Transforms.cpp
17.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
//===- LinalgTransforms.cpp - Linalg transformations as patterns ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic and helpers to expose Linalg transforms as rewrite
// patterns.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
#define DEBUG_TYPE "linalg-transforms"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
//===----------------------------------------------------------------------===//
// Transformations exposed as rewrite patterns.
//===----------------------------------------------------------------------===//
// Marker used as attribute name in generated Linalg rewriting transformations.
const StringLiteral mlir::linalg::LinalgTransforms::kLinalgTransformMarker =
"__internal_linalg_transform__";
mlir::linalg::LinalgMarker::LinalgMarker(ArrayRef<Identifier> matchDisjunction,
Optional<Identifier> replacement)
: matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()),
replacement(replacement) {}
LogicalResult
mlir::linalg::LinalgMarker::checkAndNotify(PatternRewriter &rewriter,
Operation *op) const {
auto attr = op->template getAttrOfType<StringAttr>(
LinalgTransforms::kLinalgTransformMarker);
if (!attr) {
// 1. Has no marker case and matchDisjunction is empty.
if (matchDisjunction.empty())
return success();
// 2. Has no marker but was expecting a marker.
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
diag << " does not have any marker from list: ";
interleaveComma(matchDisjunction, diag);
});
}
// 4. Match explicit marker.
for (auto marker : matchDisjunction)
if (attr.getValue() == marker)
return success();
// 5. Fail to match.
return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) {
diag << " does not have any marker from list: ";
interleaveComma(matchDisjunction, diag);
});
}
void mlir::linalg::LinalgMarker::replaceLinalgMarker(PatternRewriter &rewriter,
Operation *op) const {
if (replacement.hasValue())
op->setAttr(LinalgTransforms::kLinalgTransformMarker,
rewriter.getStringAttr(replacement.getValue()));
else
op->removeAttr(Identifier::get(LinalgTransforms::kLinalgTransformMarker,
rewriter.getContext()));
}
LinalgTilingOptions &
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(
&op->getParentOfType<FuncOp>().getBody().front());
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
Value v = b.create<ConstantIndexOp>(op->getLoc(), s);
return v;
}));
};
return *this;
}
/// Linalg base tiling pattern.
mlir::linalg::LinalgBaseTilingPattern::LinalgBaseTilingPattern(
StringRef opName, MLIRContext *context, LinalgTilingOptions options,
LinalgMarker marker, PatternBenefit benefit)
: RewritePattern(opName, {}, benefit, context), marker(marker),
options(options) {}
LogicalResult mlir::linalg::LinalgBaseTilingPattern::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return failure();
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
return failure();
Optional<TiledLinalgOp> res = tileLinalgOp(rewriter, linalgOp, options);
if (!res)
return failure();
// New marker if specified.
marker.replaceLinalgMarker(rewriter, res->op.getOperation());
return success();
}
mlir::linalg::LinalgBaseTileAndFusePattern::LinalgBaseTileAndFusePattern(
StringRef opName, MLIRContext *context,
const LinalgDependenceGraph &dependenceGraph,
LinalgTilingOptions tilingOptions, LinalgFusionOptions fusionOptions,
LinalgMarker marker, LinalgMarker fusedOpMarker,
LinalgMarker originalOpMarker, PatternBenefit benefit)
: RewritePattern(opName, {}, benefit, context),
dependenceGraph(dependenceGraph), tilingOptions(tilingOptions),
fusionOptions(fusionOptions), marker(marker),
fusedOpMarker(fusedOpMarker), originalOpMarker(originalOpMarker) {}
LogicalResult mlir::linalg::LinalgBaseTileAndFusePattern::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return failure();
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
return failure();
if (!linalgOp.hasBufferSemantics())
return failure();
Optional<TiledAndFusedLinalgOps> tiledAndFusedOps = tileAndFuseLinalgOps(
rewriter, op, dependenceGraph, tilingOptions, fusionOptions);
if (!tiledAndFusedOps)
return failure();
marker.replaceLinalgMarker(rewriter, tiledAndFusedOps->op.getOperation());
for (auto fusedOp : tiledAndFusedOps->fusedProducers) {
fusedOpMarker.replaceLinalgMarker(rewriter, fusedOp.getOperation());
}
for (auto origProducerOp : tiledAndFusedOps->originalProducers)
originalOpMarker.replaceLinalgMarker(rewriter,
origProducerOp.getOperation());
rewriter.updateRootInPlace(
op, [&]() { originalOpMarker.replaceLinalgMarker(rewriter, op); });
return success();
}
/// Linalg base interchange pattern.
mlir::linalg::LinalgBaseInterchangePattern::LinalgBaseInterchangePattern(
StringRef opName, MLIRContext *context,
ArrayRef<unsigned> interchangeVector, LinalgMarker marker,
PatternBenefit benefit)
: RewritePattern(opName, {}, benefit, context), marker(marker),
interchangeVector(interchangeVector.begin(), interchangeVector.end()) {}
LogicalResult mlir::linalg::LinalgBaseInterchangePattern::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return failure();
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
return failure();
if (failed(interchangeGenericLinalgOpPrecondition(op, interchangeVector)))
return failure();
// TODO: figure out how this interplays with named ops. In particular this
// should break the named op property.
rewriter.updateRootInPlace(op, [&]() {
interchange(linalgOp, interchangeVector);
// New marker if specified.
marker.replaceLinalgMarker(rewriter, op);
});
return success();
}
mlir::linalg::LinalgBasePromotionPattern::LinalgBasePromotionPattern(
StringRef opName, MLIRContext *context, LinalgPromotionOptions options,
LinalgMarker marker, PatternBenefit benefit)
: RewritePattern(opName, {}, benefit, context), marker(marker),
options(options) {}
LogicalResult mlir::linalg::LinalgBasePromotionPattern::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
if (failed(marker.checkAndNotify(rewriter, op)))
return failure();
if (failed(promoteSubviewsPrecondition(op, options)))
return failure();
// TODO: We cannot use root update here. This pattern is creating other ops,
// so if the promotion fails, those need to be cleaned up, which doesnt seem
// to be happening here. So to fail properly, we should be cloning the op and
// deleting the previous op. This needs more investigation.
rewriter.startRootUpdate(op);
Optional<LinalgOp> promotedOp = promoteSubViews(rewriter, op, options);
if (!promotedOp) {
rewriter.cancelRootUpdate(op);
return op->emitError("subview promotion failed");
}
rewriter.finalizeRootUpdate(op);
marker.replaceLinalgMarker(rewriter, op);
return success();
}
mlir::linalg::LinalgBaseVectorizationPattern::LinalgBaseVectorizationPattern(
StringRef opName, MLIRContext *context, LinalgMarker marker,
PatternBenefit benefit)
: RewritePattern(opName, {}, benefit, context), marker(marker) {}
LogicalResult mlir::linalg::LinalgBaseVectorizationPattern::matchAndRewrite(
Operation *op, PatternRewriter &rewriter) const {
LinalgOp linalgOp = dyn_cast<LinalgOp>(op);
if (!linalgOp)
return failure();
if (failed(marker.checkAndNotify(rewriter, linalgOp)))
return failure();
if (failed(vectorizeLinalgOpPrecondition(op)))
return failure();
vectorizeLinalgOp(rewriter, op);
rewriter.eraseOp(op);
return success();
}
LogicalResult mlir::linalg::applyStagedPatterns(
Operation *op, ArrayRef<OwningRewritePatternList> stage1Patterns,
const OwningRewritePatternList &stage2Patterns,
function_ref<LogicalResult(Operation *)> stage3Lambda) {
unsigned iteration = 0;
(void)iteration;
for (const auto &patterns : stage1Patterns) {
LLVM_DEBUG(DBGS() << "Before 1st stage, iter: " << ++iteration << "\n"
<< *op);
if (failed(applyPatternsAndFoldGreedily(op, patterns))) {
LLVM_DEBUG(DBGS() << "Underlying first stage rewrite did not converge");
return failure();
}
LLVM_DEBUG(DBGS() << "After 1st stage, iter: " << ++iteration << "\n"
<< *op);
if (failed(applyPatternsAndFoldGreedily(op, stage2Patterns))) {
LLVM_DEBUG(DBGS() << "Underlying 2nd stage rewrite did not converge");
return failure();
}
LLVM_DEBUG(DBGS() << "After 2nd stage, iter : " << iteration << "\n"
<< *op);
if (stage3Lambda) {
if (failed(stage3Lambda(op)))
return failure();
LLVM_DEBUG(DBGS() << "After 3rd stage, iter : " << iteration << "\n"
<< *op);
}
}
return success();
}
/// Traverse `e` and return an AffineExpr where all occurrences of `dim` have
/// been replaced by either:
/// - `min` if `positivePath` is true when we reach an occurrence of `dim`
/// - `max` if `positivePath` is true when we reach an occurrence of `dim`
/// `positivePath` is negated each time we hit a multiplicative or divisive
/// binary op with a constant negative coefficient.
static AffineExpr substWithMin(AffineExpr e, AffineExpr dim, AffineExpr min,
AffineExpr max, bool positivePath = true) {
if (e == dim)
return positivePath ? min : max;
if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) {
AffineExpr lhs = bin.getLHS();
AffineExpr rhs = bin.getRHS();
if (bin.getKind() == mlir::AffineExprKind::Add)
return substWithMin(lhs, dim, min, max, positivePath) +
substWithMin(rhs, dim, min, max, positivePath);
auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>();
auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>();
if (c1 && c1.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
if (c2 && c2.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
substWithMin(rhs, dim, min, max, positivePath));
}
return e;
}
/// Given the `lbVal`, `ubVal` and `stepVal` of a loop, append `lbVal` and
/// `ubVal` to `dims` and `stepVal` to `symbols`.
/// Create new AffineDimExpr (`%lb` and `%ub`) and AffineSymbolExpr (`%step`)
/// with positions matching the newly appended values. Substitute occurrences of
/// `dimExpr` by either the min expression (i.e. `%lb`) or the max expression
/// (i.e. `%lb + %step * floordiv(%ub -1 - %lb, %step)`), depending on whether
/// the induction variable is used with a positive or negative coefficient.
static AffineExpr substituteLoopInExpr(AffineExpr expr, AffineExpr dimExpr,
Value lbVal, Value ubVal, Value stepVal,
SmallVectorImpl<Value> &dims,
SmallVectorImpl<Value> &symbols) {
MLIRContext *ctx = lbVal.getContext();
AffineExpr lb = getAffineDimExpr(dims.size(), ctx);
dims.push_back(lbVal);
AffineExpr ub = getAffineDimExpr(dims.size(), ctx);
dims.push_back(ubVal);
AffineExpr step = getAffineSymbolExpr(symbols.size(), ctx);
symbols.push_back(stepVal);
LLVM_DEBUG(DBGS() << "Before: " << expr << "\n");
AffineExpr ee = substWithMin(expr, dimExpr, lb,
lb + step * ((ub - 1) - lb).floorDiv(step));
LLVM_DEBUG(DBGS() << "After: " << expr << "\n");
return ee;
}
/// Traverse the `dims` and substitute known min or max expressions in place of
/// induction variables in `exprs`.
static AffineMap substitute(AffineMap map, SmallVectorImpl<Value> &dims,
SmallVectorImpl<Value> &symbols) {
auto exprs = llvm::to_vector<4>(map.getResults());
for (AffineExpr &expr : exprs) {
bool substituted = true;
while (substituted) {
substituted = false;
for (unsigned dimIdx = 0; dimIdx < dims.size(); ++dimIdx) {
Value dim = dims[dimIdx];
AffineExpr dimExpr = getAffineDimExpr(dimIdx, expr.getContext());
LLVM_DEBUG(DBGS() << "Subst: " << dim << " @ " << dimExpr << "\n");
AffineExpr substitutedExpr;
if (auto forOp = scf::getForInductionVarOwner(dim))
substitutedExpr = substituteLoopInExpr(
expr, dimExpr, forOp.lowerBound(), forOp.upperBound(),
forOp.step(), dims, symbols);
if (auto parallelForOp = scf::getParallelForInductionVarOwner(dim))
for (unsigned idx = 0, e = parallelForOp.getNumLoops(); idx < e;
++idx)
substitutedExpr = substituteLoopInExpr(
expr, dimExpr, parallelForOp.lowerBound()[idx],
parallelForOp.upperBound()[idx], parallelForOp.step()[idx],
dims, symbols);
if (!substitutedExpr)
continue;
substituted = (substitutedExpr != expr);
expr = substitutedExpr;
}
}
// Cleanup and simplify the results.
// This needs to happen outside of the loop iterating on dims.size() since
// it modifies dims.
SmallVector<Value, 4> operands(dims.begin(), dims.end());
operands.append(symbols.begin(), symbols.end());
auto map = AffineMap::get(dims.size(), symbols.size(), exprs,
exprs.front().getContext());
LLVM_DEBUG(DBGS() << "Map to simplify: " << map << "\n");
// Pull in affine.apply operations and compose them fully into the
// result.
fullyComposeAffineMapAndOperands(&map, &operands);
canonicalizeMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
// Assign the results.
exprs.assign(map.getResults().begin(), map.getResults().end());
dims.assign(operands.begin(), operands.begin() + map.getNumDims());
symbols.assign(operands.begin() + map.getNumDims(), operands.end());
LLVM_DEBUG(DBGS() << "Map simplified: " << map << "\n");
}
assert(!exprs.empty() && "Unexpected empty exprs");
return AffineMap::get(dims.size(), symbols.size(), exprs, map.getContext());
}
LogicalResult AffineMinSCFCanonicalizationPattern::matchAndRewrite(
AffineMinOp minOp, PatternRewriter &rewriter) const {
LLVM_DEBUG(DBGS() << "Canonicalize AffineMinSCF: " << *minOp.getOperation()
<< "\n");
SmallVector<Value, 4> dims(minOp.getDimOperands()),
symbols(minOp.getSymbolOperands());
AffineMap map = substitute(minOp.getAffineMap(), dims, symbols);
LLVM_DEBUG(DBGS() << "Resulting map: " << map << "\n");
// Check whether any of the expressions, when subtracted from all other
// expressions, produces only >= 0 constants. If so, it is the min.
for (auto e : minOp.getAffineMap().getResults()) {
LLVM_DEBUG(DBGS() << "Candidate min: " << e << "\n");
if (!e.isSymbolicOrConstant())
continue;
auto isNonPositive = [](AffineExpr e) {
if (auto cst = e.dyn_cast<AffineConstantExpr>())
return cst.getValue() < 0;
return true;
};
// Build the subMap and check everything is statically known to be
// positive.
SmallVector<AffineExpr, 4> subExprs;
subExprs.reserve(map.getNumResults());
for (auto ee : map.getResults())
subExprs.push_back(ee - e);
MLIRContext *ctx = minOp.getContext();
AffineMap subMap = simplifyAffineMap(
AffineMap::get(map.getNumDims(), map.getNumSymbols(), subExprs, ctx));
LLVM_DEBUG(DBGS() << "simplified subMap: " << subMap << "\n");
if (llvm::any_of(subMap.getResults(), isNonPositive))
continue;
// Static min found.
if (auto cst = e.dyn_cast<AffineConstantExpr>()) {
rewriter.replaceOpWithNewOp<ConstantIndexOp>(minOp, cst.getValue());
} else {
auto resultMap = AffineMap::get(0, map.getNumSymbols(), {e}, ctx);
SmallVector<Value, 4> resultOperands = dims;
resultOperands.append(symbols.begin(), symbols.end());
canonicalizeMapAndOperands(&resultMap, &resultOperands);
resultMap = simplifyAffineMap(resultMap);
rewriter.replaceOpWithNewOp<AffineApplyOp>(minOp, resultMap,
resultOperands);
}
return success();
}
return failure();
}