Fusion.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "linalg-fusion"

using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;

using folded_std_constant_index = FoldedValueBuilder<ConstantIndexOp>;

using llvm::dbgs;

/// Implements a simple high-level fusion pass of linalg library operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
///   1. inspecting the linalg ops that write into the views read by `O`. This
///      uses the SSA value of the views and a simple subview/slice analysis to
///      determine producer-consumer dependences;
///   2. greedily fuse the linalg ops that produce subview
///   3. inspect the fused ops and determine whether they have other remaining
///      LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.

// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
                                    ArrayRef<Range> loopRanges) {
  assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
  auto maps = op.indexing_maps();
  SmallVector<Value, 8> clonedViews;
  clonedViews.reserve(op.getNumInputsAndOutputs());
  // Iterate over the inputs and outputs in order.
  // Extract the subranges from the linearized ranges.
  SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
  for (auto en : llvm::enumerate(ios)) {
    unsigned idx = en.index();
    auto map = maps[idx].cast<AffineMapAttr>().getValue();
    LLVM_DEBUG(dbgs() << "map: " << map << "\n");
    Value view = en.value();
    SmallVector<Range, 4> viewRanges(map.getNumResults());
    for (auto en2 : llvm::enumerate(map.getResults())) {
      unsigned d = en2.index();
      // loopToOperandRangesMaps are permutations-only.
      unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
      viewRanges[d] = loopRanges[loopPos];
      LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
                        << "\t"
                        << "loopPos: " << loopPos << "\t" << viewRanges[d]);
    }
    // Construct a new subview for the tile.
    unsigned rank = viewRanges.size();
    SmallVector<Value, 4> offsets, sizes, strides;
    offsets.reserve(rank);
    sizes.reserve(rank);
    strides.reserve(rank);
    for (auto r : viewRanges) {
      offsets.push_back(r.offset);
      sizes.push_back(r.size);
      strides.push_back(r.stride);
    }
    clonedViews.push_back(
        b.create<SubViewOp>(loc, view, offsets, sizes, strides));
  }
  auto operands = getAssumedNonViewOperands(op);
  clonedViews.append(operands.begin(), operands.end());

  Operation *clonedOp = op.clone(b, loc, /*resultTypes*/ {}, clonedViews);
  // When the producer is an IndexedGenercOp, we have to transform its block
  // IV arguments according to the tiling of the consumer, i.e. offset them by
  // the values computed in `loopRanges`.
  if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) {
    auto &block = indexedGenericOp.region().front();

    OpBuilder::InsertionGuard g(b);
    b.setInsertionPointToStart(&block);
    for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) {
      Value oldIndex = block.getArgument(i);
      AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
                                         loopRanges[i].offset);
      oldIndex.replaceAllUsesExcept(newIndex,
                                    SmallPtrSet<Operation *, 1>{newIndex});
    }
  }
  return clonedOp;
}

struct ViewDimension {
  Value view;
  unsigned dimension;
};

// Given an `op`, returns the first (`view`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
  assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
  auto maps = op.indexing_maps();
  // Iterate over the inputs and outputs in order.
  // Extract the subranges from the linearized ranges.
  SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
  for (auto en : llvm::enumerate(ios)) {
    unsigned idx = en.index();
    auto map = maps[idx].cast<AffineMapAttr>().getValue();
    LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
    LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
    Value view = en.value();
    SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
    for (auto en2 : llvm::enumerate(map.getResults())) {
      if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
        LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
                          << "\n");
        LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
        return ViewDimension{view, static_cast<unsigned>(en2.index())};
      }
    }
  }
  llvm_unreachable("Expect to be able to extract a view defining loop range");
}

static LinalgOp fuse(OpBuilder &b, LinalgOp producer, unsigned producerIdx,
                     LinalgOp consumer, unsigned consumerIdx,
                     OperationFolder *folder = nullptr) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");

  auto subView = dyn_cast_or_null<SubViewOp>(
      consumer.getBuffer(consumerIdx).getDefiningOp());
  auto slice = dyn_cast_or_null<SliceOp>(
      consumer.getBuffer(consumerIdx).getDefiningOp());
  assert(subView || slice);
  (void)subView;
  (void)slice;

  // loopToOperandRangesMaps are permutations-only by construction:
  //   we can always identify a data dimension with a (at least one) loop
  //   dimension.
  AffineMap producerMap =
      producer.indexing_maps()[producerIdx].cast<AffineMapAttr>().getValue();
  LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
                    << ", producer map: " << producerMap << "\n");

  unsigned nPar = producer.getNumParallelLoops();
  unsigned nRed = producer.getNumReductionLoops();
  unsigned nWin = producer.getNumWindowLoops();
  SmallVector<Range, 8> loopRanges(nPar + nRed + nWin);

  // Iterate over dimensions identified by the producer map for `producerIdx`.
  // This defines a subset of the loop ranges that we need to complete later.
  auto loc = consumer.getLoc();
  for (auto en : llvm::enumerate(producerMap.getResults())) {
    unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
    loopRanges[posInProducerLoop] =
        subView.getOrCreateRanges(b, loc)[en.index()];
  }

  // Iterate over all dimensions. For the dimensions not identified by the
  // producer map for `producerIdx`, we need to explicitly compute the view that
  // defines the loop ranges using the `producer`.
  for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
    if (loopRanges[i].offset)
      LLVM_DEBUG(llvm::dbgs()
                 << "existing LoopRange: " << loopRanges[i] << "\n");
    else {
      auto viewDim = getViewDefiningLoopRange(producer, i);
      loopRanges[i] = Range{folded_std_constant_index(folder, 0),
                            std_dim(viewDim.view, viewDim.dimension),
                            folded_std_constant_index(folder, 1)};
      LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
    }
  }

  return cloneWithLoopRanges(b, loc, producer, loopRanges);
}

// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
                                          LinalgOp consumer) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  if (producer.getNumOutputs() != 1) {
    LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
    return false;
  }
  // Only fuse when the producer block dominates.
  DominanceInfo dom(producer.getOperation());
  if (!dom.dominates(producer.getOperation()->getBlock(),
                     consumer.getOperation()->getBlock())) {
    LLVM_DEBUG(
        dbgs()
        << "\nNot structurally fusable (producer block does not dominate)");
    return false;
  }
  return true;
}

bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
                                             LinalgOp consumer,
                                             Value consumedView,
                                             LinalgOp producer) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  // Make some simple structural checks that alleviate the need for more
  // complex analyses.
  if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
    LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
                      << *producer.getOperation());
    return false;
  }
  // Check for any interleaved write to consumedView.
  if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
    LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
                      << *producer.getOperation());
    return false;
  }
  return true;
}

bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
                                 LinalgOp consumer, Value consumedView,
                                 LinalgOp producer) {
  assert(producer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  assert(consumer.hasBufferSemantics() &&
         "expected linalg op with buffer semantics");
  if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
    return false;
  // Check for any fusion-preventing dependence to any view read/written that
  // would violate dependences.
  if (!graph.findCoveringDependences(producer, consumer).empty()) {
    LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
                      << *producer.getOperation());
    return false;
  }
  if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
    // TODO: add a level of indirection to linalg.generic.
    if (convOp.padding())
      return false;
  }
  if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
    // TODO: add a level of indirection to linalg.generic.
    if (convOp.padding())
      return false;
  }
  return true;
}

static bool isSameSubView(Value a, Value b) {
  if (a == b)
    return true;
  auto sva = a.getDefiningOp<SubViewOp>();
  auto svb = b.getDefiningOp<SubViewOp>();
  if (!sva || !svb)
    return false;
  if (!isSameSubView(sva.getViewSource(), svb.getViewSource()))
    return false;
  if (sva.getType() != svb.getType())
    return false;
  if (sva.getNumOperands() != svb.getNumOperands())
    return false;
  if (sva.static_offsets() != svb.static_offsets())
    return false;
  if (sva.static_sizes() != svb.static_sizes())
    return false;
  if (sva.static_strides() != svb.static_strides())
    return false;
  /// Skip the "viewSource" operand.
  for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx)
    if (sva.getOperand(idx) != svb.getOperand(idx))
      return false;
  return true;
}

static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
findFusableProducer(LinalgOp consumer, unsigned consumerIdx,
                    const LinalgDependenceGraph &dependenceGraph) {
  // Only consider RAW and WAW atm.
  for (auto depType : {
           LinalgDependenceGraph::DependenceType::RAW,
           LinalgDependenceGraph::DependenceType::WAW,
       }) {
    for (auto dependence :
         dependenceGraph.getDependencesInto(consumer, depType)) {
      auto producer = cast<LinalgOp>(dependence.dependentOpView.op);

      // Check that the dependence is indeed on the input `consumerIdx` view.
      auto consumedView = dependence.indexingView;
      if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
        continue;

      // Consumer consumes this view, `isStructurallyFusableProducer` also
      // checks whether it is a strict subview of the producer view.
      auto producedView = dependence.dependentOpView.view;
      auto producerIdx =
          producer.getIndexOfOutputBuffer(producedView).getValue();
      // `consumerIdx` and `producerIdx` exist by construction.
      LLVM_DEBUG(dbgs() << "\n"
                        << LinalgDependenceGraph::getDependenceTypeStr(depType)
                        << "producer: " << *producer.getOperation() << " view: "
                        << producedView << " output index: " << producerIdx);
      (void)producerIdx;

      // Simple fusability checks.
      if (!isFusableInto(dependenceGraph, consumer, consumedView, producer))
        continue;

      return dependence;
    }
  }
  return {};
}

Optional<FusionInfo> mlir::linalg::fuseProducerOf(
    OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
    const LinalgDependenceGraph &graph, OperationFolder *folder) {
  Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
      findFusableProducer(consumer, consumerIdx, graph);
  if (!fusableDependence)
    return {};

  LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
  Value producerView = fusableDependence->dependentOpView.view;
  Value consumerView = fusableDependence->indexingView;

  // Must be a subview or a slice to guarantee there are loops we can fuse
  // into.
  auto subView = consumerView.getDefiningOp<SubViewOp>();
  auto slice = consumerView.getDefiningOp<SliceOp>();
  if (!subView && !slice) {
    LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
    return {};
  }

  // Fuse `producer` just before `consumer`.
  OpBuilder::InsertionGuard g(b);
  b.setInsertionPoint(consumer.getOperation());
  ScopedContext scope(b, consumer.getLoc());
  LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
  Optional<unsigned> producerIdxOpt =
      producerOp.getIndexOfInputAndOutputBuffer(producerView);
  assert(producerIdxOpt.hasValue() && "incorrect operand index");
  unsigned producerIdx = producerIdxOpt.getValue();

  auto fusedProducer =
      fuse(b, producerOp, producerIdx, consumer, consumerIdx, folder);
  return FusionInfo{producerOp, fusedProducer};
}

/// Returns the positions of the loop in `op` that can be tiled based on the
/// operations that are to be fused with it. For example, in a
///
///   linalg. matmul ins(%a, %b : ...) outs(%c : ...)
///
/// if the producer of %a needs to be fused with this op, only the `i` loop of
/// the matmul can be tiled while fusing. If producer of %a, and %b are to be
/// fused, then no loops can be tiled while fusing.
static DenseSet<unsigned> collectTileAndFuseLoops(
    LinalgOp op, ArrayRef<LinalgDependenceGraph::LinalgDependenceGraphElem>
                     fusableDependences) {
  // 1. Only parallel loops can be used for tile + fuse. Find the number of
  // common outer parallel loops between the op and its producers being fused.
  auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
    return linalgOp.iterator_types()
        .getValue()
        .take_while([](Attribute attr) -> bool {
          return attr.cast<StringAttr>().getValue() ==
                 getParallelIteratorTypeName();
        })
        .size();
  };

  size_t numOuterParallelLoops = getNumOuterParallelLoops(op);
  for (auto dependence : fusableDependences) {
    numOuterParallelLoops =
        std::min(numOuterParallelLoops, getNumOuterParallelLoops(cast<LinalgOp>(
                                            dependence.dependentOpView.op)));
  }

  // Need to compute what tiled loops can be "fused". Given the precondition
  // that all indexing map for the producer view is a projected permutation, we
  // can assert that the producer iterates over the dimensions of the "fused
  // view" only once. To be used a fused loop the producer should use this loop
  // to access the fused view. For example, consider
  //
  // ```
  //   linalg.add ins(%a, %b) outs(%c)
  //   linalg.matmul ins(%d, %c) outs(%e)
  // ```
  //
  // if `linalg.add` has the semantics of `c = a + b`, then the following
  // tile+fuse code is correct.
  //
  // ```
  // for j ... += TSj
  //   %sa = subview %a[0, %j][...]
  //   %sb = subview %b[0, %j][...]
  //   %sc = subview %c[0, %j][...]
  //   %sd = subview %d[0, 0][...]
  //   %se = subview %e[0, %j][...]
  //   linalg.add ins(%sa, %sb) outs(%sc)
  //   linalg.matmul ins(%sd, %sc) outs(%se)
  // ```
  //
  // On the other hand tiling along i would be incorrect
  //
  // ```
  // for %i .. += TSi
  //   %sa = subview %a[%i, 0][...]
  //   %sb = subview %b[%i, 0][...]
  //   %sc = subview %c[%i, 0][...]
  //   %sc2 = subview %c[0, 0][...]
  //   %sd = subview %d[%i, 0][...]
  //   %se = subview %e[%i, 0][...]
  //   linalg.add ins(%sa, %sb) outs(%sc)
  //   linalg.matmul ins(%sd, %sc2) outs(%se)
  // ```
  //
  // The write to the subview `%sc` in `linalg.add` is performed after the read
  // from it using `%sc2` violating the RAW dependence of the original code. To
  // find such loops indexing map of the fused view in the consumer op is
  // used. For the above example, this indexing map is
  //
  //   affine_map<(d0, d1, d2) -> (d2, d1)>
  //
  // Since d0 is not in the result expressions of this map, it is not treated as
  // tile + fuse loop, (but d1 is).
  //
  // TODO: The above is probably restrictive and there might be a generalization
  // of these that might allow for more fusion opportunities. Explore based on
  // needs.
  SmallVector<DenseSet<unsigned>, 1> commonTilableLoops;
  for (auto dependence : fusableDependences) {
    unsigned consumerIdx =
        op.getIndexOfInputAndOutputBuffer(dependence.indexingView).getValue();
    AffineMap consumerAccess = op.getIndexingMap(consumerIdx);
    // Previously asserted that the consumerAccess map is a projected
    // permutation, so all results are known to be AffineDimExprs. To remove
    // this restriction walk the expression to find which dimensions of the
    // consumer loop appear in the `consumerAccess`.
    DenseSet<unsigned> positions;
    for (auto expr : consumerAccess.getResults())
      positions.insert(expr.cast<AffineDimExpr>().getPosition());
    commonTilableLoops.emplace_back(std::move(positions));
  }

  // 2. Of the outer parallel loops, only those loops can be tiled + fused as
  // computed above for all the fused dependences can be used to tile and fuse.
  DenseSet<unsigned> tilableParallelLoops;
  for (auto index : llvm::seq<unsigned>(0, numOuterParallelLoops)) {
    if (llvm::all_of(commonTilableLoops,
                     [&](const DenseSet<unsigned> &tilableLoops) {
                       return tilableLoops.count(index);
                     }))
      tilableParallelLoops.insert(index);
  }
  return tilableParallelLoops;
}

/// Find all dependences that are to be fusable.
static Optional<
    SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>>
findAllFusableDependences(LinalgOp op,
                          const LinalgDependenceGraph &dependenceGraph,
                          const LinalgFusionOptions &fusionOptions) {
  SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>
      fusableDependences;
  for (auto operand : llvm::enumerate(op.getInputsAndOutputBuffers())) {
    if (fusionOptions.indicesToFuse &&
        !fusionOptions.indicesToFuse->count(operand.index()))
      continue;
    Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
        fusableDependence =
            findFusableProducer(op, operand.index(), dependenceGraph);
    if (!fusableDependence)
      continue;
    // Make sure that the indexing map of the view used for fusion in the
    // producer is a projected permutation.
    LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
    Value producerView = fusableDependence->dependentOpView.view;
    unsigned producerIdx =
        producerOp.getIndexOfInputAndOutputBuffer(producerView).getValue();
    AffineMap producerMap = producerOp.getIndexingMap(producerIdx);
    if (!producerMap.isProjectedPermutation()) {
      op.emitError("unhandled non permutation indexing map for fused view in "
                   "producer for operand at index ")
          << operand.index();
      return llvm::None;
    }
    Value consumerView = fusableDependence->indexingView;
    unsigned consumerIdx =
        op.getIndexOfInputAndOutputBuffer(consumerView).getValue();
    if (!op.getIndexingMap(consumerIdx).isProjectedPermutation()) {
      op.emitError(
          "unhandled case where indexing map for fused view in the consumer is "
          "not a projected permuration while fusing at index ")
          << operand.index();
      return llvm::None;
    }
    fusableDependences.push_back(*fusableDependence);
    if (!fusionOptions.indicesToFuse)
      break;
  }
  return fusableDependences;
}

static bool isZero(Value v) {
  if (auto cst = v.getDefiningOp<ConstantIndexOp>())
    return cst.getValue() == 0;
  return false;
}

template <typename LoopType>
static Optional<TiledAndFusedLinalgOps>
tileAndFuseLinalgOpsImpl(PatternRewriter &rewriter, LinalgOp op,
                         const LinalgDependenceGraph &dependenceGraph,
                         const LinalgTilingOptions &tilingOptions,
                         const LinalgFusionOptions &fusionOptions) {
  assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
  // Some of the tiling options might not be supportable with tile and fuse.
  // TODO: Support interchange with tile + fuse.
  if (!tilingOptions.interchangeVector.empty()) {
    op.emitError("unable to handle tile and fuse with interchange");
    return llvm::None;
  }

  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(op);
  ScopedContext scope(rewriter, op.getLoc());

  // Find all the producers.
  Optional<SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>>
      fusableDependencesOpt =
          findAllFusableDependences(op, dependenceGraph, fusionOptions);
  if (!fusableDependencesOpt)
    return llvm::None;
  ArrayRef<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependences(
      *fusableDependencesOpt);

  // Enforce the convention that "tiling by zero" skips tiling a particular
  // dimension. This convention is significantly simpler to handle instead of
  // adjusting affine maps to account for missing dimensions.
  auto nLoops = op.getNumLoops();
  SmallVector<Value, 4> tileSizeVector =
      tilingOptions.tileSizeComputationFunction(rewriter, op);
  if (tileSizeVector.size() < nLoops) {
    auto zero = std_constant_index(0);
    tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
  }

  TiledAndFusedLinalgOps ret;

  // Find the loops that can be tiled and fused.
  DenseSet<unsigned> tileFuseLoops =
      collectTileAndFuseLoops(op, fusableDependences);

  // If there are no fusable dependences or there are no tile+fusable loops,
  // just return.
  if (fusableDependences.empty() || tileFuseLoops.empty()) {
    return llvm::None;
  }

  // Get the tile sizes for the first and second tiling steps. For the first
  // step the tile size are set to zero for the loops that arent
  // fused. Similarly for the second step, the tile sizes are set to zero for
  // the loops that are fused. For example, if for the following input
  //
  // ```
  //   linalg.add ins(%a, %b) outs(%c)
  //   linalg.matmul ins(%d, %c) outs(%e)
  // ```
  //
  // if the tile sizes of the `{i, j, k}` loops where given as `{ti, tj, tk}`
  // respectively, and since only `j` can be tiled and fused. The tile sizes
  // would be `{0, t_j, 0}` for the first tiling that tiles just the fusable
  // loops. The second tiling would be use tile sizes of `{t_i, 0, t_k}` to tile
  // the tiled matmul generated by the first tiling step.
  SmallVector<Value, 4> tileAndFuseSizes, tileSizes;
  for (auto tileSize : enumerate(tileSizeVector)) {
    auto zero = std_constant_index(0);
    if (tileFuseLoops.count(tileSize.index())) {
      tileAndFuseSizes.push_back(tileSize.value());
      tileSizes.push_back(zero);
    } else {
      tileSizes.push_back(tileSize.value());
      tileAndFuseSizes.push_back(zero);
    }
  }

  // Tile for the loops that can be fused.
  LinalgTilingOptions firstTilingOptions = tilingOptions;
  firstTilingOptions.setTileSizes(tileAndFuseSizes);
  Optional<TiledLinalgOp> firstTiledOp =
      tileLinalgOp(rewriter, op, firstTilingOptions);
  if (!firstTiledOp)
    return llvm::None;
  ret.op = firstTiledOp->op;
  ret.fusedLoops.assign(firstTiledOp->loops.begin(), firstTiledOp->loops.end());

  rewriter.setInsertionPoint(ret.op);
  // Fuse the operands.
  for (auto producer : enumerate(fusableDependences)) {
    LinalgOp producerOp = cast<LinalgOp>(producer.value().dependentOpView.op);
    unsigned producerIdx = producerOp
                               .getIndexOfInputAndOutputBuffer(
                                   producer.value().dependentOpView.view)
                               .getValue();
    unsigned consumerIdx =
        op.getIndexOfInputAndOutputBuffer(producer.value().indexingView)
            .getValue();
    LinalgOp fusedOp =
        fuse(rewriter, producerOp, producerIdx, ret.op, consumerIdx);
    ret.fusedProducers.push_back(fusedOp);
    ret.originalProducers.push_back(producerOp);
  }

  if (!llvm::all_of(tileSizes, isZero)) {
    // Tile the remaining loops of the root operation.
    LinalgTilingOptions secondTilingOptions = tilingOptions;
    // The distribution is done only for the tile+fused loops.
    secondTilingOptions.distribution = llvm::None;
    secondTilingOptions.setTileSizes(tileSizes);
    Optional<TiledLinalgOp> secondTiledOp =
        tileLinalgOp(rewriter, ret.op, secondTilingOptions);
    if (!secondTiledOp)
      return llvm::None;
    ret.unfusedLoops.assign(secondTiledOp->loops.begin(),
                            secondTiledOp->loops.end());
    rewriter.eraseOp(ret.op);
    ret.op = secondTiledOp->op;
  }

  return ret;
}

Optional<TiledAndFusedLinalgOps>
mlir::linalg::tileAndFuseLinalgOps(PatternRewriter &rewriter, LinalgOp op,
                                   const LinalgDependenceGraph &dependenceGraph,
                                   const LinalgTilingOptions &tilingOptions,
                                   const LinalgFusionOptions &fusionOptions) {
  switch (tilingOptions.loopType) {
  case LinalgTilingLoopType::Loops:
    return tileAndFuseLinalgOpsImpl<scf::ForOp>(rewriter, op, dependenceGraph,
                                                tilingOptions, fusionOptions);
  case LinalgTilingLoopType::ParallelLoops:
    return tileAndFuseLinalgOpsImpl<scf::ParallelOp>(
        rewriter, op, dependenceGraph, tilingOptions, fusionOptions);
  default:;
  }
  return llvm::None;
}

static void fuseLinalgOpsGreedily(FuncOp f) {
  LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));

  OpBuilder b(f);
  OperationFolder folder(f.getContext());
  DenseSet<Operation *> eraseSet;

  // Save original Linalg ops, we only want to make a pass over those.
  SmallVector<Operation *, 8> linalgOps;
  f.walk([&](LinalgOp op) {
    if (op.hasBufferSemantics())
      linalgOps.push_back(op);
  });

  // TODO: LinalgDependenceGraph should be able to update itself.
  // The current naive and expensive reconstruction of the graph should be
  // removed.
  for (auto *op : llvm::reverse(linalgOps)) {
    for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers();
         id < e; ++id) {
      linalg::Aliases aliases;
      linalg::LinalgDependenceGraph graph(aliases, linalgOps);
      if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
        auto *originalOp = info->originalProducer.getOperation();
        eraseSet.insert(originalOp);
        auto *originalOpInLinalgOpsVector =
            std::find(linalgOps.begin(), linalgOps.end(), originalOp);
        *originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
      }
    }
  }
  // The `fuseProducerOf` function performs structural checks and in particular
  // that no covering read or write exist between the consumer and the producer.
  // As a consequence, the only fusions that may occur preserve subsequent
  // dependences and are guaranteed by construction to produce the whole view.
  // We may thus erase the producer once it is fused.
  for (auto *e : eraseSet)
    e->erase();
  LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
}

namespace {
struct LinalgFusionPass : public LinalgFusionBase<LinalgFusionPass> {
  void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
};
} // namespace

std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgFusionPass() {
  return std::make_unique<LinalgFusionPass>();
}