Vectorization.cpp 19 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Vectorization transformations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>

using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;

using llvm::dbgs;

#define DEBUG_TYPE "linalg-vectorization"

static bool hasMultiplyAddBody(Region &r) {
  if (!llvm::hasSingleElement(r))
    return false;
  if (!llvm::hasNItems(r.front().begin(), r.front().end(), 3))
    return false;

  using mlir::matchers::m_Val;
  auto a = m_Val(r.getArgument(0));
  auto b = m_Val(r.getArgument(1));
  auto c = m_Val(r.getArgument(2));
  // TODO: Update this detection once we have  matcher support for specifying
  // that any permutation of operands matches.
  auto pattern1 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(m_Op<MulFOp>(a, b), c));
  auto pattern2 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(c, m_Op<MulFOp>(a, b)));
  auto pattern3 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(m_Op<MulFOp>(b, a), c));
  auto pattern4 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(c, m_Op<MulFOp>(b, a)));
  auto pattern5 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(m_Op<MulIOp>(a, b), c));
  auto pattern6 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(c, m_Op<MulIOp>(a, b)));
  auto pattern7 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(m_Op<MulIOp>(b, a), c));
  auto pattern8 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(c, m_Op<MulIOp>(b, a)));
  return pattern1.match(&r.front().back()) ||
         pattern2.match(&r.front().back()) ||
         pattern3.match(&r.front().back()) ||
         pattern4.match(&r.front().back()) ||
         pattern5.match(&r.front().back()) ||
         pattern6.match(&r.front().back()) ||
         pattern7.match(&r.front().back()) || pattern8.match(&r.front().back());
}

// TODO: Should be Tablegen'd from a single source that generates the op itself.
static LogicalResult isContraction(Operation *op) {
  // TODO: interface for named ops.
  if (isa<linalg::BatchMatmulOp, linalg::MatmulOp, linalg::MatvecOp,
          linalg::VecmatOp, linalg::DotOp>(op))
    return success();

  auto genericOp = dyn_cast<linalg::GenericOp>(op);
  if (!genericOp)
    return failure();

  auto mapRange = genericOp.indexing_maps().getAsValueRange<AffineMapAttr>();
  return success(
      genericOp.getNumInputs() == 2 && genericOp.getNumOutputs() == 1 &&
      llvm::all_of(mapRange,
                   [](AffineMap m) { return m.isProjectedPermutation(); }) &&
      hasMultiplyAddBody(genericOp.region()));
}

LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
  auto linalgOp = cast<linalg::LinalgOp>(op);
  // All types must be static shape to go to vector.
  for (Value operand : linalgOp.getInputsAndOutputBuffers())
    if (!operand.getType().cast<ShapedType>().hasStaticShape())
      return failure();
  for (Type outputTensorType : linalgOp.getOutputTensorTypes())
    if (!outputTensorType.cast<ShapedType>().hasStaticShape())
      return failure();

  if (isa<linalg::FillOp, linalg::CopyOp>(op))
    return success();

  return isContraction(op);
}

void mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) {
  assert(succeeded(vectorizeLinalgOpPrecondition(op)));

  StringRef dbgPref = "\n[" DEBUG_TYPE "]: ";
  (void)dbgPref;
  edsc::ScopedContext scope(builder, op->getLoc());
  if (auto fillOp = dyn_cast<linalg::FillOp>(op)) {
    // Vectorize fill as a vector.broadcast.
    LLVM_DEBUG(dbgs() << dbgPref
                      << "Rewrite linalg.fill as vector.broadcast: " << *op);
    Value memref = vector_type_cast(fillOp.getOutputBuffer(0));
    Value dst = std_load(memref);
    Value res = vector_broadcast(dst.getType(), fillOp.value());
    std_store(res, memref);
    return;
  }

  // In the case of 0-D memrefs, return null and special case to scalar load or
  // store later.
  auto extractVectorTypeFromScalarView = [](Value v) {
    MemRefType mt = v.getType().cast<MemRefType>();
    return mt.getShape().empty()
               ? VectorType()
               : VectorType::get(mt.getShape(), mt.getElementType());
  };

  if (auto copyOp = dyn_cast<linalg::CopyOp>(op)) {
    // Vectorize copy as a vector.transfer_read+vector.transfer_write.
    LLVM_DEBUG(dbgs() << dbgPref
                      << "Rewrite linalg.copy as vector.transfer_read + "
                         "vector.transfer_write: "
                      << *op);
    Value zero = std_constant_index(0);
    Value viewInput = copyOp.input();
    Value viewOutput = copyOp.output();
    Value vector;
    if (VectorType inputType = extractVectorTypeFromScalarView(viewInput)) {
      SmallVector<Value, 4> indicesInput(inputType.getRank(), zero);
      if (copyOp.inputPermutation())
        vector = vector_transfer_read(
            extractVectorTypeFromScalarView(viewInput), viewInput, indicesInput,
            copyOp.inputPermutation().getValue());
      else
        vector =
            vector_transfer_read(extractVectorTypeFromScalarView(viewInput),
                                 viewInput, indicesInput);
    } else {
      vector = std_load(viewInput).value;
    }
    if (VectorType outputType = extractVectorTypeFromScalarView(viewOutput)) {
      SmallVector<Value, 4> indicesOutput(outputType.getRank(), zero);
      if (copyOp.outputPermutation())
        vector_transfer_write(vector, viewOutput, indicesOutput,
                              copyOp.outputPermutation().getValue());
      else
        vector_transfer_write(vector, viewOutput, indicesOutput);
    } else {
      std_store(vector, viewOutput);
    }
    return;
  }

  assert(succeeded(isContraction(op)) && "Expected contraction");

  // Vectorize other ops as vector contraction.
  // TODO: interface.
  LLVM_DEBUG(dbgs() << dbgPref
                    << "Rewrite linalg op as vector.contract: " << *op);
  auto linalgOp = cast<linalg::LinalgOp>(op);
  Value viewA = linalgOp.getInput(0);
  Value viewB = linalgOp.getInput(1);
  Value viewC = linalgOp.getOutputBuffer(0);
  VectorType vtA = extractVectorTypeFromScalarView(viewA);
  VectorType vtB = extractVectorTypeFromScalarView(viewB);
  VectorType vtC = extractVectorTypeFromScalarView(viewC);
  Value zero = std_constant_index(0);
  SmallVector<Value, 4> indicesA, indicesB, indicesC;
  if (vtA)
    indicesA = SmallVector<Value, 4>(vtA.getRank(), zero);
  if (vtB)
    indicesB = SmallVector<Value, 4>(vtB.getRank(), zero);
  if (vtC)
    indicesC = SmallVector<Value, 4>(vtC.getRank(), zero);
  Value a = vtA ? vector_transfer_read(vtA, viewA, indicesA).value
                : std_load(viewA, indicesA).value;
  Value b = vtB ? vector_transfer_read(vtB, viewB, indicesB).value
                : std_load(viewB, indicesB).value;
  Value c = vtC ? vector_transfer_read(vtC, viewC, indicesC).value
                : std_load(viewC, indicesC).value;
  Value res = vector_contract(a, b, c, linalgOp.indexing_maps(),
                              linalgOp.iterator_types());
  if (vtC)
    vector_transfer_write(res, viewC, indicesC);
  else
    std_store(res, viewC, indicesC);
}

/// Check whether there is any interleaved use of any `values` between `firstOp`
/// and `secondOp`. Conservatively return `true` if any op or value is in a
/// different block.
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
                                    ValueRange values) {
  StringRef dbgPref = "\n[" DEBUG_TYPE "]: ";
  (void)dbgPref;
  if (firstOp->getBlock() != secondOp->getBlock() ||
      !firstOp->isBeforeInBlock(secondOp)) {
    LLVM_DEBUG(llvm::dbgs()
               << dbgPref << "interleavedUses precondition failed, firstOp: "
               << *firstOp << ", second op: " << *secondOp);
    return true;
  }
  for (auto v : values) {
    for (auto &u : v.getUses()) {
      Operation *owner = u.getOwner();
      if (owner == firstOp || owner == secondOp)
        continue;
      // TODO: this is too conservative, use dominance info in the future.
      if (owner->getBlock() == firstOp->getBlock() &&
          (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
        continue;
      LLVM_DEBUG(llvm::dbgs()
                 << dbgPref << " found interleaved op " << *owner
                 << ", firstOp: " << *firstOp << ", second op: " << *secondOp);
      return true;
    }
  }
  return false;
}

/// Return the unique subview use of `v` if it is indeed unique, null otherwise.
static SubViewOp getSubViewUseIfUnique(Value v) {
  SubViewOp subViewOp;
  for (auto &u : v.getUses()) {
    if (auto newSubViewOp = dyn_cast<SubViewOp>(u.getOwner())) {
      if (subViewOp)
        return SubViewOp();
      subViewOp = newSubViewOp;
    }
  }
  return subViewOp;
}

/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
    vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {

  // Transfer into `view`.
  Value viewOrAlloc = xferOp.memref();
  if (!viewOrAlloc.getDefiningOp<ViewOp>() &&
      !viewOrAlloc.getDefiningOp<AllocOp>())
    return failure();

  StringRef dbgPref = "\n[" DEBUG_TYPE "]: VTRForwarding: ";
  (void)dbgPref;
  LLVM_DEBUG(llvm::dbgs() << dbgPref << viewOrAlloc);

  // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
  SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
  if (!subViewOp)
    return failure();
  Value subView = subViewOp.getResult();
  LLVM_DEBUG(llvm::dbgs() << dbgPref << "with subView " << subView);

  // Find the copy into `subView` without interleaved uses.
  CopyOp copyOp;
  for (auto &u : subView.getUses()) {
    if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
      if (newCopyOp.getOutputBuffer(0) != subView)
        continue;
      LLVM_DEBUG(llvm::dbgs() << dbgPref << "copy candidate " << *newCopyOp);
      if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
        continue;
      copyOp = newCopyOp;
      break;
    }
  }
  if (!copyOp)
    return failure();
  LLVM_DEBUG(llvm::dbgs() << dbgPref << "with copy " << *copyOp);

  // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
  FillOp maybeFillOp;
  for (auto &u : viewOrAlloc.getUses()) {
    if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
      if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
        continue;
      LLVM_DEBUG(llvm::dbgs() << dbgPref << "fill candidate " << *newFillOp);
      if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
        continue;
      maybeFillOp = newFillOp;
      break;
    }
  }
  // Ensure padding matches.
  if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
    return failure();
  if (maybeFillOp)
    LLVM_DEBUG(llvm::dbgs() << dbgPref << "with maybeFillOp " << *maybeFillOp);

  // `in` is the subview that linalg.copy reads. Replace it.
  Value in = copyOp.getInput(0);

  // linalg.copy + linalg.fill can be used to create a padded local buffer.
  // The `masked` attribute is only valid on this padded buffer.
  // When forwarding to vector.transfer_read, the attribute must be reset
  // conservatively.
  Value res = rewriter.create<vector::TransferReadOp>(
      xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
      xferOp.permutation_map(), xferOp.padding(), ArrayAttr());

  if (maybeFillOp)
    rewriter.eraseOp(maybeFillOp);
  rewriter.eraseOp(copyOp);
  rewriter.replaceOp(xferOp, res);

  return success();
}

/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
    vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
  // Transfer into `viewOrAlloc`.
  Value viewOrAlloc = xferOp.memref();
  if (!viewOrAlloc.getDefiningOp<ViewOp>() &&
      !viewOrAlloc.getDefiningOp<AllocOp>())
    return failure();

  // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
  SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
  if (!subViewOp)
    return failure();
  Value subView = subViewOp.getResult();

  // Find the copy from `subView` without interleaved uses.
  CopyOp copyOp;
  for (auto &u : subViewOp.getResult().getUses()) {
    if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
      if (newCopyOp.getInput(0) != subView)
        continue;
      if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
        continue;
      copyOp = newCopyOp;
      break;
    }
  }
  if (!copyOp)
    return failure();

  // `out` is the subview copied into that we replace.
  Value out = copyOp.getOutputBuffer(0);

  // Forward vector.transfer into copy.
  // linalg.copy + linalg.fill can be used to create a padded local buffer.
  // The `masked` attribute is only valid on this padded buffer.
  // When forwarding to vector.transfer_write, the attribute must be reset
  // conservatively.
  rewriter.create<vector::TransferWriteOp>(
      xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
      xferOp.permutation_map(), ArrayAttr());

  rewriter.eraseOp(copyOp);
  rewriter.eraseOp(xferOp);

  return success();
}

template <class ConvOp, int N>
LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
    ConvOp op, PatternRewriter &rewriter) const {
  Location loc = op.getLoc();
  MLIRContext *context = op.getContext();
  edsc::ScopedContext scope(rewriter, loc);

  ShapedType inShapeType = op.getInputShapedType(0);
  ShapedType kShapeType = op.getInputShapedType(1);

  ArrayRef<int64_t> inShape = inShapeType.getShape();
  ArrayRef<int64_t> kShape = kShapeType.getShape();

  if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
    return failure();

  SmallVector<AffineExpr, 4> mapping;
  SmallVector<int64_t, 4> vectorDims;
  // Fail to apply when the size of not vectorized dimension is not 1.
  for (unsigned i = 0; i < N; i++) {
    if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
      return failure();

    if (mask[i] && inShape[i] != kShape[i])
      return failure();

    if (mask[i]) {
      mapping.push_back(getAffineDimExpr(i, context));
      vectorDims.push_back(inShape[i]);
    }
  }

  Value input = op.getInput(0);
  Value kernel = op.getInput(1);
  Value output = op.getOutputBuffer(0);

  unsigned rank = inShapeType.getRank();
  unsigned numDims = mapping.size();
  Type elemType = inShapeType.getElementType();

  auto map = AffineMap::get(rank, 0, mapping, context);
  SmallVector<Value, 4> zeros(rank, std_constant_index(0));
  auto vecType = VectorType::get(vectorDims, elemType);

  auto inputVec = vector_transfer_read(vecType, input, zeros, map);
  auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);

  auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));

  std::array<AffineMap, 3> indexingMaps{
      AffineMap::getMultiDimIdentityMap(numDims, context),
      AffineMap::getMultiDimIdentityMap(numDims, context),
      AffineMap::get(numDims, 0, {}, context)};

  std::vector<StringRef> iteratorTypes(numDims, "reduction");

  auto result = rewriter.create<vector::ContractionOp>(
      loc, inputVec, kernelVec, acc,
      rewriter.getAffineMapArrayAttr(indexingMaps),
      rewriter.getStrArrayAttr(iteratorTypes));

  rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros));
  rewriter.eraseOp(op);
  return success();
}

using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;

/// Inserts tiling, promotion and vectorization pattern for ConvOp
/// conversion into corresponding pattern lists.
template <typename ConvOp, unsigned N>
static void
populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns,
                              OwningRewritePatternList &promotionPatterns,
                              OwningRewritePatternList &vectorizationPatterns,
                              ArrayRef<int64_t> tileSizes,
                              MLIRContext *context) {
  if (tileSizes.size() < N)
    return;

  constexpr static StringRef kTiledMarker = "TILED";
  constexpr static StringRef kPromotedMarker = "PROMOTED";
  tilingPatterns.insert<LinalgTilingPattern<ConvOp>>(
      context, LinalgTilingOptions().setTileSizes(tileSizes),
      LinalgMarker({}, Identifier::get(kTiledMarker, context)));

  promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>(
      context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
      LinalgMarker(Identifier::get(kTiledMarker, context),
                   Identifier::get(kPromotedMarker, context)));

  SmallVector<bool, 4> mask(N);
  int offset = tileSizes.size() - N;
  std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
                 [](int64_t i) -> bool { return i > 1; });

  vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask);
}

void mlir::linalg::populateConvVectorizationPatterns(
    MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns,
    ArrayRef<int64_t> tileSizes) {
  OwningRewritePatternList tiling, promotion, vectorization;
  populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
                                            tileSizes, context);

  populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
                                              tileSizes, context);

  populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
                                              tileSizes, context);

  populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
                                             tileSizes, context);

  populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
                                               tileSizes, context);

  populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
                                               tileSizes, context);

  populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
                                              tileSizes, context);

  populateVectorizationPatterns<ConvNDHWCOp, 5>(
      tiling, promotion, vectorization, tileSizes, context);

  populateVectorizationPatterns<ConvNCDHWOp, 5>(
      tiling, promotion, vectorization, tileSizes, context);

  patterns.push_back(std::move(tiling));
  patterns.push_back(std::move(promotion));
  patterns.push_back(std::move(vectorization));
}