Vectorization.cpp
19 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
//===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Vectorization transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using llvm::dbgs;
#define DEBUG_TYPE "linalg-vectorization"
static bool hasMultiplyAddBody(Region &r) {
if (!llvm::hasSingleElement(r))
return false;
if (!llvm::hasNItems(r.front().begin(), r.front().end(), 3))
return false;
using mlir::matchers::m_Val;
auto a = m_Val(r.getArgument(0));
auto b = m_Val(r.getArgument(1));
auto c = m_Val(r.getArgument(2));
// TODO: Update this detection once we have matcher support for specifying
// that any permutation of operands matches.
auto pattern1 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(m_Op<MulFOp>(a, b), c));
auto pattern2 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(c, m_Op<MulFOp>(a, b)));
auto pattern3 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(m_Op<MulFOp>(b, a), c));
auto pattern4 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(c, m_Op<MulFOp>(b, a)));
auto pattern5 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(m_Op<MulIOp>(a, b), c));
auto pattern6 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(c, m_Op<MulIOp>(a, b)));
auto pattern7 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(m_Op<MulIOp>(b, a), c));
auto pattern8 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(c, m_Op<MulIOp>(b, a)));
return pattern1.match(&r.front().back()) ||
pattern2.match(&r.front().back()) ||
pattern3.match(&r.front().back()) ||
pattern4.match(&r.front().back()) ||
pattern5.match(&r.front().back()) ||
pattern6.match(&r.front().back()) ||
pattern7.match(&r.front().back()) || pattern8.match(&r.front().back());
}
// TODO: Should be Tablegen'd from a single source that generates the op itself.
static LogicalResult isContraction(Operation *op) {
// TODO: interface for named ops.
if (isa<linalg::BatchMatmulOp, linalg::MatmulOp, linalg::MatvecOp,
linalg::VecmatOp, linalg::DotOp>(op))
return success();
auto genericOp = dyn_cast<linalg::GenericOp>(op);
if (!genericOp)
return failure();
auto mapRange = genericOp.indexing_maps().getAsValueRange<AffineMapAttr>();
return success(
genericOp.getNumInputs() == 2 && genericOp.getNumOutputs() == 1 &&
llvm::all_of(mapRange,
[](AffineMap m) { return m.isProjectedPermutation(); }) &&
hasMultiplyAddBody(genericOp.region()));
}
LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
auto linalgOp = cast<linalg::LinalgOp>(op);
// All types must be static shape to go to vector.
for (Value operand : linalgOp.getInputsAndOutputBuffers())
if (!operand.getType().cast<ShapedType>().hasStaticShape())
return failure();
for (Type outputTensorType : linalgOp.getOutputTensorTypes())
if (!outputTensorType.cast<ShapedType>().hasStaticShape())
return failure();
if (isa<linalg::FillOp, linalg::CopyOp>(op))
return success();
return isContraction(op);
}
void mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) {
assert(succeeded(vectorizeLinalgOpPrecondition(op)));
StringRef dbgPref = "\n[" DEBUG_TYPE "]: ";
(void)dbgPref;
edsc::ScopedContext scope(builder, op->getLoc());
if (auto fillOp = dyn_cast<linalg::FillOp>(op)) {
// Vectorize fill as a vector.broadcast.
LLVM_DEBUG(dbgs() << dbgPref
<< "Rewrite linalg.fill as vector.broadcast: " << *op);
Value memref = vector_type_cast(fillOp.getOutputBuffer(0));
Value dst = std_load(memref);
Value res = vector_broadcast(dst.getType(), fillOp.value());
std_store(res, memref);
return;
}
// In the case of 0-D memrefs, return null and special case to scalar load or
// store later.
auto extractVectorTypeFromScalarView = [](Value v) {
MemRefType mt = v.getType().cast<MemRefType>();
return mt.getShape().empty()
? VectorType()
: VectorType::get(mt.getShape(), mt.getElementType());
};
if (auto copyOp = dyn_cast<linalg::CopyOp>(op)) {
// Vectorize copy as a vector.transfer_read+vector.transfer_write.
LLVM_DEBUG(dbgs() << dbgPref
<< "Rewrite linalg.copy as vector.transfer_read + "
"vector.transfer_write: "
<< *op);
Value zero = std_constant_index(0);
Value viewInput = copyOp.input();
Value viewOutput = copyOp.output();
Value vector;
if (VectorType inputType = extractVectorTypeFromScalarView(viewInput)) {
SmallVector<Value, 4> indicesInput(inputType.getRank(), zero);
if (copyOp.inputPermutation())
vector = vector_transfer_read(
extractVectorTypeFromScalarView(viewInput), viewInput, indicesInput,
copyOp.inputPermutation().getValue());
else
vector =
vector_transfer_read(extractVectorTypeFromScalarView(viewInput),
viewInput, indicesInput);
} else {
vector = std_load(viewInput).value;
}
if (VectorType outputType = extractVectorTypeFromScalarView(viewOutput)) {
SmallVector<Value, 4> indicesOutput(outputType.getRank(), zero);
if (copyOp.outputPermutation())
vector_transfer_write(vector, viewOutput, indicesOutput,
copyOp.outputPermutation().getValue());
else
vector_transfer_write(vector, viewOutput, indicesOutput);
} else {
std_store(vector, viewOutput);
}
return;
}
assert(succeeded(isContraction(op)) && "Expected contraction");
// Vectorize other ops as vector contraction.
// TODO: interface.
LLVM_DEBUG(dbgs() << dbgPref
<< "Rewrite linalg op as vector.contract: " << *op);
auto linalgOp = cast<linalg::LinalgOp>(op);
Value viewA = linalgOp.getInput(0);
Value viewB = linalgOp.getInput(1);
Value viewC = linalgOp.getOutputBuffer(0);
VectorType vtA = extractVectorTypeFromScalarView(viewA);
VectorType vtB = extractVectorTypeFromScalarView(viewB);
VectorType vtC = extractVectorTypeFromScalarView(viewC);
Value zero = std_constant_index(0);
SmallVector<Value, 4> indicesA, indicesB, indicesC;
if (vtA)
indicesA = SmallVector<Value, 4>(vtA.getRank(), zero);
if (vtB)
indicesB = SmallVector<Value, 4>(vtB.getRank(), zero);
if (vtC)
indicesC = SmallVector<Value, 4>(vtC.getRank(), zero);
Value a = vtA ? vector_transfer_read(vtA, viewA, indicesA).value
: std_load(viewA, indicesA).value;
Value b = vtB ? vector_transfer_read(vtB, viewB, indicesB).value
: std_load(viewB, indicesB).value;
Value c = vtC ? vector_transfer_read(vtC, viewC, indicesC).value
: std_load(viewC, indicesC).value;
Value res = vector_contract(a, b, c, linalgOp.indexing_maps(),
linalgOp.iterator_types());
if (vtC)
vector_transfer_write(res, viewC, indicesC);
else
std_store(res, viewC, indicesC);
}
/// Check whether there is any interleaved use of any `values` between `firstOp`
/// and `secondOp`. Conservatively return `true` if any op or value is in a
/// different block.
static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
ValueRange values) {
StringRef dbgPref = "\n[" DEBUG_TYPE "]: ";
(void)dbgPref;
if (firstOp->getBlock() != secondOp->getBlock() ||
!firstOp->isBeforeInBlock(secondOp)) {
LLVM_DEBUG(llvm::dbgs()
<< dbgPref << "interleavedUses precondition failed, firstOp: "
<< *firstOp << ", second op: " << *secondOp);
return true;
}
for (auto v : values) {
for (auto &u : v.getUses()) {
Operation *owner = u.getOwner();
if (owner == firstOp || owner == secondOp)
continue;
// TODO: this is too conservative, use dominance info in the future.
if (owner->getBlock() == firstOp->getBlock() &&
(owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
continue;
LLVM_DEBUG(llvm::dbgs()
<< dbgPref << " found interleaved op " << *owner
<< ", firstOp: " << *firstOp << ", second op: " << *secondOp);
return true;
}
}
return false;
}
/// Return the unique subview use of `v` if it is indeed unique, null otherwise.
static SubViewOp getSubViewUseIfUnique(Value v) {
SubViewOp subViewOp;
for (auto &u : v.getUses()) {
if (auto newSubViewOp = dyn_cast<SubViewOp>(u.getOwner())) {
if (subViewOp)
return SubViewOp();
subViewOp = newSubViewOp;
}
}
return subViewOp;
}
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
// Transfer into `view`.
Value viewOrAlloc = xferOp.memref();
if (!viewOrAlloc.getDefiningOp<ViewOp>() &&
!viewOrAlloc.getDefiningOp<AllocOp>())
return failure();
StringRef dbgPref = "\n[" DEBUG_TYPE "]: VTRForwarding: ";
(void)dbgPref;
LLVM_DEBUG(llvm::dbgs() << dbgPref << viewOrAlloc);
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
if (!subViewOp)
return failure();
Value subView = subViewOp.getResult();
LLVM_DEBUG(llvm::dbgs() << dbgPref << "with subView " << subView);
// Find the copy into `subView` without interleaved uses.
CopyOp copyOp;
for (auto &u : subView.getUses()) {
if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
if (newCopyOp.getOutputBuffer(0) != subView)
continue;
LLVM_DEBUG(llvm::dbgs() << dbgPref << "copy candidate " << *newCopyOp);
if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
continue;
copyOp = newCopyOp;
break;
}
}
if (!copyOp)
return failure();
LLVM_DEBUG(llvm::dbgs() << dbgPref << "with copy " << *copyOp);
// Find the fill into `viewOrAlloc` without interleaved uses before the copy.
FillOp maybeFillOp;
for (auto &u : viewOrAlloc.getUses()) {
if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
continue;
LLVM_DEBUG(llvm::dbgs() << dbgPref << "fill candidate " << *newFillOp);
if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
continue;
maybeFillOp = newFillOp;
break;
}
}
// Ensure padding matches.
if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
return failure();
if (maybeFillOp)
LLVM_DEBUG(llvm::dbgs() << dbgPref << "with maybeFillOp " << *maybeFillOp);
// `in` is the subview that linalg.copy reads. Replace it.
Value in = copyOp.getInput(0);
// linalg.copy + linalg.fill can be used to create a padded local buffer.
// The `masked` attribute is only valid on this padded buffer.
// When forwarding to vector.transfer_read, the attribute must be reset
// conservatively.
Value res = rewriter.create<vector::TransferReadOp>(
xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
if (maybeFillOp)
rewriter.eraseOp(maybeFillOp);
rewriter.eraseOp(copyOp);
rewriter.replaceOp(xferOp, res);
return success();
}
/// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
/// when available.
LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
// Transfer into `viewOrAlloc`.
Value viewOrAlloc = xferOp.memref();
if (!viewOrAlloc.getDefiningOp<ViewOp>() &&
!viewOrAlloc.getDefiningOp<AllocOp>())
return failure();
// Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
if (!subViewOp)
return failure();
Value subView = subViewOp.getResult();
// Find the copy from `subView` without interleaved uses.
CopyOp copyOp;
for (auto &u : subViewOp.getResult().getUses()) {
if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
if (newCopyOp.getInput(0) != subView)
continue;
if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
continue;
copyOp = newCopyOp;
break;
}
}
if (!copyOp)
return failure();
// `out` is the subview copied into that we replace.
Value out = copyOp.getOutputBuffer(0);
// Forward vector.transfer into copy.
// linalg.copy + linalg.fill can be used to create a padded local buffer.
// The `masked` attribute is only valid on this padded buffer.
// When forwarding to vector.transfer_write, the attribute must be reset
// conservatively.
rewriter.create<vector::TransferWriteOp>(
xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
xferOp.permutation_map(), ArrayAttr());
rewriter.eraseOp(copyOp);
rewriter.eraseOp(xferOp);
return success();
}
template <class ConvOp, int N>
LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
ConvOp op, PatternRewriter &rewriter) const {
Location loc = op.getLoc();
MLIRContext *context = op.getContext();
edsc::ScopedContext scope(rewriter, loc);
ShapedType inShapeType = op.getInputShapedType(0);
ShapedType kShapeType = op.getInputShapedType(1);
ArrayRef<int64_t> inShape = inShapeType.getShape();
ArrayRef<int64_t> kShape = kShapeType.getShape();
if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
return failure();
SmallVector<AffineExpr, 4> mapping;
SmallVector<int64_t, 4> vectorDims;
// Fail to apply when the size of not vectorized dimension is not 1.
for (unsigned i = 0; i < N; i++) {
if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
return failure();
if (mask[i] && inShape[i] != kShape[i])
return failure();
if (mask[i]) {
mapping.push_back(getAffineDimExpr(i, context));
vectorDims.push_back(inShape[i]);
}
}
Value input = op.getInput(0);
Value kernel = op.getInput(1);
Value output = op.getOutputBuffer(0);
unsigned rank = inShapeType.getRank();
unsigned numDims = mapping.size();
Type elemType = inShapeType.getElementType();
auto map = AffineMap::get(rank, 0, mapping, context);
SmallVector<Value, 4> zeros(rank, std_constant_index(0));
auto vecType = VectorType::get(vectorDims, elemType);
auto inputVec = vector_transfer_read(vecType, input, zeros, map);
auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
std::array<AffineMap, 3> indexingMaps{
AffineMap::getMultiDimIdentityMap(numDims, context),
AffineMap::getMultiDimIdentityMap(numDims, context),
AffineMap::get(numDims, 0, {}, context)};
std::vector<StringRef> iteratorTypes(numDims, "reduction");
auto result = rewriter.create<vector::ContractionOp>(
loc, inputVec, kernelVec, acc,
rewriter.getAffineMapArrayAttr(indexingMaps),
rewriter.getStrArrayAttr(iteratorTypes));
rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros));
rewriter.eraseOp(op);
return success();
}
using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;
/// Inserts tiling, promotion and vectorization pattern for ConvOp
/// conversion into corresponding pattern lists.
template <typename ConvOp, unsigned N>
static void
populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns,
OwningRewritePatternList &promotionPatterns,
OwningRewritePatternList &vectorizationPatterns,
ArrayRef<int64_t> tileSizes,
MLIRContext *context) {
if (tileSizes.size() < N)
return;
constexpr static StringRef kTiledMarker = "TILED";
constexpr static StringRef kPromotedMarker = "PROMOTED";
tilingPatterns.insert<LinalgTilingPattern<ConvOp>>(
context, LinalgTilingOptions().setTileSizes(tileSizes),
LinalgMarker({}, Identifier::get(kTiledMarker, context)));
promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>(
context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
LinalgMarker(Identifier::get(kTiledMarker, context),
Identifier::get(kPromotedMarker, context)));
SmallVector<bool, 4> mask(N);
int offset = tileSizes.size() - N;
std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
[](int64_t i) -> bool { return i > 1; });
vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask);
}
void mlir::linalg::populateConvVectorizationPatterns(
MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns,
ArrayRef<int64_t> tileSizes) {
OwningRewritePatternList tiling, promotion, vectorization;
populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
tileSizes, context);
populateVectorizationPatterns<ConvNDHWCOp, 5>(
tiling, promotion, vectorization, tileSizes, context);
populateVectorizationPatterns<ConvNCDHWOp, 5>(
tiling, promotion, vectorization, tileSizes, context);
patterns.push_back(std::move(tiling));
patterns.push_back(std::move(promotion));
patterns.push_back(std::move(vectorization));
}