Fusion.cpp
30.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
//===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion pass.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-fusion"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
using folded_std_constant_index = FoldedValueBuilder<ConstantIndexOp>;
using llvm::dbgs;
/// Implements a simple high-level fusion pass of linalg library operations.
///
/// In each block, linalg ops are processed in reverse textual order.
/// Given a linalg op `O`, fusion occurs by:
/// 1. inspecting the linalg ops that write into the views read by `O`. This
/// uses the SSA value of the views and a simple subview/slice analysis to
/// determine producer-consumer dependences;
/// 2. greedily fuse the linalg ops that produce subview
/// 3. inspect the fused ops and determine whether they have other remaining
/// LinalgOp uses. If not, then erase the original producing linalg op.
///
/// More advanced use cases, analyses as well as profitability heuristics are
/// left for future work.
// Return a cloned version of `op` that operates on `loopRanges`, assumed to be
// a subset of the original loop ranges of `op`.
// This is achieved by applying the `loopToOperandRangesMaps` permutation maps
// to the `loopRanges` in order to obtain view ranges.
static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
ArrayRef<Range> loopRanges) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = op.indexing_maps();
SmallVector<Value, 8> clonedViews;
clonedViews.reserve(op.getNumInputsAndOutputs());
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "map: " << map << "\n");
Value view = en.value();
SmallVector<Range, 4> viewRanges(map.getNumResults());
for (auto en2 : llvm::enumerate(map.getResults())) {
unsigned d = en2.index();
// loopToOperandRangesMaps are permutations-only.
unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
viewRanges[d] = loopRanges[loopPos];
LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
<< "\t"
<< "loopPos: " << loopPos << "\t" << viewRanges[d]);
}
// Construct a new subview for the tile.
unsigned rank = viewRanges.size();
SmallVector<Value, 4> offsets, sizes, strides;
offsets.reserve(rank);
sizes.reserve(rank);
strides.reserve(rank);
for (auto r : viewRanges) {
offsets.push_back(r.offset);
sizes.push_back(r.size);
strides.push_back(r.stride);
}
clonedViews.push_back(
b.create<SubViewOp>(loc, view, offsets, sizes, strides));
}
auto operands = getAssumedNonViewOperands(op);
clonedViews.append(operands.begin(), operands.end());
Operation *clonedOp = op.clone(b, loc, /*resultTypes*/ {}, clonedViews);
// When the producer is an IndexedGenercOp, we have to transform its block
// IV arguments according to the tiling of the consumer, i.e. offset them by
// the values computed in `loopRanges`.
if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) {
auto &block = indexedGenericOp.region().front();
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&block);
for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) {
Value oldIndex = block.getArgument(i);
AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
loopRanges[i].offset);
oldIndex.replaceAllUsesExcept(newIndex,
SmallPtrSet<Operation *, 1>{newIndex});
}
}
return clonedOp;
}
struct ViewDimension {
Value view;
unsigned dimension;
};
// Given an `op`, returns the first (`view`, `dimension`) pair that identifies
// the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
// guarantees at least one such dimension is found. If multiple candidates exist
// they must agree by construction (i.e. have the same size) and we just return
// the first one.
static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
auto maps = op.indexing_maps();
// Iterate over the inputs and outputs in order.
// Extract the subranges from the linearized ranges.
SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
for (auto en : llvm::enumerate(ios)) {
unsigned idx = en.index();
auto map = maps[idx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
Value view = en.value();
SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
for (auto en2 : llvm::enumerate(map.getResults())) {
if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
<< "\n");
LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
return ViewDimension{view, static_cast<unsigned>(en2.index())};
}
}
}
llvm_unreachable("Expect to be able to extract a view defining loop range");
}
static LinalgOp fuse(OpBuilder &b, LinalgOp producer, unsigned producerIdx,
LinalgOp consumer, unsigned consumerIdx,
OperationFolder *folder = nullptr) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto subView = dyn_cast_or_null<SubViewOp>(
consumer.getBuffer(consumerIdx).getDefiningOp());
auto slice = dyn_cast_or_null<SliceOp>(
consumer.getBuffer(consumerIdx).getDefiningOp());
assert(subView || slice);
(void)subView;
(void)slice;
// loopToOperandRangesMaps are permutations-only by construction:
// we can always identify a data dimension with a (at least one) loop
// dimension.
AffineMap producerMap =
producer.indexing_maps()[producerIdx].cast<AffineMapAttr>().getValue();
LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
<< ", producer map: " << producerMap << "\n");
unsigned nPar = producer.getNumParallelLoops();
unsigned nRed = producer.getNumReductionLoops();
unsigned nWin = producer.getNumWindowLoops();
SmallVector<Range, 8> loopRanges(nPar + nRed + nWin);
// Iterate over dimensions identified by the producer map for `producerIdx`.
// This defines a subset of the loop ranges that we need to complete later.
auto loc = consumer.getLoc();
for (auto en : llvm::enumerate(producerMap.getResults())) {
unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
loopRanges[posInProducerLoop] =
subView.getOrCreateRanges(b, loc)[en.index()];
}
// Iterate over all dimensions. For the dimensions not identified by the
// producer map for `producerIdx`, we need to explicitly compute the view that
// defines the loop ranges using the `producer`.
for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
if (loopRanges[i].offset)
LLVM_DEBUG(llvm::dbgs()
<< "existing LoopRange: " << loopRanges[i] << "\n");
else {
auto viewDim = getViewDefiningLoopRange(producer, i);
loopRanges[i] = Range{folded_std_constant_index(folder, 0),
std_dim(viewDim.view, viewDim.dimension),
folded_std_constant_index(folder, 1)};
LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
}
}
return cloneWithLoopRanges(b, loc, producer, loopRanges);
}
// Encode structural fusion safety preconditions.
// Some of these will be lifted in the future with better analysis.
static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
LinalgOp consumer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (producer.getNumOutputs() != 1) {
LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
return false;
}
// Only fuse when the producer block dominates.
DominanceInfo dom(producer.getOperation());
if (!dom.dominates(producer.getOperation()->getBlock(),
consumer.getOperation()->getBlock())) {
LLVM_DEBUG(
dbgs()
<< "\nNot structurally fusable (producer block does not dominate)");
return false;
}
return true;
}
bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
LinalgOp consumer,
Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
// Make some simple structural checks that alleviate the need for more
// complex analyses.
if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
<< *producer.getOperation());
return false;
}
// Check for any interleaved write to consumedView.
if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
<< *producer.getOperation());
return false;
}
return true;
}
bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
LinalgOp consumer, Value consumedView,
LinalgOp producer) {
assert(producer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
assert(consumer.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
return false;
// Check for any fusion-preventing dependence to any view read/written that
// would violate dependences.
if (!graph.findCoveringDependences(producer, consumer).empty()) {
LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
<< *producer.getOperation());
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
// TODO: add a level of indirection to linalg.generic.
if (convOp.padding())
return false;
}
return true;
}
static bool isSameSubView(Value a, Value b) {
if (a == b)
return true;
auto sva = a.getDefiningOp<SubViewOp>();
auto svb = b.getDefiningOp<SubViewOp>();
if (!sva || !svb)
return false;
if (!isSameSubView(sva.getViewSource(), svb.getViewSource()))
return false;
if (sva.getType() != svb.getType())
return false;
if (sva.getNumOperands() != svb.getNumOperands())
return false;
if (sva.static_offsets() != svb.static_offsets())
return false;
if (sva.static_sizes() != svb.static_sizes())
return false;
if (sva.static_strides() != svb.static_strides())
return false;
/// Skip the "viewSource" operand.
for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx)
if (sva.getOperand(idx) != svb.getOperand(idx))
return false;
return true;
}
static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
findFusableProducer(LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &dependenceGraph) {
// Only consider RAW and WAW atm.
for (auto depType : {
LinalgDependenceGraph::DependenceType::RAW,
LinalgDependenceGraph::DependenceType::WAW,
}) {
for (auto dependence :
dependenceGraph.getDependencesInto(consumer, depType)) {
auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
// Check that the dependence is indeed on the input `consumerIdx` view.
auto consumedView = dependence.indexingView;
if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView))
continue;
// Consumer consumes this view, `isStructurallyFusableProducer` also
// checks whether it is a strict subview of the producer view.
auto producedView = dependence.dependentOpView.view;
auto producerIdx =
producer.getIndexOfOutputBuffer(producedView).getValue();
// `consumerIdx` and `producerIdx` exist by construction.
LLVM_DEBUG(dbgs() << "\n"
<< LinalgDependenceGraph::getDependenceTypeStr(depType)
<< "producer: " << *producer.getOperation() << " view: "
<< producedView << " output index: " << producerIdx);
(void)producerIdx;
// Simple fusability checks.
if (!isFusableInto(dependenceGraph, consumer, consumedView, producer))
continue;
return dependence;
}
}
return {};
}
Optional<FusionInfo> mlir::linalg::fuseProducerOf(
OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
const LinalgDependenceGraph &graph, OperationFolder *folder) {
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
findFusableProducer(consumer, consumerIdx, graph);
if (!fusableDependence)
return {};
LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
Value producerView = fusableDependence->dependentOpView.view;
Value consumerView = fusableDependence->indexingView;
// Must be a subview or a slice to guarantee there are loops we can fuse
// into.
auto subView = consumerView.getDefiningOp<SubViewOp>();
auto slice = consumerView.getDefiningOp<SliceOp>();
if (!subView && !slice) {
LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
return {};
}
// Fuse `producer` just before `consumer`.
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(consumer.getOperation());
ScopedContext scope(b, consumer.getLoc());
LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
Optional<unsigned> producerIdxOpt =
producerOp.getIndexOfInputAndOutputBuffer(producerView);
assert(producerIdxOpt.hasValue() && "incorrect operand index");
unsigned producerIdx = producerIdxOpt.getValue();
auto fusedProducer =
fuse(b, producerOp, producerIdx, consumer, consumerIdx, folder);
return FusionInfo{producerOp, fusedProducer};
}
/// Returns the positions of the loop in `op` that can be tiled based on the
/// operations that are to be fused with it. For example, in a
///
/// linalg. matmul ins(%a, %b : ...) outs(%c : ...)
///
/// if the producer of %a needs to be fused with this op, only the `i` loop of
/// the matmul can be tiled while fusing. If producer of %a, and %b are to be
/// fused, then no loops can be tiled while fusing.
static DenseSet<unsigned> collectTileAndFuseLoops(
LinalgOp op, ArrayRef<LinalgDependenceGraph::LinalgDependenceGraphElem>
fusableDependences) {
// 1. Only parallel loops can be used for tile + fuse. Find the number of
// common outer parallel loops between the op and its producers being fused.
auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
return linalgOp.iterator_types()
.getValue()
.take_while([](Attribute attr) -> bool {
return attr.cast<StringAttr>().getValue() ==
getParallelIteratorTypeName();
})
.size();
};
size_t numOuterParallelLoops = getNumOuterParallelLoops(op);
for (auto dependence : fusableDependences) {
numOuterParallelLoops =
std::min(numOuterParallelLoops, getNumOuterParallelLoops(cast<LinalgOp>(
dependence.dependentOpView.op)));
}
// Need to compute what tiled loops can be "fused". Given the precondition
// that all indexing map for the producer view is a projected permutation, we
// can assert that the producer iterates over the dimensions of the "fused
// view" only once. To be used a fused loop the producer should use this loop
// to access the fused view. For example, consider
//
// ```
// linalg.add ins(%a, %b) outs(%c)
// linalg.matmul ins(%d, %c) outs(%e)
// ```
//
// if `linalg.add` has the semantics of `c = a + b`, then the following
// tile+fuse code is correct.
//
// ```
// for j ... += TSj
// %sa = subview %a[0, %j][...]
// %sb = subview %b[0, %j][...]
// %sc = subview %c[0, %j][...]
// %sd = subview %d[0, 0][...]
// %se = subview %e[0, %j][...]
// linalg.add ins(%sa, %sb) outs(%sc)
// linalg.matmul ins(%sd, %sc) outs(%se)
// ```
//
// On the other hand tiling along i would be incorrect
//
// ```
// for %i .. += TSi
// %sa = subview %a[%i, 0][...]
// %sb = subview %b[%i, 0][...]
// %sc = subview %c[%i, 0][...]
// %sc2 = subview %c[0, 0][...]
// %sd = subview %d[%i, 0][...]
// %se = subview %e[%i, 0][...]
// linalg.add ins(%sa, %sb) outs(%sc)
// linalg.matmul ins(%sd, %sc2) outs(%se)
// ```
//
// The write to the subview `%sc` in `linalg.add` is performed after the read
// from it using `%sc2` violating the RAW dependence of the original code. To
// find such loops indexing map of the fused view in the consumer op is
// used. For the above example, this indexing map is
//
// affine_map<(d0, d1, d2) -> (d2, d1)>
//
// Since d0 is not in the result expressions of this map, it is not treated as
// tile + fuse loop, (but d1 is).
//
// TODO: The above is probably restrictive and there might be a generalization
// of these that might allow for more fusion opportunities. Explore based on
// needs.
SmallVector<DenseSet<unsigned>, 1> commonTilableLoops;
for (auto dependence : fusableDependences) {
unsigned consumerIdx =
op.getIndexOfInputAndOutputBuffer(dependence.indexingView).getValue();
AffineMap consumerAccess = op.getIndexingMap(consumerIdx);
// Previously asserted that the consumerAccess map is a projected
// permutation, so all results are known to be AffineDimExprs. To remove
// this restriction walk the expression to find which dimensions of the
// consumer loop appear in the `consumerAccess`.
DenseSet<unsigned> positions;
for (auto expr : consumerAccess.getResults())
positions.insert(expr.cast<AffineDimExpr>().getPosition());
commonTilableLoops.emplace_back(std::move(positions));
}
// 2. Of the outer parallel loops, only those loops can be tiled + fused as
// computed above for all the fused dependences can be used to tile and fuse.
DenseSet<unsigned> tilableParallelLoops;
for (auto index : llvm::seq<unsigned>(0, numOuterParallelLoops)) {
if (llvm::all_of(commonTilableLoops,
[&](const DenseSet<unsigned> &tilableLoops) {
return tilableLoops.count(index);
}))
tilableParallelLoops.insert(index);
}
return tilableParallelLoops;
}
/// Find all dependences that are to be fusable.
static Optional<
SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>>
findAllFusableDependences(LinalgOp op,
const LinalgDependenceGraph &dependenceGraph,
const LinalgFusionOptions &fusionOptions) {
SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>
fusableDependences;
for (auto operand : llvm::enumerate(op.getInputsAndOutputBuffers())) {
if (fusionOptions.indicesToFuse &&
!fusionOptions.indicesToFuse->count(operand.index()))
continue;
Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
fusableDependence =
findFusableProducer(op, operand.index(), dependenceGraph);
if (!fusableDependence)
continue;
// Make sure that the indexing map of the view used for fusion in the
// producer is a projected permutation.
LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op);
Value producerView = fusableDependence->dependentOpView.view;
unsigned producerIdx =
producerOp.getIndexOfInputAndOutputBuffer(producerView).getValue();
AffineMap producerMap = producerOp.getIndexingMap(producerIdx);
if (!producerMap.isProjectedPermutation()) {
op.emitError("unhandled non permutation indexing map for fused view in "
"producer for operand at index ")
<< operand.index();
return llvm::None;
}
Value consumerView = fusableDependence->indexingView;
unsigned consumerIdx =
op.getIndexOfInputAndOutputBuffer(consumerView).getValue();
if (!op.getIndexingMap(consumerIdx).isProjectedPermutation()) {
op.emitError(
"unhandled case where indexing map for fused view in the consumer is "
"not a projected permuration while fusing at index ")
<< operand.index();
return llvm::None;
}
fusableDependences.push_back(*fusableDependence);
if (!fusionOptions.indicesToFuse)
break;
}
return fusableDependences;
}
static bool isZero(Value v) {
if (auto cst = v.getDefiningOp<ConstantIndexOp>())
return cst.getValue() == 0;
return false;
}
template <typename LoopType>
static Optional<TiledAndFusedLinalgOps>
tileAndFuseLinalgOpsImpl(PatternRewriter &rewriter, LinalgOp op,
const LinalgDependenceGraph &dependenceGraph,
const LinalgTilingOptions &tilingOptions,
const LinalgFusionOptions &fusionOptions) {
assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
// Some of the tiling options might not be supportable with tile and fuse.
// TODO: Support interchange with tile + fuse.
if (!tilingOptions.interchangeVector.empty()) {
op.emitError("unable to handle tile and fuse with interchange");
return llvm::None;
}
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
ScopedContext scope(rewriter, op.getLoc());
// Find all the producers.
Optional<SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>>
fusableDependencesOpt =
findAllFusableDependences(op, dependenceGraph, fusionOptions);
if (!fusableDependencesOpt)
return llvm::None;
ArrayRef<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependences(
*fusableDependencesOpt);
// Enforce the convention that "tiling by zero" skips tiling a particular
// dimension. This convention is significantly simpler to handle instead of
// adjusting affine maps to account for missing dimensions.
auto nLoops = op.getNumLoops();
SmallVector<Value, 4> tileSizeVector =
tilingOptions.tileSizeComputationFunction(rewriter, op);
if (tileSizeVector.size() < nLoops) {
auto zero = std_constant_index(0);
tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
}
TiledAndFusedLinalgOps ret;
// Find the loops that can be tiled and fused.
DenseSet<unsigned> tileFuseLoops =
collectTileAndFuseLoops(op, fusableDependences);
// If there are no fusable dependences or there are no tile+fusable loops,
// just return.
if (fusableDependences.empty() || tileFuseLoops.empty()) {
return llvm::None;
}
// Get the tile sizes for the first and second tiling steps. For the first
// step the tile size are set to zero for the loops that arent
// fused. Similarly for the second step, the tile sizes are set to zero for
// the loops that are fused. For example, if for the following input
//
// ```
// linalg.add ins(%a, %b) outs(%c)
// linalg.matmul ins(%d, %c) outs(%e)
// ```
//
// if the tile sizes of the `{i, j, k}` loops where given as `{ti, tj, tk}`
// respectively, and since only `j` can be tiled and fused. The tile sizes
// would be `{0, t_j, 0}` for the first tiling that tiles just the fusable
// loops. The second tiling would be use tile sizes of `{t_i, 0, t_k}` to tile
// the tiled matmul generated by the first tiling step.
SmallVector<Value, 4> tileAndFuseSizes, tileSizes;
for (auto tileSize : enumerate(tileSizeVector)) {
auto zero = std_constant_index(0);
if (tileFuseLoops.count(tileSize.index())) {
tileAndFuseSizes.push_back(tileSize.value());
tileSizes.push_back(zero);
} else {
tileSizes.push_back(tileSize.value());
tileAndFuseSizes.push_back(zero);
}
}
// Tile for the loops that can be fused.
LinalgTilingOptions firstTilingOptions = tilingOptions;
firstTilingOptions.setTileSizes(tileAndFuseSizes);
Optional<TiledLinalgOp> firstTiledOp =
tileLinalgOp(rewriter, op, firstTilingOptions);
if (!firstTiledOp)
return llvm::None;
ret.op = firstTiledOp->op;
ret.fusedLoops.assign(firstTiledOp->loops.begin(), firstTiledOp->loops.end());
rewriter.setInsertionPoint(ret.op);
// Fuse the operands.
for (auto producer : enumerate(fusableDependences)) {
LinalgOp producerOp = cast<LinalgOp>(producer.value().dependentOpView.op);
unsigned producerIdx = producerOp
.getIndexOfInputAndOutputBuffer(
producer.value().dependentOpView.view)
.getValue();
unsigned consumerIdx =
op.getIndexOfInputAndOutputBuffer(producer.value().indexingView)
.getValue();
LinalgOp fusedOp =
fuse(rewriter, producerOp, producerIdx, ret.op, consumerIdx);
ret.fusedProducers.push_back(fusedOp);
ret.originalProducers.push_back(producerOp);
}
if (!llvm::all_of(tileSizes, isZero)) {
// Tile the remaining loops of the root operation.
LinalgTilingOptions secondTilingOptions = tilingOptions;
// The distribution is done only for the tile+fused loops.
secondTilingOptions.distribution = llvm::None;
secondTilingOptions.setTileSizes(tileSizes);
Optional<TiledLinalgOp> secondTiledOp =
tileLinalgOp(rewriter, ret.op, secondTilingOptions);
if (!secondTiledOp)
return llvm::None;
ret.unfusedLoops.assign(secondTiledOp->loops.begin(),
secondTiledOp->loops.end());
rewriter.eraseOp(ret.op);
ret.op = secondTiledOp->op;
}
return ret;
}
Optional<TiledAndFusedLinalgOps>
mlir::linalg::tileAndFuseLinalgOps(PatternRewriter &rewriter, LinalgOp op,
const LinalgDependenceGraph &dependenceGraph,
const LinalgTilingOptions &tilingOptions,
const LinalgFusionOptions &fusionOptions) {
switch (tilingOptions.loopType) {
case LinalgTilingLoopType::Loops:
return tileAndFuseLinalgOpsImpl<scf::ForOp>(rewriter, op, dependenceGraph,
tilingOptions, fusionOptions);
case LinalgTilingLoopType::ParallelLoops:
return tileAndFuseLinalgOpsImpl<scf::ParallelOp>(
rewriter, op, dependenceGraph, tilingOptions, fusionOptions);
default:;
}
return llvm::None;
}
static void fuseLinalgOpsGreedily(FuncOp f) {
LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));
OpBuilder b(f);
OperationFolder folder(f.getContext());
DenseSet<Operation *> eraseSet;
// Save original Linalg ops, we only want to make a pass over those.
SmallVector<Operation *, 8> linalgOps;
f.walk([&](LinalgOp op) {
if (op.hasBufferSemantics())
linalgOps.push_back(op);
});
// TODO: LinalgDependenceGraph should be able to update itself.
// The current naive and expensive reconstruction of the graph should be
// removed.
for (auto *op : llvm::reverse(linalgOps)) {
for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers();
id < e; ++id) {
linalg::Aliases aliases;
linalg::LinalgDependenceGraph graph(aliases, linalgOps);
if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
auto *originalOp = info->originalProducer.getOperation();
eraseSet.insert(originalOp);
auto *originalOpInLinalgOpsVector =
std::find(linalgOps.begin(), linalgOps.end(), originalOp);
*originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
}
}
}
// The `fuseProducerOf` function performs structural checks and in particular
// that no covering read or write exist between the consumer and the producer.
// As a consequence, the only fusions that may occur preserve subsequent
// dependences and are guaranteed by construction to produce the whole view.
// We may thus erase the producer once it is fused.
for (auto *e : eraseSet)
e->erase();
LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
}
namespace {
struct LinalgFusionPass : public LinalgFusionBase<LinalgFusionPass> {
void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgFusionPass() {
return std::make_unique<LinalgFusionPass>();
}