRank() != op.getNumOperands() - 2)
return op.emitOpError(
"expects the number of subscripts to be equal to memref rank");
switch (op.kind()) {
case AtomicRMWKind::addf:
case AtomicRMWKind::maxf:
case AtomicRMWKind::minf:
case AtomicRMWKind::mulf:
if (!op.value().getType().isa<FloatType>())
return op.emitOpError()
<< "with kind '" << stringifyAtomicRMWKind(op.kind())
<< "' expects a floating-point type";
break;
case AtomicRMWKind::addi:
case AtomicRMWKind::maxs:
case AtomicRMWKind::maxu:
case AtomicRMWKind::mins:
case AtomicRMWKind::minu:
case AtomicRMWKind::muli:
if (!op.value().getType().isa<IntegerType>())
return op.emitOpError()
<< "with kind '" << stringifyAtomicRMWKind(op.kind())
<< "' expects an integer type";
break;
default:
break;
}
return success();
}
//===----------------------------------------------------------------------===//
// GenericAtomicRMWOp
//===----------------------------------------------------------------------===//
void GenericAtomicRMWOp::build(OpBuilder &builder, OperationState &result,
Value memref, ValueRange ivs) {
result.addOperands(memref);
result.addOperands(ivs);
if (auto memrefType = memref.getType().dyn_cast<MemRefType>()) {
Type elementType = memrefType.getElementType();
result.addTypes(elementType);
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block());
bodyRegion->addArgument(elementType);
}
}
static LogicalResult verify(GenericAtomicRMWOp op) {
auto &body = op.body();
if (body.getNumArguments() != 1)
return op.emitOpError("expected single number of entry block arguments");
if (op.getResult().getType() != body.getArgument(0).getType())
return op.emitOpError(
"expected block argument of the same type result type");
bool hasSideEffects =
body.walk([&](Operation *nestedOp) {
if (MemoryEffectOpInterface::hasNoEffect(nestedOp))
return WalkResult::advance();
nestedOp->emitError("body of 'generic_atomic_rmw' should contain "
"only operations with no side effects");
return WalkResult::interrupt();
})
.wasInterrupted();
return hasSideEffects ? failure() : success();
}
static ParseResult parseGenericAtomicRMWOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType memref;
Type memrefType;
SmallVector<OpAsmParser::OperandType, 4> ivs;
Type indexType = parser.getBuilder().getIndexType();
if (parser.parseOperand(memref) ||
parser.parseOperandList(ivs, OpAsmParser::Delimiter::Square) ||
parser.parseColonType(memrefType) ||
parser.resolveOperand(memref, memrefType, result.operands) ||
parser.resolveOperands(ivs, indexType, result.operands))
return failure();
Region *body = result.addRegion();
if (parser.parseRegion(*body, llvm::None, llvm::None) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
result.types.push_back(memrefType.cast<MemRefType>().getElementType());
return success();
}
static void print(OpAsmPrinter &p, GenericAtomicRMWOp op) {
p << op.getOperationName() << ' ' << op.memref() << "[" << op.indices()
<< "] : " << op.memref().getType();
p.printRegion(op.body());
p.printOptionalAttrDict(op.getAttrs());
}
//===----------------------------------------------------------------------===//
// AtomicYieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AtomicYieldOp op) {
Type parentType = op.getParentOp()->getResultTypes().front();
Type resultType = op.result().getType();
if (parentType != resultType)
return op.emitOpError() << "types mismatch between yield op: " << resultType
<< " and its parent: " << parentType;
return success();
}
//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//
/// Given a successor, try to collapse it to a new destination if it only
/// contains a passthrough unconditional branch. If the successor is
/// collapsable, `successor` and `successorOperands` are updated to reference
/// the new destination and values. `argStorage` is an optional storage to use
/// if operands to the collapsed successor need to be remapped.
static LogicalResult collapseBranch(Block *&successor,
ValueRange &successorOperands,
SmallVectorImpl<Value> &argStorage) {
// Check that the successor only contains a unconditional branch.
if (std::next(successor->begin()) != successor->end())
return failure();
// Check that the terminator is an unconditional branch.
BranchOp successorBranch = dyn_cast<BranchOp>(successor->getTerminator());
if (!successorBranch)
return failure();
// Check that the arguments are only used within the terminator.
for (BlockArgument arg : successor->getArguments()) {
for (Operation *user : arg.getUsers())
if (user != successorBranch)
return failure();
}
// Don't try to collapse branches to infinite loops.
Block *successorDest = successorBranch.getDest();
if (successorDest == successor)
return failure();
// Update the operands to the successor. If the branch parent has no
// arguments, we can use the branch operands directly.
OperandRange operands = successorBranch.getOperands();
if (successor->args_empty()) {
successor = successorDest;
successorOperands = operands;
return success();
}
// Otherwise, we need to remap any argument operands.
for (Value operand : operands) {
BlockArgument argOperand = operand.dyn_cast<BlockArgument>();
if (argOperand && argOperand.getOwner() == successor)
argStorage.push_back(successorOperands[argOperand.getArgNumber()]);
else
argStorage.push_back(operand);
}
successor = successorDest;
successorOperands = argStorage;
return success();
}
namespace {
/// Simplify a branch to a block that has a single predecessor. This effectively
/// merges the two blocks.
struct SimplifyBrToBlockWithSinglePred : public OpRewritePattern<BranchOp> {
using OpRewritePattern<BranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BranchOp op,
PatternRewriter &rewriter) const override {
// Check that the successor block has a single predecessor.
Block *succ = op.getDest();
Block *opParent = op.getOperation()->getBlock();
if (succ == opParent || !llvm::hasSingleElement(succ->getPredecessors()))
return failure();
// Merge the successor into the current block and erase the branch.
rewriter.mergeBlocks(succ, opParent, op.getOperands());
rewriter.eraseOp(op);
return success();
}
};
/// br ^bb1
/// ^bb1
/// br ^bbN(...)
///
/// -> br ^bbN(...)
///
struct SimplifyPassThroughBr : public OpRewritePattern<BranchOp> {
using OpRewritePattern<BranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BranchOp op,
PatternRewriter &rewriter) const override {
Block *dest = op.getDest();
ValueRange destOperands = op.getOperands();
SmallVector<Value, 4> destOperandStorage;
// Try to collapse the successor if it points somewhere other than this
// block.
if (dest == op.getOperation()->getBlock() ||
failed(collapseBranch(dest, destOperands, destOperandStorage)))
return failure();
// Create a new branch with the collapsed successor.
rewriter.replaceOpWithNewOp<BranchOp>(op, dest, destOperands);
return success();
}
};
} // end anonymous namespace.
Block *BranchOp::getDest() { return getSuccessor(); }
void BranchOp::setDest(Block *block) { return setSuccessor(block); }
void BranchOp::eraseOperand(unsigned index) {
getOperation()->eraseOperand(index);
}
void BranchOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyBrToBlockWithSinglePred, SimplifyPassThroughBr>(
context);
}
Optional<MutableOperandRange>
BranchOp::getMutableSuccessorOperands(unsigned index) {
assert(index == 0 && "invalid successor index");
return destOperandsMutable();
}
Block *BranchOp::getSuccessorForOperands(ArrayRef<Attribute>) { return dest(); }
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CallOp op) {
// Check that the callee attribute was specified.
auto fnAttr = op.getAttrOfType<FlatSymbolRefAttr>("callee");
if (!fnAttr)
return op.emitOpError("requires a 'callee' symbol reference attribute");
auto fn =
op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError() << "'" << fnAttr.getValue()
<< "' does not reference a valid function";
// Verify that the operand and result types match the callee.
auto fnType = fn.getType();
if (fnType.getNumInputs() != op.getNumOperands())
return op.emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
if (op.getOperand(i).getType() != fnType.getInput(i))
return op.emitOpError("operand type mismatch: expected operand type ")
<< fnType.getInput(i) << ", but provided "
<< op.getOperand(i).getType() << " for operand number " << i;
if (fnType.getNumResults() != op.getNumResults())
return op.emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
if (op.getResult(i).getType() != fnType.getResult(i))
return op.emitOpError("result type mismatch");
return success();
}
FunctionType CallOp::getCalleeType() {
return FunctionType::get(getOperandTypes(), getResultTypes(), getContext());
}
//===----------------------------------------------------------------------===//
// CallIndirectOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold indirect calls that have a constant function as the callee operand.
struct SimplifyIndirectCallWithKnownCallee
: public OpRewritePattern<CallIndirectOp> {
using OpRewritePattern<CallIndirectOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CallIndirectOp indirectCall,
PatternRewriter &rewriter) const override {
// Check that the callee is a constant callee.
SymbolRefAttr calledFn;
if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn)))
return failure();
// Replace with a direct call.
rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn,
indirectCall.getResultTypes(),
indirectCall.getArgOperands());
return success();
}
};
} // end anonymous namespace.
void CallIndirectOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SimplifyIndirectCallWithKnownCallee>(context);
}
//===----------------------------------------------------------------------===//
// General helpers for comparison ops
//===----------------------------------------------------------------------===//
// Return the type of the same shape (scalar, vector or tensor) containing i1.
static Type getI1SameShape(Type type) {
auto i1Type = IntegerType::get(1, type.getContext());
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return RankedTensorType::get(tensorType.getShape(), i1Type);
if (type.isa<UnrankedTensorType>())
return UnrankedTensorType::get(i1Type);
if (auto vectorType = type.dyn_cast<VectorType>())
return VectorType::get(vectorType.getShape(), i1Type);
return i1Type;
}
//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//
static void buildCmpIOp(OpBuilder &build, OperationState &result,
CmpIPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(CmpIOp::getPredicateAttrName(),
build.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
// comparison predicates.
bool mlir::applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
const APInt &rhs) {
switch (predicate) {
case CmpIPredicate::eq:
return lhs.eq(rhs);
case CmpIPredicate::ne:
return lhs.ne(rhs);
case CmpIPredicate::slt:
return lhs.slt(rhs);
case CmpIPredicate::sle:
return lhs.sle(rhs);
case CmpIPredicate::sgt:
return lhs.sgt(rhs);
case CmpIPredicate::sge:
return lhs.sge(rhs);
case CmpIPredicate::ult:
return lhs.ult(rhs);
case CmpIPredicate::ule:
return lhs.ule(rhs);
case CmpIPredicate::ugt:
return lhs.ugt(rhs);
case CmpIPredicate::uge:
return lhs.uge(rhs);
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpi takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CmpFOp
//===----------------------------------------------------------------------===//
static void buildCmpFOp(OpBuilder &build, OperationState &result,
CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(CmpFOp::getPredicateAttrName(),
build.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
/// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
/// comparison predicates.
bool mlir::applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs,
const APFloat &rhs) {
auto cmpResult = lhs.compare(rhs);
switch (predicate) {
case CmpFPredicate::AlwaysFalse:
return false;
case CmpFPredicate::OEQ:
return cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OGT:
return cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::OGE:
return cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OLT:
return cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::OLE:
return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ONE:
return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
case CmpFPredicate::ORD:
return cmpResult != APFloat::cmpUnordered;
case CmpFPredicate::UEQ:
return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UGT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::UGE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ULT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::ULE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UNE:
return cmpResult != APFloat::cmpEqual;
case CmpFPredicate::UNO:
return cmpResult == APFloat::cmpUnordered;
case CmpFPredicate::AlwaysTrue:
return true;
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpf takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
// TODO: We could actually do some intelligent things if we know only one
// of the operands, but it's inf or nan.
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//
namespace {
/// cond_br true, ^bb1, ^bb2
/// -> br ^bb1
/// cond_br false, ^bb1, ^bb2
/// -> br ^bb2
///
struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
if (matchPattern(condbr.getCondition(), m_NonZero())) {
// True branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getTrueDest(),
condbr.getTrueOperands());
return success();
} else if (matchPattern(condbr.getCondition(), m_Zero())) {
// False branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getFalseDest(),
condbr.getFalseOperands());
return success();
}
return failure();
}
};
/// cond_br %cond, ^bb1, ^bb2
/// ^bb1
/// br ^bbN(...)
/// ^bb2
/// br ^bbK(...)
///
/// -> cond_br %cond, ^bbN(...), ^bbK(...)
///
struct SimplifyPassThroughCondBranch : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
Block *trueDest = condbr.trueDest(), *falseDest = condbr.falseDest();
ValueRange trueDestOperands = condbr.getTrueOperands();
ValueRange falseDestOperands = condbr.getFalseOperands();
SmallVector<Value, 4> trueDestOperandStorage, falseDestOperandStorage;
// Try to collapse one of the current successors.
LogicalResult collapsedTrue =
collapseBranch(trueDest, trueDestOperands, trueDestOperandStorage);
LogicalResult collapsedFalse =
collapseBranch(falseDest, falseDestOperands, falseDestOperandStorage);
if (failed(collapsedTrue) && failed(collapsedFalse))
return failure();
// Create a new branch with the collapsed successors.
rewriter.replaceOpWithNewOp<CondBranchOp>(condbr, condbr.getCondition(),
trueDest, trueDestOperands,
falseDest, falseDestOperands);
return success();
}
};
/// cond_br %cond, ^bb1(A, ..., N), ^bb1(A, ..., N)
/// -> br ^bb1(A, ..., N)
///
/// cond_br %cond, ^bb1(A), ^bb1(B)
/// -> %select = select %cond, A, B
/// br ^bb1(%select)
///
struct SimplifyCondBranchIdenticalSuccessors
: public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
// Check that the true and false destinations are the same and have the same
// operands.
Block *trueDest = condbr.trueDest();
if (trueDest != condbr.falseDest())
return failure();
// If all of the operands match, no selects need to be generated.
OperandRange trueOperands = condbr.getTrueOperands();
OperandRange falseOperands = condbr.getFalseOperands();
if (trueOperands == falseOperands) {
rewriter.replaceOpWithNewOp<BranchOp>(condbr, trueDest, trueOperands);
return success();
}
// Otherwise, if the current block is the only predecessor insert selects
// for any mismatched branch operands.
if (trueDest->getUniquePredecessor() != condbr.getOperation()->getBlock())
return failure();
// Generate a select for any operands that differ between the two.
SmallVector<Value, 8> mergedOperands;
mergedOperands.reserve(trueOperands.size());
Value condition = condbr.getCondition();
for (auto it : llvm::zip(trueOperands, falseOperands)) {
if (std::get<0>(it) == std::get<1>(it))
mergedOperands.push_back(std::get<0>(it));
else
mergedOperands.push_back(rewriter.create<SelectOp>(
condbr.getLoc(), condition, std::get<0>(it), std::get<1>(it)));
}
rewriter.replaceOpWithNewOp<BranchOp>(condbr, trueDest, mergedOperands);
return success();
}
};
} // end anonymous namespace
void CondBranchOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SimplifyConstCondBranchPred, SimplifyPassThroughCondBranch,
SimplifyCondBranchIdenticalSuccessors>(context);
}
Optional<MutableOperandRange>
CondBranchOp::getMutableSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return index == trueIndex ? trueDestOperandsMutable()
: falseDestOperandsMutable();
}
Block *CondBranchOp::getSuccessorForOperands(ArrayRef<Attribute> operands) {
if (IntegerAttr condAttr = operands.front().dyn_cast_or_null<IntegerAttr>())
return condAttr.getValue().isOneValue() ? trueDest() : falseDest();
return nullptr;
}
//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ConstantOp &op) {
p << "constant ";
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});
if (op.getAttrs().size() > 1)
p << ' ';
p << op.getValue();
// If the value is a symbol reference, print a trailing type.
if (op.getValue().isa<SymbolRefAttr>())
p << " : " << op.getType();
}
static ParseResult parseConstantOp(OpAsmParser &parser,
OperationState &result) {
Attribute valueAttr;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseAttribute(valueAttr, "value", result.attributes))
return failure();
// If the attribute is a symbol reference, then we expect a trailing type.
Type type;
if (!valueAttr.isa<SymbolRefAttr>())
type = valueAttr.getType();
else if (parser.parseColonType(type))
return failure();
// Add the attribute type to the list.
return parser.addTypeToList(type, result.types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
static LogicalResult verify(ConstantOp &op) {
auto value = op.getValue();
if (!value)
return op.emitOpError("requires a 'value' attribute");
auto type = op.getType();
if (!value.getType().isa<NoneType>() && type != value.getType())
return op.emitOpError() << "requires attribute's type (" << value.getType()
<< ") to match op's return type (" << type << ")";
if (type.isa<IndexType>() || value.isa<BoolAttr>())
return success();
if (auto intAttr = value.dyn_cast<IntegerAttr>()) {
// If the type has a known bitwidth we verify that the value can be
// represented with the given bitwidth.
auto bitwidth = type.cast<IntegerType>().getWidth();
auto intVal = intAttr.getValue();
if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
return op.emitOpError("requires 'value' to be an integer within the "
"range of the integer result type");
return success();
}
if (type.isa<FloatType>()) {
if (!value.isa<FloatAttr>())
return op.emitOpError("requires 'value' to be a floating point constant");
return success();
}
if (type.isa<ShapedType>()) {
if (!value.isa<ElementsAttr>())
return op.emitOpError("requires 'value' to be a shaped constant");
return success();
}
if (type.isa<FunctionType>()) {
auto fnAttr = value.dyn_cast<FlatSymbolRefAttr>();
if (!fnAttr)
return op.emitOpError("requires 'value' to be a function reference");
// Try to find the referenced function.
auto fn =
op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError()
<< "reference to undefined function '" << fnAttr.getValue() << "'";
// Check that the referenced function has the correct type.
if (fn.getType() != type)
return op.emitOpError("reference to function with mismatched type");
return success();
}
if (type.isa<NoneType>() && value.isa<UnitAttr>())
return success();
return op.emitOpError("unsupported 'value' attribute: ") << value;
}
OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) {
assert(operands.empty() && "constant has no operands");
return getValue();
}
void ConstantOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
Type type = getType();
if (auto intCst = getValue().dyn_cast<IntegerAttr>()) {
IntegerType intTy = type.dyn_cast<IntegerType>();
// Sugar i1 constants with 'true' and 'false'.
if (intTy && intTy.getWidth() == 1)
return setNameFn(getResult(), (intCst.getInt() ? "true" : "false"));
// Otherwise, build a complex name with the value and type.
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
specialName << 'c' << intCst.getInt();
if (intTy)
specialName << '_' << type;
setNameFn(getResult(), specialName.str());
} else if (type.isa<FunctionType>()) {
setNameFn(getResult(), "f");
} else {
setNameFn(getResult(), "cst");
}
}
/// Returns true if a constant operation can be built with the given value and
/// result type.
bool ConstantOp::isBuildableWith(Attribute value, Type type) {
// SymbolRefAttr can only be used with a function type.
if (value.isa<SymbolRefAttr>())
return type.isa<FunctionType>();
// Otherwise, the attribute must have the same type as 'type'.
if (value.getType() != type)
return false;
// Finally, check that the attribute kind is handled.
return value.isa<IntegerAttr, FloatAttr, ElementsAttr, UnitAttr>();
}
void ConstantFloatOp::build(OpBuilder &builder, OperationState &result,
const APFloat &value, FloatType type) {
ConstantOp::build(builder, result, type, builder.getFloatAttr(type, value));
}
bool ConstantFloatOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isa<FloatType>();
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::classof(Operation *op) {
return ConstantOp::classof(op) &&
op->getResult(0).getType().isSignlessInteger();
}
void ConstantIntOp::build(OpBuilder &builder, OperationState &result,
int64_t value, unsigned width) {
Type type = builder.getIntegerType(width);
ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value));
}
/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(OpBuilder &builder, OperationState &result,
int64_t value, Type type) {
assert(type.isSignlessInteger() &&
"ConstantIntOp can only have signless integer type");
ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value));
}
/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isIndex();
}
void ConstantIndexOp::build(OpBuilder &builder, OperationState &result,
int64_t value) {
Type type = builder.getIndexType();
ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value));
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold Dealloc operations that are deallocating an AllocOp that is only used
/// by other Dealloc operations.
struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> {
using OpRewritePattern<DeallocOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DeallocOp dealloc,
PatternRewriter &rewriter) const override {
// Check that the memref operand's defining operation is an AllocOp.
Value memref = dealloc.memref();
if (!isa_and_nonnull<AllocOp>(memref.getDefiningOp()))
return failure();
// Check that all of the uses of the AllocOp are other DeallocOps.
for (auto *user : memref.getUsers())
if (!isa<DeallocOp>(user))
return failure();
// Erase the dealloc operation.
rewriter.eraseOp(dealloc);
return success();
}
};
} // end anonymous namespace.
static LogicalResult verify(DeallocOp op) {
if (!op.memref().getType().isa<MemRefType>())
return op.emitOpError("operand must be a memref");
return success();
}
void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyDeadDealloc>(context);
}
LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dealloc(memrefcast) -> dealloc
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
void DimOp::build(OpBuilder &builder, OperationState &result,
Value memrefOrTensor, int64_t index) {
auto loc = result.location;
Value indexValue = builder.create<ConstantIndexOp>(loc, index);
build(builder, result, memrefOrTensor, indexValue);
}
void DimOp::build(OpBuilder &builder, OperationState &result,
Value memrefOrTensor, Value index) {
auto indexTy = builder.getIndexType();
build(builder, result, indexTy, memrefOrTensor, index);
}
Optional<int64_t> DimOp::getConstantIndex() {
if (auto constantOp = index().getDefiningOp<ConstantOp>())
return constantOp.getValue().cast<IntegerAttr>().getInt();
return {};
}
static LogicalResult verify(DimOp op) {
// Assume unknown index to be in range.
Optional<int64_t> index = op.getConstantIndex();
if (!index.hasValue())
return success();
// Check that constant index is not knowingly out of range.
auto type = op.memrefOrTensor().getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
if (index.getValue() >= tensorType.getRank())
return op.emitOpError("index is out of range");
} else if (auto memrefType = type.dyn_cast<MemRefType>()) {
if (index.getValue() >= memrefType.getRank())
return op.emitOpError("index is out of range");
} else if (type.isa<UnrankedTensorType>() || type.isa<UnrankedMemRefType>()) {
// Assume index to be in range.
} else {
llvm_unreachable("expected operand with tensor or memref type");
}
return success();
}
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
// All forms of folding require a known index.
if (!index)
return {};
auto argTy = memrefOrTensor().getType();
// Fold if the shape extent along the given index is known.
if (auto shapedTy = argTy.dyn_cast<ShapedType>()) {
// Folding for unranked types (UnrankedMemRefType, UnrankedTensorType) is
// not supported.
if (!shapedTy.hasRank())
return {};
if (!shapedTy.isDynamicDim(index.getInt())) {
Builder builder(getContext());
return builder.getIndexAttr(shapedTy.getShape()[index.getInt()]);
}
}
// Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`.
auto memrefType = argTy.dyn_cast<MemRefType>();
if (!memrefType)
return {};
// The size at the given index is now known to be a dynamic size of a memref.
auto *memref = memrefOrTensor().getDefiningOp();
unsigned unsignedIndex = index.getValue().getZExtValue();
if (auto alloc = dyn_cast_or_null<AllocOp>(memref))
return *(alloc.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(unsignedIndex));
if (auto view = dyn_cast_or_null<ViewOp>(memref))
return *(view.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(unsignedIndex));
if (auto subview = dyn_cast_or_null<SubViewOp>(memref)) {
assert(subview.isDynamicSize(unsignedIndex) &&
"Expected dynamic subview size");
return subview.getDynamicSize(unsignedIndex);
}
// dim(memrefcast) -> dim
if (succeeded(foldMemRefCast(*this)))
return getResult();
return {};
}
// ---------------------------------------------------------------------------
// DmaStartOp
// ---------------------------------------------------------------------------
void DmaStartOp::build(OpBuilder &builder, OperationState &result,
Value srcMemRef, ValueRange srcIndices, Value destMemRef,
ValueRange destIndices, Value numElements,
Value tagMemRef, ValueRange tagIndices, Value stride,
Value elementsPerStride) {
result.addOperands(srcMemRef);
result.addOperands(srcIndices);
result.addOperands(destMemRef);
result.addOperands(destIndices);
result.addOperands({numElements, tagMemRef});
result.addOperands(tagIndices);
if (stride)
result.addOperands({stride, elementsPerStride});
}
void DmaStartOp::print(OpAsmPrinter &p) {
p << "dma_start " << getSrcMemRef() << '[' << getSrcIndices() << "], "
<< getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements()
<< ", " << getTagMemRef() << '[' << getTagIndices() << ']';
if (isStrided())
p << ", " << getStride() << ", " << getNumElementsPerStride();
p.printOptionalAttrDict(getAttrs());
p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType()
<< ", " << getTagMemRef().getType();
}
// Parse DmaStartOp.
// Ex:
// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
// %tag[%index], %stride, %num_elt_per_stride :
// : memref<3076 x f32, 0>,
// memref<1024 x f32, 2>,
// memref<1 x i32>
//
ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
OpAsmParser::OperandType dstMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
OpAsmParser::OperandType numElementsInfo;
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
SmallVector<Type, 3> types;
auto indexType = parser.getBuilder().getIndexType();
// Parse and resolve the following list of operands:
// *) source memref followed by its indices (in square brackets).
// *) destination memref followed by its indices (in square brackets).
// *) dma size in KiB.
if (parser.parseOperand(srcMemRefInfo) ||
parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseComma() || parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
return failure();
// Parse optional stride and elements per stride.
if (parser.parseTrailingOperandList(strideInfo))
return failure();
bool isStrided = strideInfo.size() == 2;
if (!strideInfo.empty() && !isStrided) {
return parser.emitError(parser.getNameLoc(),
"expected two stride related operands");
}
if (parser.parseColonTypeList(types))
return failure();
if (types.size() != 3)
return parser.emitError(parser.getNameLoc(), "fewer/more types expected");
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
parser.resolveOperands(srcIndexInfos, indexType, result.operands) ||
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
parser.resolveOperands(dstIndexInfos, indexType, result.operands) ||
// size should be an index.
parser.resolveOperand(numElementsInfo, indexType, result.operands) ||
parser.resolveOperand(tagMemrefInfo, types[2], result.operands) ||
// tag indices should be index.
parser.resolveOperands(tagIndexInfos, indexType, result.operands))
return failure();
if (isStrided) {
if (parser.resolveOperands(strideInfo, indexType, result.operands))
return failure();
}
return success();
}
LogicalResult DmaStartOp::verify() {
unsigned numOperands = getNumOperands();
// Mandatory non-variadic operands are: src memref, dst memref, tag memref and
// the number of elements.
if (numOperands < 4)
return emitOpError("expected at least 4 operands");
// Check types of operands. The order of these calls is important: the later
// calls rely on some type properties to compute the operand position.
// 1. Source memref.
if (!getSrcMemRef().getType().isa<MemRefType>())
return emitOpError("expected source to be of memref type");
if (numOperands < getSrcMemRefRank() + 4)
return emitOpError() << "expected at least " << getSrcMemRefRank() + 4
<< " operands";
if (!getSrcIndices().empty() &&
!llvm::all_of(getSrcIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError("expected source indices to be of index type");
// 2. Destination memref.
if (!getDstMemRef().getType().isa<MemRefType>())
return emitOpError("expected destination to be of memref type");
unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4;
if (numOperands < numExpectedOperands)
return emitOpError() << "expected at least " << numExpectedOperands
<< " operands";
if (!getDstIndices().empty() &&
!llvm::all_of(getDstIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError("expected destination indices to be of index type");
// 3. Number of elements.
if (!getNumElements().getType().isIndex())
return emitOpError("expected num elements to be of index type");
// 4. Tag memref.
if (!getTagMemRef().getType().isa<MemRefType>())
return emitOpError("expected tag to be of memref type");
numExpectedOperands += getTagMemRefRank();
if (numOperands < numExpectedOperands)
return emitOpError() << "expected at least " << numExpectedOperands
<< " operands";
if (!getTagIndices().empty() &&
!llvm::all_of(getTagIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError("expected tag indices to be of index type");
// DMAs from different memory spaces supported.
if (getSrcMemorySpace() == getDstMemorySpace())
return emitOpError("DMA should be between different memory spaces");
// Optional stride-related operands must be either both present or both
// absent.
if (numOperands != numExpectedOperands &&
numOperands != numExpectedOperands + 2)
return emitOpError("incorrect number of operands");
// 5. Strides.
if (isStrided()) {
if (!getStride().getType().isIndex() ||
!getNumElementsPerStride().getType().isIndex())
return emitOpError(
"expected stride and num elements per stride to be of type index");
}
return success();
}
LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_start(memrefcast) -> dma_start
return foldMemRefCast(*this);
}
// ---------------------------------------------------------------------------
// DmaWaitOp
// ---------------------------------------------------------------------------
void DmaWaitOp::build(OpBuilder &builder, OperationState &result,
Value tagMemRef, ValueRange tagIndices,
Value numElements) {
result.addOperands(tagMemRef);
result.addOperands(tagIndices);
result.addOperands(numElements);
}
void DmaWaitOp::print(OpAsmPrinter &p) {
p << "dma_wait " << getTagMemRef() << '[' << getTagIndices() << "], "
<< getNumElements();
p.printOptionalAttrDict(getAttrs());
p << " : " << getTagMemRef().getType();
}
// Parse DmaWaitOp.
// Eg:
// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
Type type;
auto indexType = parser.getBuilder().getIndexType();
OpAsmParser::OperandType numElementsInfo;
// Parse tag memref, its indices, and dma size.
if (parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseColonType(type) ||
parser.resolveOperand(tagMemrefInfo, type, result.operands) ||
parser.resolveOperands(tagIndexInfos, indexType, result.operands) ||
parser.resolveOperand(numElementsInfo, indexType, result.operands))
return failure();
return success();
}
LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_wait(memrefcast) -> dma_wait
return foldMemRefCast(*this);
}
LogicalResult DmaWaitOp::verify() {
// Mandatory non-variadic operands are tag and the number of elements.
if (getNumOperands() < 2)
return emitOpError() << "expected at least 2 operands";
// Check types of operands. The order of these calls is important: the later
// calls rely on some type properties to compute the operand position.
if (!getTagMemRef().getType().isa<MemRefType>())
return emitOpError() << "expected tag to be of memref type";
if (getNumOperands() != 2 + getTagMemRefRank())
return emitOpError() << "expected " << 2 + getTagMemRefRank()
<< " operands";
if (!getTagIndices().empty() &&
!llvm::all_of(getTagIndices().getTypes(),
[](Type t) { return t.isIndex(); }))
return emitOpError() << "expected tag indices to be of index type";
if (!getNumElements().getType().isIndex())
return emitOpError()
<< "expected the number of elements to be of index type";
return success();
}
//===----------------------------------------------------------------------===//
// DynamicTensorFromElementsOp
//===----------------------------------------------------------------------===//
static ParseResult parseDynamicTensorFromElementsOp(OpAsmParser &parser,
OperationState &result) {
// Parse operands.
SmallVector<OpAsmParser::OperandType, 4> dynamicExtents;
Type indexTy = parser.getBuilder().getIndexType();
if (parser.parseOperandList(dynamicExtents) ||
parser.resolveOperands(dynamicExtents, indexTy, result.operands))
return failure();
// Parse body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, {}, {}))
return failure();
// Parse result type.
Type resultType;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(resultType))
return failure();
result.addTypes(resultType);
return success();
}
static void print(OpAsmPrinter &p, DynamicTensorFromElementsOp op) {
p << "dynamic_tensor_from_elements " << op.dynamicExtents();
p.printRegion(op.body());
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getType();
}
static LogicalResult verify(DynamicTensorFromElementsOp op) {
// Ensure that the tensor type has as many dynamic dimensions as are specified
// by the operands.
RankedTensorType resultTy = op.getType().cast<RankedTensorType>();
if (op.getNumOperands() != resultTy.getNumDynamicDims())
return op.emitError("must have as many index operands as dynamic extents "
"in the result type");
// Ensure that region arguments span the index space.
if (!llvm::all_of(op.body().getArgumentTypes(),
[](Type ty) { return ty.isIndex(); }))
return op.emitError("all body arguments must be index");
if (op.body().getNumArguments() != resultTy.getRank())
return op.emitError("must have one body argument per input dimension");
// Ensure that the region yields an element of the right type.
auto yieldOp =
llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator());
if (yieldOp.value().getType() != resultTy.getElementType())
return op.emitOpError(
"body must be terminated with a `yield` operation of the tensor "
"element type");
return success();
}
void DynamicTensorFromElementsOp::build(
OpBuilder &b, OperationState &result, Type resultTy,
ValueRange dynamicExtents,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
build(b, result, resultTy, dynamicExtents);
// Build and populate body.
OpBuilder::InsertionGuard guard(b);
Region *bodyRegion = result.regions.front().get();
auto rank = resultTy.cast<RankedTensorType>().getRank();
SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
Block *bodyBlock =
b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes);
bodyBuilder(b, result.location, bodyBlock->getArguments());
}
namespace {
/// Canonicalizes dynamic_tensor_from_elements operations with a constant
/// operand into the equivalent operation with the operand expressed in the
/// result type, instead. We also insert a type cast to make sure that the
/// resulting IR is still well-typed.
struct StaticDynamicTensorFromElements
: public OpRewritePattern<DynamicTensorFromElementsOp> {
using OpRewritePattern<DynamicTensorFromElementsOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DynamicTensorFromElementsOp tensorFromElements,
PatternRewriter &rewriter) const final {
auto resultType =
tensorFromElements.getResult().getType().cast<RankedTensorType>();
if (resultType.hasStaticShape())
return failure();
SmallVector<Value, 4> newOperands;
SmallVector<int64_t, 4> newShape;
auto operandsIt = tensorFromElements.dynamicExtents().begin();
for (int64_t dim : resultType.getShape()) {
if (dim != RankedTensorType::kDynamicSize) {
newShape.push_back(dim);
continue;
}
APInt index;
if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
newShape.push_back(RankedTensorType::kDynamicSize);
newOperands.push_back(*operandsIt++);
continue;
}
newShape.push_back(index.getSExtValue());
operandsIt++;
}
if (newOperands.size() == tensorFromElements.dynamicExtents().size())
return failure();
auto loc = tensorFromElements.getLoc();
auto newOp = rewriter.create<DynamicTensorFromElementsOp>(
loc, RankedTensorType::get(newShape, resultType.getElementType()),
newOperands);
rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(),
newOp.body().begin());
rewriter.replaceOpWithNewOp<TensorCastOp>(tensorFromElements, resultType,
newOp);
return success();
}
};
/// Canonicalizes the pattern of the form
///
/// %tensor = dynamic_tensor_from_elements %x {
/// ^bb0(%arg0: index): // no predecessors
/// <computation>
/// yield %1 : index
/// } : tensor<?xindex>
/// %extracted_element = extract_element %tensor[%c0] : tensor<?xi32>
///
/// to just <computation> with %arg0 replaced by %c0. We only do this if the
/// dynamic_tensor_from_elements operation has no side-effects.
struct ExtractElementFromDynamicTensorFromElements
: public OpRewritePattern<ExtractElementOp> {
using OpRewritePattern<ExtractElementOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractElementOp extract,
PatternRewriter &rewriter) const final {
auto tensorFromElements =
extract.aggregate().getDefiningOp<DynamicTensorFromElementsOp>();
if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
return failure();
BlockAndValueMapping mapping;
Block *body = tensorFromElements.getBody();
mapping.map(body->getArguments(), extract.indices());
for (auto &op : body->without_terminator())
rewriter.clone(op, mapping);
auto yield = cast<YieldOp>(body->getTerminator());
rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value()));
return success();
}
};
} // namespace
void DynamicTensorFromElementsOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ExtractElementFromDynamicTensorFromElements,
StaticDynamicTensorFromElements>(context);
}
//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ExtractElementOp op) {
// Verify the # indices match if we have a ranked type.
auto aggregateType = op.getAggregate().getType().cast<ShapedType>();
if (aggregateType.hasRank() &&
aggregateType.getRank() != op.getNumOperands() - 1)
return op.emitOpError("incorrect number of indices for extract_element");
return success();
}
OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) {
assert(!operands.empty() && "extract_element takes at least one operand");
// The aggregate operand must be a known constant.
Attribute aggregate = operands.front();
if (!aggregate)
return {};
// If this is a splat elements attribute, simply return the value. All of the
// elements of a splat attribute are the same.
if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
return splatAggregate.getSplatValue();
// Otherwise, collect the constant indices into the aggregate.
SmallVector<uint64_t, 8> indices;
for (Attribute indice : llvm::drop_begin(operands, 1)) {
if (!indice || !indice.isa<IntegerAttr>())
return {};
indices.push_back(indice.cast<IntegerAttr>().getInt());
}
// If this is an elements attribute, query the value at the given indices.
auto elementsAttr = aggregate.dyn_cast<ElementsAttr>();
if (elementsAttr && elementsAttr.isValidIndex(indices))
return elementsAttr.getValue(indices);
return {};
}
//===----------------------------------------------------------------------===//
// TensorFromElementsOp
//===----------------------------------------------------------------------===//
void TensorFromElementsOp::build(OpBuilder &builder, OperationState &result,
Type elementType, ValueRange elements) {
Type resultTy = RankedTensorType::get({static_cast<int64_t>(elements.size())},
elementType);
result.addOperands(elements);
result.addTypes(resultTy);
}
void TensorFromElementsOp::build(OpBuilder &builder, OperationState &result,
ValueRange elements) {
assert(!elements.empty() && "expected at least one element");
build(builder, result, elements.front().getType(), elements);
}
namespace {
// Canonicalizes the pattern of the form
//
// %tensor = "tensor_from_elements(%element) : (i32) -> tensor<1xi32>
// %extracted_element = extract_element %tensor[%c0] : tensor<1xi32>
//
// to just %element.
struct ExtractElementFromTensorFromElements
: public OpRewritePattern<ExtractElementOp> {
using OpRewritePattern<ExtractElementOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractElementOp extract,
PatternRewriter &rewriter) const final {
if (extract.indices().size() != 1)
return failure();
auto tensorFromElements = dyn_cast_or_null<TensorFromElementsOp>(
extract.aggregate().getDefiningOp());
if (tensorFromElements == nullptr)
return failure();
APInt index;
if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index)))
return failure();
rewriter.replaceOp(extract,
tensorFromElements.getOperand(index.getZExtValue()));
return success();
}
};
} // namespace
void TensorFromElementsOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ExtractElementFromTensorFromElements>(context);
}
//===----------------------------------------------------------------------===//
// FPExtOp
//===----------------------------------------------------------------------===//
bool FPExtOp::areCastCompatible(Type a, Type b) {
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() < fb.getWidth();
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// FPToSIOp
//===----------------------------------------------------------------------===//
bool FPToSIOp::areCastCompatible(Type a, Type b) {
if (a.isa<FloatType>() && b.isSignlessInteger())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// FPToUIOp
//===----------------------------------------------------------------------===//
bool FPToUIOp::areCastCompatible(Type a, Type b) {
if (a.isa<FloatType>() && b.isSignlessInteger())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// FPTruncOp
//===----------------------------------------------------------------------===//
bool FPTruncOp::areCastCompatible(Type a, Type b) {
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() > fb.getWidth();
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// IndexCastOp
//===----------------------------------------------------------------------===//
// Index cast is applicable from index to integer and backwards.
bool IndexCastOp::areCastCompatible(Type a, Type b) {
if (a.isa<ShapedType>() && b.isa<ShapedType>()) {
auto aShaped = a.cast<ShapedType>();
auto bShaped = b.cast<ShapedType>();
return (aShaped.getShape() == bShaped.getShape()) &&
areCastCompatible(aShaped.getElementType(),
bShaped.getElementType());
}
return (a.isIndex() && b.isSignlessInteger()) ||
(a.isSignlessInteger() && b.isIndex());
}
OpFoldResult IndexCastOp::fold(ArrayRef<Attribute> cstOperands) {
// Fold IndexCast(IndexCast(x)) -> x
auto cast = getOperand().getDefiningOp<IndexCastOp>();
if (cast && cast.getOperand().getType() == getType())
return cast.getOperand();
// Fold IndexCast(constant) -> constant
// A little hack because we go through int. Otherwise, the size
// of the constant might need to change.
if (auto value = cstOperands[0].dyn_cast_or_null<IntegerAttr>())
return IntegerAttr::get(getType(), value.getInt());
return {};
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(LoadOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("incorrect number of indices for load");
return success();
}
OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) {
/// load(memrefcast) -> load
if (succeeded(foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// MemRefCastOp
//===----------------------------------------------------------------------===//
Value MemRefCastOp::getViewSource() { return source(); }
bool MemRefCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<MemRefType>();
auto bT = b.dyn_cast<MemRefType>();
auto uaT = a.dyn_cast<UnrankedMemRefType>();
auto ubT = b.dyn_cast<UnrankedMemRefType>();
if (aT && bT) {
if (aT.getElementType() != bT.getElementType())
return false;
if (aT.getAffineMaps() != bT.getAffineMaps()) {
int64_t aOffset, bOffset;
SmallVector<int64_t, 4> aStrides, bStrides;
if (failed(getStridesAndOffset(aT, aStrides, aOffset)) ||
failed(getStridesAndOffset(bT, bStrides, bOffset)) ||
aStrides.size() != bStrides.size())
return false;
// Strides along a dimension/offset are compatible if the value in the
// source memref is static and the value in the target memref is the
// same. They are also compatible if either one is dynamic (see
// description of MemRefCastOp for details).
auto checkCompatible = [](int64_t a, int64_t b) {
return (a == MemRefType::getDynamicStrideOrOffset() ||
b == MemRefType::getDynamicStrideOrOffset() || a == b);
};
if (!checkCompatible(aOffset, bOffset))
return false;
for (auto aStride : enumerate(aStrides))
if (!checkCompatible(aStride.value(), bStrides[aStride.index()]))
return false;
}
if (aT.getMemorySpace() != bT.getMemorySpace())
return false;
// They must have the same rank, and any specified dimensions must match.
if (aT.getRank() != bT.getRank())
return false;
for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
if (aDim != -1 && bDim != -1 && aDim != bDim)
return false;
}
return true;
} else {
if (!aT && !uaT)
return false;
if (!bT && !ubT)
return false;
// Unranked to unranked casting is unsupported
if (uaT && ubT)
return false;
auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType();
auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType();
if (aEltType != bEltType)
return false;
auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace();
auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace();
if (aMemSpace != bMemSpace)
return false;
return true;
}
return false;
}
OpFoldResult MemRefCastOp::fold(ArrayRef<Attribute> operands) {
return impl::foldCastOp(*this);
}
//===----------------------------------------------------------------------===//
// MulFOp
//===----------------------------------------------------------------------===//
OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// MulIOp
//===----------------------------------------------------------------------===//
OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) {
/// muli(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// muli(x, 1) -> x
if (matchPattern(rhs(), m_One()))
return getOperand(0);
// TODO: Handle the overflow case.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) {
/// or(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// or(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a | b; });
}
//===----------------------------------------------------------------------===//
// PrefetchOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, PrefetchOp op) {
p << PrefetchOp::getOperationName() << " " << op.memref() << '[';
p.printOperands(op.indices());
p << ']' << ", " << (op.isWrite() ? "write" : "read");
p << ", locality<" << op.localityHint();
p << ">, " << (op.isDataCache() ? "data" : "instr");
p.printOptionalAttrDict(
op.getAttrs(),
/*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"});
p << " : " << op.getMemRefType();
}
static ParseResult parsePrefetchOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
IntegerAttr localityHint;
MemRefType type;
StringRef readOrWrite, cacheType;
auto indexTy = parser.getBuilder().getIndexType();
auto i32Type = parser.getBuilder().getIntegerType(32);
if (parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
parser.parseComma() || parser.parseKeyword("locality") ||
parser.parseLess() ||
parser.parseAttribute(localityHint, i32Type, "localityHint",
result.attributes) ||
parser.parseGreater() || parser.parseComma() ||
parser.parseKeyword(&cacheType) || parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands))
return failure();
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
return parser.emitError(parser.getNameLoc(),
"rw specifier has to be 'read' or 'write'");
result.addAttribute(
PrefetchOp::getIsWriteAttrName(),
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
if (!cacheType.equals("data") && !cacheType.equals("instr"))
return parser.emitError(parser.getNameLoc(),
"cache type has to be 'data' or 'instr'");
result.addAttribute(
PrefetchOp::getIsDataCacheAttrName(),
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
return success();
}
static LogicalResult verify(PrefetchOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("too few indices");
return success();
}
LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
// prefetch(memrefcast) -> prefetch
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
// Constant fold rank when the rank of the operand is known.
auto type = getOperand().getType();
if (auto shapedType = type.dyn_cast<ShapedType>())
if (shapedType.hasRank())
return IntegerAttr::get(IndexType::get(getContext()),
shapedType.getRank());
return IntegerAttr();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReturnOp op) {
auto function = cast<FuncOp>(op.getParentOp());
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError("has ")
<< op.getNumOperands() << " operands, but enclosing function (@"
<< function.getName() << ") returns " << results.size();
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (op.getOperand(i).getType() != results[i])
return op.emitError()
<< "type of return operand " << i << " ("
<< op.getOperand(i).getType()
<< ") doesn't match function result type (" << results[i] << ")"
<< " in function @" << function.getName();
return success();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) {
auto condition = getCondition();
// select true, %0, %1 => %0
if (matchPattern(condition, m_One()))
return getTrueValue();
// select false, %0, %1 => %1
if (matchPattern(condition, m_Zero()))
return getFalseValue();
return nullptr;
}
static void print(OpAsmPrinter &p, SelectOp op) {
p << "select " << op.getOperands();
p.printOptionalAttrDict(op.getAttrs());
p << " : ";
if (ShapedType condType = op.getCondition().getType().dyn_cast<ShapedType>())
p << condType << ", ";
p << op.getType();
}
static ParseResult parseSelectOp(OpAsmParser &parser, OperationState &result) {
Type conditionType, resultType;
SmallVector<OpAsmParser::OperandType, 3> operands;
if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(resultType))
return failure();
// Check for the explicit condition type if this is a masked tensor or vector.
if (succeeded(parser.parseOptionalComma())) {
conditionType = resultType;
if (parser.parseType(resultType))
return failure();
} else {
conditionType = parser.getBuilder().getI1Type();
}
result.addTypes(resultType);
return parser.resolveOperands(operands,
{conditionType, resultType, resultType},
parser.getNameLoc(), result.operands);
}
static LogicalResult verify(SelectOp op) {
Type conditionType = op.getCondition().getType();
if (conditionType.isSignlessInteger(1))
return success();
// If the result type is a vector or tensor, the type can be a mask with the
// same elements.
Type resultType = op.getType();
if (!resultType.isa<TensorType, VectorType>())
return op.emitOpError()
<< "expected condition to be a signless i1, but got "
<< conditionType;
Type shapedConditionType = getI1SameShape(resultType);
if (conditionType != shapedConditionType)
return op.emitOpError()
<< "expected condition type to have the same shape "
"as the result type, expected "
<< shapedConditionType << ", but got " << conditionType;
return success();
}
//===----------------------------------------------------------------------===//
// SignExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SignExtendIOp op) {
// Get the scalar type (which is either directly the type of the operand
// or the vector's/tensor's element type.
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
// For now, index is forbidden for the source and the destination type.
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// SignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would overflow or if it requires a division by zero.
bool overflowOrDiv0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (overflowOrDiv0 || !b) {
overflowOrDiv0 = true;
return a;
}
return a.sdiv_ov(b, overflowOrDiv0);
});
// Fold out division by one. Assumes all tensors of all ones are splats.
if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) {
if (rhs.getValue() == 1)
return lhs();
} else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) {
if (rhs.getSplatValue<IntegerAttr>().getValue() == 1)
return lhs();
}
return overflowOrDiv0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// SignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_signed takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue));
}
//===----------------------------------------------------------------------===//
// SIToFPOp
//===----------------------------------------------------------------------===//
// sitofp is applicable from integer types to float types.
bool SIToFPOp::areCastCompatible(Type a, Type b) {
if (a.isSignlessInteger() && b.isa<FloatType>())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SplatOp op) {
// TODO: we could replace this by a trait.
if (op.getOperand().getType() !=
op.getType().cast<ShapedType>().getElementType())
return op.emitError("operand should be of elemental type of result type");
return success();
}
// Constant folding hook for SplatOp.
OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 1 && "splat takes one operand");
auto constOperand = operands.front();
if (!constOperand || !constOperand.isa<IntegerAttr, FloatAttr>())
return {};
auto shapedType = getType().cast<ShapedType>();
assert(shapedType.getElementType() == constOperand.getType() &&
"incorrect input attribute type for folding");
// SplatElementsAttr::get treats single value for second arg as being a splat.
return SplatElementsAttr::get(shapedType, {constOperand});
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(StoreOp op) {
if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
return op.emitOpError("store index operand count not equal to memref rank");
return success();
}
LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// store(memrefcast) -> store
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// SubFOp
//===----------------------------------------------------------------------===//
OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// SubIOp
//===----------------------------------------------------------------------===//
OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) {
// subi(x,x) -> 0
if (getOperand(0) == getOperand(1))
return Builder(getContext()).getZeroAttr(getType());
// subi(x,0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// UIToFPOp
//===----------------------------------------------------------------------===//
// uitofp is applicable from integer types to float types.
bool UIToFPOp::areCastCompatible(Type a, Type b) {
if (a.isSignlessInteger() && b.isa<FloatType>())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// SubViewOp
//===----------------------------------------------------------------------===//
/// Print a list with either (1) the static integer value in `arrayAttr` if
/// `isDynamic` evaluates to false or (2) the next value otherwise.
/// This allows idiomatic printing of mixed value and integer attributes in a
/// list. E.g. `[%arg0, 7, 42, %arg42]`.
static void printSubViewListOfOperandsOrIntegers(
OpAsmPrinter &p, ValueRange values, ArrayAttr arrayAttr,
llvm::function_ref<bool(int64_t)> isDynamic) {
p << "[";
unsigned idx = 0;
llvm::interleaveComma(arrayAttr, p, [&](Attribute a) {
int64_t val = a.cast<IntegerAttr>().getInt();
if (isDynamic(val))
p << values[idx++];
else
p << val;
});
p << "] ";
}
/// Parse a mixed list with either (1) static integer values or (2) SSA values.
/// Fill `result` with the integer ArrayAttr named `attrName` where `dynVal`
/// encode the position of SSA values. Add the parsed SSA values to `ssa`
/// in-order.
//
/// E.g. after parsing "[%arg0, 7, 42, %arg42]":
/// 1. `result` is filled with the i64 ArrayAttr "[`dynVal`, 7, 42, `dynVal`]"
/// 2. `ssa` is filled with "[%arg0, %arg1]".
static ParseResult
parseListOfOperandsOrIntegers(OpAsmParser &parser, OperationState &result,
StringRef attrName, int64_t dynVal,
SmallVectorImpl<OpAsmParser::OperandType> &ssa) {
if (failed(parser.parseLSquare()))
return failure();
// 0-D.
if (succeeded(parser.parseOptionalRSquare()))
return success();
SmallVector<int64_t, 4> attrVals;
while (true) {
OpAsmParser::OperandType operand;
auto res = parser.parseOptionalOperand(operand);
if (res.hasValue() && succeeded(res.getValue())) {
ssa.push_back(operand);
attrVals.push_back(dynVal);
} else {
Attribute attr;
NamedAttrList placeholder;
if (failed(parser.parseAttribute(attr, "_", placeholder)) ||
!attr.isa<IntegerAttr>())
return parser.emitError(parser.getNameLoc())
<< "expected SSA value or integer";
attrVals.push_back(attr.cast<IntegerAttr>().getInt());
}
if (succeeded(parser.parseOptionalComma()))
continue;
if (failed(parser.parseRSquare()))
return failure();
else
break;
}
auto arrayAttr = parser.getBuilder().getI64ArrayAttr(attrVals);
result.addAttribute(attrName, arrayAttr);
return success();
}
namespace {
/// Helpers to write more idiomatic operations.
namespace saturated_arith {
struct Wrapper {
explicit Wrapper(int64_t v) : v(v) {}
operator int64_t() { return v; }
int64_t v;
};
Wrapper operator+(Wrapper a, int64_t b) {
if (ShapedType::isDynamicStrideOrOffset(a) ||
ShapedType::isDynamicStrideOrOffset(b))
return Wrapper(ShapedType::kDynamicStrideOrOffset);
return Wrapper(a.v + b);
}
Wrapper operator*(Wrapper a, int64_t b) {
if (ShapedType::isDynamicStrideOrOffset(a) ||
ShapedType::isDynamicStrideOrOffset(b))
return Wrapper(ShapedType::kDynamicStrideOrOffset);
return Wrapper(a.v * b);
}
} // end namespace saturated_arith
} // end namespace
/// A subview result type can be fully inferred from the source type and the
/// static representation of offsets, sizes and strides. Special sentinels
/// encode the dynamic case.
Type SubViewOp::inferResultType(MemRefType sourceMemRefType,
ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides) {
unsigned rank = sourceMemRefType.getRank();
(void)rank;
assert(staticOffsets.size() == rank &&
"unexpected staticOffsets size mismatch");
assert(staticSizes.size() == rank && "unexpected staticSizes size mismatch");
assert(staticStrides.size() == rank &&
"unexpected staticStrides size mismatch");
// Extract source offset and strides.
int64_t sourceOffset;
SmallVector<int64_t, 4> sourceStrides;
auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset);
assert(succeeded(res) && "SubViewOp expected strided memref type");
(void)res;
// Compute target offset whose value is:
// `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`.
int64_t targetOffset = sourceOffset;
for (auto it : llvm::zip(staticOffsets, sourceStrides)) {
auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it);
using namespace saturated_arith;
targetOffset = Wrapper(targetOffset) + Wrapper(staticOffset) * targetStride;
}
// Compute target stride whose value is:
// `sourceStrides_i * staticStrides_i`.
SmallVector<int64_t, 4> targetStrides;
targetStrides.reserve(staticOffsets.size());
for (auto it : llvm::zip(sourceStrides, staticStrides)) {
auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it);
using namespace saturated_arith;
targetStrides.push_back(Wrapper(sourceStride) * staticStride);
}
// The type is now known.
return MemRefType::get(
staticSizes, sourceMemRefType.getElementType(),
makeStridedLinearLayoutMap(targetStrides, targetOffset,
sourceMemRefType.getContext()),
sourceMemRefType.getMemorySpace());
}
/// Print SubViewOp in the form:
/// ```
/// subview ssa-name `[` offset-list `]` `[` size-list `]` `[` stride-list `]`
/// `:` strided-memref-type `to` strided-memref-type
/// ```
template <typename OpType>
static void printOpWithOffsetsSizesAndStrides(
OpAsmPrinter &p, OpType op,
llvm::function_ref<void(OpAsmPrinter &p, OpType op)> printExtraOperands =
[](OpAsmPrinter &p, OpType op) {},
StringRef resultTypeKeyword = "to") {
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op.getOperation()->getName().getStringRef().drop_front(stdDotLen) << ' ';
p << op.source();
printExtraOperands(p, op);
printSubViewListOfOperandsOrIntegers(p, op.offsets(), op.static_offsets(),
ShapedType::isDynamicStrideOrOffset);
printSubViewListOfOperandsOrIntegers(p, op.sizes(), op.static_sizes(),
ShapedType::isDynamic);
printSubViewListOfOperandsOrIntegers(p, op.strides(), op.static_strides(),
ShapedType::isDynamicStrideOrOffset);
p.printOptionalAttrDict(op.getAttrs(),
/*elidedAttrs=*/{OpType::getSpecialAttrNames()});
p << " : " << op.getSourceType() << " " << resultTypeKeyword << " "
<< op.getType();
}
static void print(OpAsmPrinter &p, SubViewOp op) {
return printOpWithOffsetsSizesAndStrides<SubViewOp>(p, op);
}
/// Parse of the form:
/// ```
/// `name` ssa-name (extra-operands)?
/// `[` offset-list `]` `[` size-list `]` `[` stride-list `]`
/// `:` strided-memref-type `resultTypeKeyword strided-memref-type
/// ```
template <typename OpType>
static ParseResult parseOpWithOffsetsSizesAndStrides(
OpAsmParser &parser, OperationState &result,
std::function<ParseResult(OpAsmParser &p,
OpAsmParser::OperandType &dstInfo)>
parseExtraOperand = nullptr,
StringRef resultTypeKeyword = "to") {
OpAsmParser::OperandType srcInfo, dstInfo;
SmallVector<OpAsmParser::OperandType, 4> offsetsInfo, sizesInfo, stridesInfo;
auto indexType = parser.getBuilder().getIndexType();
Type srcType, dstType;
if (parser.parseOperand(srcInfo))
return failure();
if (parseExtraOperand && parseExtraOperand(parser, dstInfo))
return failure();
if (parseListOfOperandsOrIntegers(
parser, result, OpType::getStaticOffsetsAttrName(),
ShapedType::kDynamicStrideOrOffset, offsetsInfo) ||
parseListOfOperandsOrIntegers(parser, result,
OpType::getStaticSizesAttrName(),
ShapedType::kDynamicSize, sizesInfo) ||
parseListOfOperandsOrIntegers(
parser, result, OpType::getStaticStridesAttrName(),
ShapedType::kDynamicStrideOrOffset, stridesInfo))
return failure();
// Handle segment sizes.
auto b = parser.getBuilder();
SmallVector<int, 4> segmentSizes = {1, static_cast<int>(offsetsInfo.size()),
static_cast<int>(sizesInfo.size()),
static_cast<int>(stridesInfo.size())};
// If we parse an extra operand it needs to appear in the segmentSizes
if (parseExtraOperand)
segmentSizes.insert(segmentSizes.begin(), 1);
result.addAttribute(OpType::getOperandSegmentSizeAttr(),
b.getI32VectorAttr(segmentSizes));
return failure(
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.parseKeywordType(resultTypeKeyword.str().c_str(), dstType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
(parseExtraOperand &&
parser.resolveOperand(dstInfo, dstType, result.operands)) ||
parser.resolveOperands(offsetsInfo, indexType, result.operands) ||
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
parser.resolveOperands(stridesInfo, indexType, result.operands) ||
parser.addTypeToList(dstType, result.types));
}
static ParseResult parseSubViewOp(OpAsmParser &parser, OperationState &result) {
return parseOpWithOffsetsSizesAndStrides<SubViewOp>(parser, result);
}
void mlir::SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides, ValueRange offsets,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
auto sourceMemRefType = source.getType().cast<MemRefType>();
auto resultType = inferResultType(sourceMemRefType, staticOffsets,
staticSizes, staticStrides);
build(b, result, resultType, source, offsets, sizes, strides,
b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes),
b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
/// Build a SubViewOp with all dynamic entries: `staticOffsets`, `staticSizes`
/// and `staticStrides` are automatically filled with source-memref-rank
/// sentinel values that encode dynamic entries.
void mlir::SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
auto sourceMemRefType = source.getType().cast<MemRefType>();
unsigned rank = sourceMemRefType.getRank();
SmallVector<int64_t, 4> staticOffsetsVector;
staticOffsetsVector.assign(rank, ShapedType::kDynamicStrideOrOffset);
SmallVector<int64_t, 4> staticSizesVector;
staticSizesVector.assign(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector;
staticStridesVector.assign(rank, ShapedType::kDynamicStrideOrOffset);
build(b, result, source, staticOffsetsVector, staticSizesVector,
staticStridesVector, offsets, sizes, strides, attrs);
}
/// Build a SubViewOp as above but with custom result type.
void mlir::SubViewOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source,
ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides, ValueRange offsets,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, resultType, source, offsets, sizes, strides,
b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes),
b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
/// Build a SubViewOp as above but with custom result type.
void mlir::SubViewOp::build(OpBuilder &b, OperationState &result,
MemRefType resultType, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
auto sourceMemRefType = source.getType().cast<MemRefType>();
unsigned rank = sourceMemRefType.getRank();
SmallVector<int64_t, 4> staticOffsetsVector;
staticOffsetsVector.assign(rank, ShapedType::kDynamicStrideOrOffset);
SmallVector<int64_t, 4> staticSizesVector;
staticSizesVector.assign(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector;
staticStridesVector.assign(rank, ShapedType::kDynamicStrideOrOffset);
build(b, result, resultType, source, staticOffsetsVector, staticSizesVector,
staticStridesVector, offsets, sizes, strides, attrs);
}
/// For ViewLikeOpInterface.
Value SubViewOp::getViewSource() { return source(); }
/// Verify that a particular offset/size/stride static attribute is well-formed.
template <typename OpType>
static LogicalResult verifyOpWithOffsetSizesAndStridesPart(
OpType op, StringRef name, StringRef attrName, ArrayAttr attr,
llvm::function_ref<bool(int64_t)> isDynamic, ValueRange values) {
/// Check static and dynamic offsets/sizes/strides breakdown.
if (attr.size() != op.getSourceRank())
return op.emitError("expected ")
<< op.getSourceRank() << " " << name << " values";
unsigned expectedNumDynamicEntries =
llvm::count_if(attr.getValue(), [&](Attribute attr) {
return isDynamic(attr.cast<IntegerAttr>().getInt());
});
if (values.size() != expectedNumDynamicEntries)
return op.emitError("expected ")
<< expectedNumDynamicEntries << " dynamic " << name << " values";
return success();
}
/// Helper function extracts int64_t from the assumedArrayAttr of IntegerAttr.
static SmallVector<int64_t, 4> extractFromI64ArrayAttr(Attribute attr) {
return llvm::to_vector<4>(
llvm::map_range(attr.cast<ArrayAttr>(), [](Attribute a) -> int64_t {
return a.cast<IntegerAttr>().getInt();
}));
}
/// Checks if `original` Type type can be rank reduced to `reduced` type.
/// This function is slight variant of `is subsequence` algorithm where
/// not matching dimension must be 1.
static bool isRankReducedType(Type originalType, Type reducedType) {
if (originalType == reducedType)
return true;
if (!originalType.isa<RankedTensorType>() && !originalType.isa<MemRefType>())
return true;
if (originalType.isa<RankedTensorType>() &&
!reducedType.isa<RankedTensorType>())
return true;
if (originalType.isa<MemRefType>() && !reducedType.isa<MemRefType>())
return true;
ShapedType originalShapedType = originalType.cast<ShapedType>();
ShapedType reducedShapedType = reducedType.cast<ShapedType>();
// Rank and size logic is valid for all ShapedTypes.
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
ArrayRef<int64_t> reducedShape = reducedShapedType.getShape();
unsigned originalRank = originalShape.size(),
reducedRank = reducedShape.size();
if (reducedRank > originalRank)
return false;
unsigned reducedIdx = 0;
SmallVector<bool, 4> keepMask(originalRank);
for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) {
// -2 is never used as a dim size so it will never match.
int reducedVal = reducedIdx < reducedRank ? reducedShape[reducedIdx] : -2;
// Skip matching dims greedily.
if ((keepMask[originalIdx] = originalShape[originalIdx] == reducedVal))
reducedIdx++;
// 1 is the only non-matching allowed.
else if (originalShape[originalIdx] != 1)
return false;
}
// Must match the reduced rank.
if (reducedIdx != reducedRank)
return false;
// We are done for the tensor case.
if (originalType.isa<RankedTensorType>())
return true;
// Strided layout logic is relevant for MemRefType only.
MemRefType original = originalType.cast<MemRefType>();
MemRefType reduced = reducedType.cast<MemRefType>();
MLIRContext *c = original.getContext();
int64_t originalOffset, symCounter = 0, dimCounter = 0;
SmallVector<int64_t, 4> originalStrides;
getStridesAndOffset(original, originalStrides, originalOffset);
auto getSymbolOrConstant = [&](int64_t offset) {
return offset == ShapedType::kDynamicStrideOrOffset
? getAffineSymbolExpr(symCounter++, c)
: getAffineConstantExpr(offset, c);
};
AffineExpr expr = getSymbolOrConstant(originalOffset);
for (unsigned i = 0, e = originalStrides.size(); i < e; i++) {
if (keepMask[i])
expr = expr + getSymbolOrConstant(originalStrides[i]) *
getAffineDimExpr(dimCounter++, c);
}
auto reducedMap = AffineMap::get(dimCounter, symCounter, expr, c);
return original.getElementType() == reduced.getElementType() &&
original.getMemorySpace() == reduced.getMemorySpace() &&
(reduced.getAffineMaps().empty() ||
reducedMap == reduced.getAffineMaps().front());
}
template <typename OpType>
static LogicalResult verifyOpWithOffsetSizesAndStrides(OpType op) {
// Verify static attributes offsets/sizes/strides.
if (failed(verifyOpWithOffsetSizesAndStridesPart(
op, "offset", op.getStaticOffsetsAttrName(), op.static_offsets(),
ShapedType::isDynamicStrideOrOffset, op.offsets())))
return failure();
if (failed(verifyOpWithOffsetSizesAndStridesPart(
op, "size", op.getStaticSizesAttrName(), op.static_sizes(),
ShapedType::isDynamic, op.sizes())))
return failure();
if (failed(verifyOpWithOffsetSizesAndStridesPart(
op, "stride", op.getStaticStridesAttrName(), op.static_strides(),
ShapedType::isDynamicStrideOrOffset, op.strides())))
return failure();
return success();
}
/// Verifier for SubViewOp.
static LogicalResult verify(SubViewOp op) {
MemRefType baseType = op.getSourceType();
MemRefType subViewType = op.getType();
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != subViewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and subview memref type " << subViewType;
// Verify that the base memref type has a strided layout map.
if (!isStrided(baseType))
return op.emitError("base type ") << baseType << " is not strided";
if (failed(verifyOpWithOffsetSizesAndStrides(op)))
return failure();
// Verify result type against inferred type.
auto expectedType = SubViewOp::inferResultType(
baseType, extractFromI64ArrayAttr(op.static_offsets()),
extractFromI64ArrayAttr(op.static_sizes()),
extractFromI64ArrayAttr(op.static_strides()));
if (!isRankReducedType(expectedType, subViewType))
return op.emitError("expected result type to be ")
<< expectedType << " or a rank-reduced version.";
return success();
}
raw_ostream &mlir::operator<<(raw_ostream &os, Range &range) {
return os << "range " << range.offset << ":" << range.size << ":"
<< range.stride;
}
/// Return the list of Range (i.e. offset, size, stride). Each Range
/// entry contains either the dynamic value or a ConstantIndexOp constructed
/// with `b` at location `loc`.
template <typename OpType>
static SmallVector<Range, 8> getOrCreateRangesImpl(OpType op, OpBuilder &b,
Location loc) {
SmallVector<Range, 8> res;
unsigned rank = op.getSourceRank();
res.reserve(rank);
for (unsigned idx = 0; idx < rank; ++idx) {
Value offset =
op.isDynamicOffset(idx)
? op.getDynamicOffset(idx)
: b.create<ConstantIndexOp>(loc, op.getStaticOffset(idx));
Value size = op.isDynamicSize(idx)
? op.getDynamicSize(idx)
: b.create<ConstantIndexOp>(loc, op.getStaticSize(idx));
Value stride =
op.isDynamicStride(idx)
? op.getDynamicStride(idx)
: b.create<ConstantIndexOp>(loc, op.getStaticStride(idx));
res.emplace_back(Range{offset, size, stride});
}
return res;
}
SmallVector<Range, 8> SubViewOp::getOrCreateRanges(OpBuilder &b, Location loc) {
return ::getOrCreateRangesImpl(*this, b, loc);
}
namespace {
/// Take a list of `values` with potential new constant to extract and a list
/// of `constantValues` with`values.size()` sentinel that evaluate to true by
/// applying `isDynamic`.
/// Detects the `values` produced by a ConstantIndexOp and places the new
/// constant in place of the corresponding sentinel value.
void canonicalizeSubViewPart(SmallVectorImpl<Value> &values,
SmallVectorImpl<int64_t> &constantValues,
llvm::function_ref<bool(int64_t)> isDynamic) {
bool hasNewStaticValue = llvm::any_of(
values, [](Value val) { return matchPattern(val, m_ConstantIndex()); });
if (hasNewStaticValue) {
for (unsigned cstIdx = 0, valIdx = 0, e = constantValues.size();
cstIdx != e; ++cstIdx) {
// Was already static, skip.
if (!isDynamic(constantValues[cstIdx]))
continue;
// Newly static, move from Value to constant.
if (matchPattern(values[valIdx], m_ConstantIndex())) {
constantValues[cstIdx] =
cast<ConstantIndexOp>(values[valIdx].getDefiningOp()).getValue();
// Erase for impl. simplicity. Reverse iterator if we really must.
values.erase(std::next(values.begin(), valIdx));
continue;
}
// Remains dynamic move to next value.
++valIdx;
}
}
}
static void replaceWithNewOp(PatternRewriter &rewriter, SubViewOp op,
SubViewOp newOp) {
rewriter.replaceOpWithNewOp<MemRefCastOp>(op, newOp, op.getType());
}
static void replaceWithNewOp(PatternRewriter &rewriter, SubTensorOp op,
SubTensorOp newOp) {
rewriter.replaceOpWithNewOp<TensorCastOp>(op, newOp, op.getType());
}
/// Pattern to rewrite a subview op with constant arguments.
template <typename OpType>
class OpWithOffsetSizesAndStridesConstantArgumentFolder final
: public OpRewritePattern<OpType> {
public:
using OpRewritePattern<OpType>::OpRewritePattern;
LogicalResult matchAndRewrite(OpType op,
PatternRewriter &rewriter) const override {
// No constant operand, just return;
if (llvm::none_of(op.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return failure();
// At least one of offsets/sizes/strides is a new constant.
// Form the new list of operands and constant attributes from the existing.
SmallVector<Value, 8> newOffsets(op.offsets());
SmallVector<int64_t, 8> newStaticOffsets =
extractFromI64ArrayAttr(op.static_offsets());
assert(newStaticOffsets.size() == op.getSourceRank());
canonicalizeSubViewPart(newOffsets, newStaticOffsets,
ShapedType::isDynamicStrideOrOffset);
SmallVector<Value, 8> newSizes(op.sizes());
SmallVector<int64_t, 8> newStaticSizes =
extractFromI64ArrayAttr(op.static_sizes());
assert(newStaticOffsets.size() == op.getSourceRank());
canonicalizeSubViewPart(newSizes, newStaticSizes, ShapedType::isDynamic);
SmallVector<Value, 8> newStrides(op.strides());
SmallVector<int64_t, 8> newStaticStrides =
extractFromI64ArrayAttr(op.static_strides());
assert(newStaticOffsets.size() == op.getSourceRank());
canonicalizeSubViewPart(newStrides, newStaticStrides,
ShapedType::isDynamicStrideOrOffset);
// Create the new op in canonical form.
auto newOp = rewriter.create<OpType>(
op.getLoc(), op.source(), newStaticOffsets, newStaticSizes,
newStaticStrides, newOffsets, newSizes, newStrides);
replaceWithNewOp(rewriter, op, newOp);
return success();
}
};
} // end anonymous namespace
/// Determines whether MemRefCastOp casts to a more dynamic version of the
/// source memref. This is useful to to fold a memref_cast into a consuming op
/// and implement canonicalization patterns for ops in different dialects that
/// may consume the results of memref_cast operations. Such foldable memref_cast
/// operations are typically inserted as `view` and `subview` ops are
/// canonicalized, to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
/// 1. source and result are ranked memrefs with strided semantics and same
/// element type and rank.
/// 2. each of the source's size, offset or stride has more static information
/// than the corresponding result's size, offset or stride.
///
/// Example 1:
/// ```mlir
/// %1 = memref_cast %0 : memref<8x16xf32> to memref<?x?xf32>
/// %2 = consumer %1 ... : memref<?x?xf32> ...
/// ```
///
/// may fold into:
///
/// ```mlir
/// %2 = consumer %0 ... : memref<8x16xf32> ...
/// ```
///
/// Example 2:
/// ```
/// %1 = memref_cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>>
/// to memref<?x?xf32>
/// consumer %1 : memref<?x?xf32> ...
/// ```
///
/// may fold into:
///
/// ```
/// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>>
/// ```
bool mlir::canFoldIntoConsumerOp(MemRefCastOp castOp) {
MemRefType sourceType = castOp.source().getType().dyn_cast<MemRefType>();
MemRefType resultType = castOp.getType().dyn_cast<MemRefType>();
// Requires ranked MemRefType.
if (!sourceType || !resultType)
return false;
// Requires same elemental type.
if (sourceType.getElementType() != resultType.getElementType())
return false;
// Requires same rank.
if (sourceType.getRank() != resultType.getRank())
return false;
// Only fold casts between strided memref forms.
int64_t sourceOffset, resultOffset;
SmallVector<int64_t, 4> sourceStrides, resultStrides;
if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) ||
failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
return false;
// If cast is towards more static sizes along any dimension, don't fold.
for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) {
auto ss = std::get<0>(it), st = std::get<1>(it);
if (ss != st)
if (MemRefType::isDynamic(ss) && !MemRefType::isDynamic(st))
return false;
}
// If cast is towards more static offset along any dimension, don't fold.
if (sourceOffset != resultOffset)
if (MemRefType::isDynamicStrideOrOffset(sourceOffset) &&
!MemRefType::isDynamicStrideOrOffset(resultOffset))
return false;
// If cast is towards more static strides along any dimension, don't fold.
for (auto it : llvm::zip(sourceStrides, resultStrides)) {
auto ss = std::get<0>(it), st = std::get<1>(it);
if (ss != st)
if (MemRefType::isDynamicStrideOrOffset(ss) &&
!MemRefType::isDynamicStrideOrOffset(st))
return false;
}
return true;
}
namespace {
/// Pattern to rewrite a subview op with MemRefCast arguments.
/// This essentially pushes memref_cast past its consuming subview when
/// `canFoldIntoConsumerOp` is true.
///
/// Example:
/// ```
/// %0 = memref_cast %V : memref<16x16xf32> to memref<?x?xf32>
/// %1 = subview %0[0, 0][3, 4][1, 1] :
/// memref<?x?xf32> to memref<3x4xf32, offset:?, strides:[?, 1]>
/// ```
/// is rewritten into:
/// ```
/// %0 = subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]>
/// %1 = memref_cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to
/// memref<3x4xf32, offset:?, strides:[?, 1]>
/// ```
class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
// Any constant operand, just return to let SubViewOpConstantFolder kick in.
if (llvm::any_of(subViewOp.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return failure();
auto castOp = subViewOp.source().getDefiningOp<MemRefCastOp>();
if (!castOp)
return failure();
if (!canFoldIntoConsumerOp(castOp))
return failure();
/// Deduce the resultType of the SubViewOp using `inferSubViewResultType` on
/// the cast source operand type and the SubViewOp static information. This
/// is the resulting type if the MemRefCastOp were folded.
Type resultType = SubViewOp::inferResultType(
castOp.source().getType().cast<MemRefType>(),
extractFromI64ArrayAttr(subViewOp.static_offsets()),
extractFromI64ArrayAttr(subViewOp.static_sizes()),
extractFromI64ArrayAttr(subViewOp.static_strides()));
Value newSubView = rewriter.create<SubViewOp>(
subViewOp.getLoc(), resultType, castOp.source(), subViewOp.offsets(),
subViewOp.sizes(), subViewOp.strides(), subViewOp.static_offsets(),
subViewOp.static_sizes(), subViewOp.static_strides());
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, subViewOp.getType(),
newSubView);
return success();
}
};
} // namespace
void SubViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<OpWithOffsetSizesAndStridesConstantArgumentFolder<SubViewOp>,
SubViewOpMemRefCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// SubTensorOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, SubTensorOp op) {
return printOpWithOffsetsSizesAndStrides<SubTensorOp>(p, op);
}
static ParseResult parseSubTensorOp(OpAsmParser &parser,
OperationState &result) {
return parseOpWithOffsetsSizesAndStrides<SubTensorOp>(parser, result);
}
/// A subtensor result type can be fully inferred from the source type and the
/// static representation of offsets, sizes and strides. Special sentinels
/// encode the dynamic case.
Type SubTensorOp::inferResultType(RankedTensorType sourceRankedTensorType,
ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides) {
unsigned rank = sourceRankedTensorType.getRank();
(void)rank;
assert(staticOffsets.size() == rank &&
"unexpected staticOffsets size mismatch");
assert(staticSizes.size() == rank && "unexpected staticSizes size mismatch");
assert(staticStrides.size() == rank &&
"unexpected staticStrides size mismatch");
return RankedTensorType::get(staticSizes,
sourceRankedTensorType.getElementType());
}
void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
Value source, ArrayRef<int64_t> staticOffsets,
ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides,
ValueRange offsets, ValueRange sizes,
ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
auto resultType = inferResultType(sourceRankedTensorType, staticOffsets,
staticSizes, staticStrides);
build(b, result, resultType, source, offsets, sizes, strides,
b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes),
b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
/// Build a SubTensorOp with all dynamic entries: `staticOffsets`, `staticSizes`
/// and `staticStrides` are automatically filled with sentinel values that
/// encode dynamic entries.
void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
Value source, ValueRange offsets,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
unsigned rank = sourceRankedTensorType.getRank();
SmallVector<int64_t, 4> staticOffsetsVector(
rank, ShapedType::kDynamicStrideOrOffset);
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector(
rank, ShapedType::kDynamicStrideOrOffset);
build(b, result, source, staticOffsetsVector, staticSizesVector,
staticStridesVector, offsets, sizes, strides, attrs);
}
SmallVector<Range, 8> SubTensorOp::getOrCreateRanges(OpBuilder &b,
Location loc) {
return ::getOrCreateRangesImpl(*this, b, loc);
}
/// Verifier for SubTensorOp.
static LogicalResult verify(SubTensorOp op) {
if (failed(verifyOpWithOffsetSizesAndStrides(op)))
return failure();
// Verify result type against inferred type.
auto expectedType = SubTensorOp::inferResultType(
op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()),
extractFromI64ArrayAttr(op.static_sizes()),
extractFromI64ArrayAttr(op.static_strides()));
if (!isRankReducedType(expectedType, op.getType()))
return op.emitError("expected result type to be ")
<< expectedType << " or a rank-reduced version.";
return success();
}
void SubTensorOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results
.insert<OpWithOffsetSizesAndStridesConstantArgumentFolder<SubTensorOp>>(
context);
}
//===----------------------------------------------------------------------===//
// SubTensorInsertOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, SubTensorInsertOp op) {
return printOpWithOffsetsSizesAndStrides<SubTensorInsertOp>(
p, op,
[](OpAsmPrinter &p, SubTensorInsertOp op) { p << " into " << op.dest(); },
/*resultTypeKeyword=*/"into");
}
static ParseResult parseSubTensorInsertOp(OpAsmParser &parser,
OperationState &result) {
return parseOpWithOffsetsSizesAndStrides<SubTensorInsertOp>(
parser, result,
[](OpAsmParser &parser, OpAsmParser::OperandType &dstInfo) {
return failure(parser.parseKeyword("into") ||
parser.parseOperand(dstInfo));
},
"into");
}
void mlir::SubTensorInsertOp::build(
OpBuilder &b, OperationState &result, Value source, Value dest,
ArrayRef<int64_t> staticOffsets, ArrayRef<int64_t> staticSizes,
ArrayRef<int64_t> staticStrides, ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
build(b, result, dest.getType(), source, dest, offsets, sizes, strides,
b.getI64ArrayAttr(staticOffsets), b.getI64ArrayAttr(staticSizes),
b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
/// Build a SubViewOp with all dynamic entries: `staticOffsets`, `staticSizes`
/// and `staticStrides` are automatically filled with source-memref-rank
/// sentinel values that encode dynamic entries.
void mlir::SubTensorInsertOp::build(OpBuilder &b, OperationState &result,
Value source, Value dest,
ValueRange offsets, ValueRange sizes,
ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
unsigned rank = sourceRankedTensorType.getRank();
SmallVector<int64_t, 4> staticOffsetsVector(
rank, ShapedType::kDynamicStrideOrOffset);
SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
SmallVector<int64_t, 4> staticStridesVector(
rank, ShapedType::kDynamicStrideOrOffset);
build(b, result, source, dest, staticOffsetsVector, staticSizesVector,
staticStridesVector, offsets, sizes, strides, attrs);
}
SmallVector<Range, 8> SubTensorInsertOp::getOrCreateRanges(OpBuilder &b,
Location loc) {
return ::getOrCreateRangesImpl(*this, b, loc);
}
/// Verifier for SubViewOp.
static LogicalResult verify(SubTensorInsertOp op) {
if (failed(verifyOpWithOffsetSizesAndStrides(op)))
return failure();
if (op.getType() != op.dest().getType())
return op.emitError("expected result type to be ") << op.dest().getType();
return success();
}
//===----------------------------------------------------------------------===//
// TensorCastOp
//===----------------------------------------------------------------------===//
bool TensorCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<TensorType>();
auto bT = b.dyn_cast<TensorType>();
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
return succeeded(verifyCompatibleShape(aT, bT));
}
OpFoldResult TensorCastOp::fold(ArrayRef<Attribute> operands) {
return impl::foldCastOp(*this);
}
/// Compute a TensorType that has the joined shape knowledge of the two
/// given TensorTypes. The element types need to match.
static TensorType joinShapes(TensorType one, TensorType two) {
assert(one.getElementType() == two.getElementType());
if (!one.hasRank())
return two;
if (!two.hasRank())
return one;
int64_t rank = one.getRank();
if (rank != two.getRank())
return {};
SmallVector<int64_t, 4> join;
join.reserve(rank);
for (int64_t i = 0; i < rank; ++i) {
if (one.isDynamicDim(i)) {
join.push_back(two.getDimSize(i));
continue;
}
if (two.isDynamicDim(i)) {
join.push_back(one.getDimSize(i));
continue;
}
if (one.getDimSize(i) != two.getDimSize(i))
return {};
join.push_back(one.getDimSize(i));
}
return RankedTensorType::get(join, one.getElementType());
}
namespace {
/// Replaces chains of two tensor_cast operations by a single tensor_cast
/// operation if doing so does not remove runtime constraints.
struct ChainedTensorCast : public OpRewritePattern<TensorCastOp> {
using OpRewritePattern<TensorCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TensorCastOp tensorCast,
PatternRewriter &rewriter) const final {
auto tensorCastOperand =
tensorCast.getOperand().getDefiningOp<TensorCastOp>();
if (!tensorCastOperand)
return failure();
auto sourceType =
tensorCastOperand.getOperand().getType().cast<TensorType>();
auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
auto resultType = tensorCast.getType().cast<TensorType>();
// We can remove the intermediate cast if joining all three produces the
// same result as just joining the source and result shapes.
auto firstJoin =
joinShapes(joinShapes(sourceType, intermediateType), resultType);
// The join might not exist if the cast sequence would fail at runtime.
if (!firstJoin)
return failure();
// The newJoin always exists if the above join exists, it might just contain
// less information. If so, we cannot drop the intermediate cast, as doing
// so would remove runtime checks.
auto newJoin = joinShapes(sourceType, resultType);
if (firstJoin != newJoin)
return failure();
rewriter.replaceOpWithNewOp<TensorCastOp>(tensorCast, resultType,
tensorCastOperand.getOperand());
return success();
}
};
} // namespace
void TensorCastOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<ChainedTensorCast>(context);
}
//===----------------------------------------------------------------------===//
// Helpers for Tensor[Load|Store]Op
//===----------------------------------------------------------------------===//
static Type getTensorTypeFromMemRefType(Type type) {
if (auto memref = type.dyn_cast<MemRefType>())
return RankedTensorType::get(memref.getShape(), memref.getElementType());
if (auto memref = type.dyn_cast<UnrankedMemRefType>())
return UnrankedTensorType::get(memref.getElementType());
return NoneType::get(type.getContext());
}
//===----------------------------------------------------------------------===//
// TruncateIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(TruncateIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() <=
dstType.cast<IntegerType>().getWidth())
return op.emitError("operand type ")
<< srcType << " must be wider than result type " << dstType;
return success();
}
//===----------------------------------------------------------------------===//
// UnsignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would require a division by zero.
bool div0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (div0 || !b) {
div0 = true;
return a;
}
return a.udiv(b);
});
// Fold out division by one. Assumes all tensors of all ones are splats.
if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) {
if (rhs.getValue() == 1)
return lhs();
} else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) {
if (rhs.getSplatValue<IntegerAttr>().getValue() == 1)
return lhs();
}
return div0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// UnsignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_unsigned takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue));
}
//===----------------------------------------------------------------------===//
// ViewOp
//===----------------------------------------------------------------------===//
static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
SmallVector<OpAsmParser::OperandType, 1> offsetInfo;
SmallVector<OpAsmParser::OperandType, 4> sizesInfo;
auto indexType = parser.getBuilder().getIndexType();
Type srcType, dstType;
llvm::SMLoc offsetLoc;
if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) ||
parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square))
return failure();
if (offsetInfo.size() != 1)
return parser.emitError(offsetLoc) << "expects 1 offset operand";
return failure(
parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.resolveOperands(offsetInfo, indexType, result.operands) ||
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
static void print(OpAsmPrinter &p, ViewOp op) {
p << op.getOperationName() << ' ' << op.getOperand(0) << '[';
p.printOperand(op.byte_shift());
p << "][" << op.sizes() << ']';
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getOperand(0).getType() << " to " << op.getType();
}
static LogicalResult verify(ViewOp op) {
auto baseType = op.getOperand(0).getType().cast<MemRefType>();
auto viewType = op.getType();
// The base memref should have identity layout map (or none).
if (baseType.getAffineMaps().size() > 1 ||
(baseType.getAffineMaps().size() == 1 &&
!baseType.getAffineMaps()[0].isIdentity()))
return op.emitError("unsupported map for base memref type ") << baseType;
// The result memref should have identity layout map (or none).
if (viewType.getAffineMaps().size() > 1 ||
(viewType.getAffineMaps().size() == 1 &&
!viewType.getAffineMaps()[0].isIdentity()))
return op.emitError("unsupported map for result memref type ") << viewType;
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != viewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and view memref type " << viewType;
// Verify that we have the correct number of sizes for the result type.
unsigned numDynamicDims = viewType.getNumDynamicDims();
if (op.sizes().size() != numDynamicDims)
return op.emitError("incorrect number of size operands for type ")
<< viewType;
return success();
}
Value ViewOp::getViewSource() { return source(); }
namespace {
struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
// Return if none of the operands are constants.
if (llvm::none_of(viewOp.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return failure();
// Get result memref type.
auto memrefType = viewOp.getType();
// Get offset from old memref view type 'memRefType'.
int64_t oldOffset;
SmallVector<int64_t, 4> oldStrides;
if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset)))
return failure();
assert(oldOffset == 0 && "Expected 0 offset");
SmallVector<Value, 4> newOperands;
// Offset cannot be folded into result type.
// Fold any dynamic dim operands which are produced by a constant.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
unsigned dynamicDimPos = 0;
unsigned rank = memrefType.getRank();
for (unsigned dim = 0, e = rank; dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (!ShapedType::isDynamic(dimSize)) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = viewOp.sizes()[dynamicDimPos].getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(dimSize);
newOperands.push_back(viewOp.sizes()[dynamicDimPos]);
}
dynamicDimPos++;
}
// Create new memref type with constant folded dims.
MemRefType newMemRefType =
MemRefType::Builder(memrefType).setShape(newShapeConstants);
// Nothing new, don't fold.
if (newMemRefType == memrefType)
return failure();
// Create new ViewOp.
auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType,
viewOp.getOperand(0),
viewOp.byte_shift(), newOperands);
// Insert a cast so we have the same type as the old memref type.
rewriter.replaceOpWithNewOp<MemRefCastOp>(viewOp, newViewOp,
viewOp.getType());
return success();
}
};
struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
Value memrefOperand = viewOp.getOperand(0);
MemRefCastOp memrefCastOp = memrefOperand.getDefiningOp<MemRefCastOp>();
if (!memrefCastOp)
return failure();
Value allocOperand = memrefCastOp.getOperand();
AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>();
if (!allocOp)
return failure();
rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand,
viewOp.byte_shift(), viewOp.sizes());
return success();
}
};
} // end anonymous namespace
void ViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//
OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) {
/// xor(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// xor(x,x) -> 0
if (lhs() == rhs())
return Builder(getContext()).getZeroAttr(getType());
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a ^ b; });
}
//===----------------------------------------------------------------------===//
// ZeroExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ZeroExtendIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"