DropUnitDims.cpp 19.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//

#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "linalg-drop-unit-dims"

using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;

/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
///   affine_map<(d0, d1) -> (0, d1)>,
///   affine_map<(d0, d1) -> (d0, 0)>,
///   affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
///   args_in = 2,
///   args_out = 1,
///   indexing_maps = #accesses,
///   iterator_types = ["parallel", "parallel"],
///   library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
///   %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
///        tensor<5xf32> into tensor<1x5xf32>
///   %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
///        tensor<5xf32> into tensor<5x1xf32>
///   %2 = linalg.generic #trait %0, %1 {
///        ^bb0(%arg2: f32, %arg3: f32):
///          %3 = addf %arg2, %arg3 : f32
///          linalg.yield %3 : f32
///        } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
///   return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
///   affine_map<(d0, d1) -> (d1)>,
///   affine_map<(d0, d1) -> (d0)>,
///   affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
///   args_in = 2,
///   args_out = 1,
///   indexing_maps = #accesses,
///   iterator_types = ["parallel", "parallel"],
///   library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
///   %0 = linalg.generic #trait %arg0, %arg1 {
///        ^bb0(%arg2: f32, %arg3: f32):
///          %3 = addf %arg2, %arg3 : f32
///          linalg.yield %3 : f32
///        } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
///   return %0 : tensor<5x5xf32>
/// }

/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
                                 ArrayRef<AffineMap> indexingMaps,
                                 MLIRContext *context) {
  if (indexingMaps.empty())
    return nullptr;
  unsigned numIterationDims = indexingMaps.front().getNumDims();
  unsigned numSymbols = indexingMaps.front().getNumSymbols();

  // Compute the replacement for each dim expr.
  SmallVector<AffineExpr, 4> dimReplacements;
  dimReplacements.reserve(numIterationDims);
  unsigned numKeptDims = 0;
  for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
    if (unitDims.count(dim))
      dimReplacements.push_back(getAffineConstantExpr(0, context));
    else
      dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
  }

  // Symbols remain the same.
  SmallVector<AffineExpr, 4> symReplacements;
  symReplacements.reserve(numSymbols);
  for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
    symReplacements.push_back(getAffineSymbolExpr(symbol, context));

  SmallVector<AffineMap, 4> newIndexingMaps;
  newIndexingMaps.reserve(indexingMaps.size());
  for (AffineMap operandMap : indexingMaps) {
    // Expected indexing maps to have no symbols.
    if (operandMap.getNumSymbols())
      return nullptr;
    newIndexingMaps.push_back(simplifyAffineMap(
        operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
                                         numIterationDims - unitDims.size(),
                                         numSymbols)));
  }

  // Check that the new index maps are invertible. If not, something went
  // wrong, so abort.
  if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
    return nullptr;
  return ArrayAttr::get(
      llvm::to_vector<4>(llvm::map_range(
          newIndexingMaps,
          [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); })),
      context);
}

namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
// TODO: Generalize this to indexed-generic as well by modifying the region args
// as well.
struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps();
    if (indexingMaps.empty())
      return failure();

    // Check if any of the iteration dimensions are unit-trip count. They will
    // end up being unit-trip count if they are used to index into a unit-dim
    // tensor/memref.
    AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
    if (!invertedMap)
      return failure();
    SmallVector<int64_t, 4> dims;
    for (ShapedType shapedType : genericOp.getInputOutputShapedTypes())
      dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
    DenseSet<unsigned> unitDims;
    ArrayAttr iteratorTypes = genericOp.iterator_types();
    for (auto expr : enumerate(invertedMap.getResults())) {
      if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
        if (dims[dimExpr.getPosition()] == 1 &&
            iteratorTypes[expr.index()].dyn_cast<StringAttr>().getValue() ==
                getParallelIteratorTypeName())
          unitDims.insert(expr.index());
    }
    if (unitDims.empty())
      return failure();

    // Compute the modified indexing maps.
    MLIRContext *context = rewriter.getContext();
    ArrayAttr newIndexingMapAttr =
        replaceUnitDims(unitDims, indexingMaps, context);
    if (!newIndexingMapAttr)
      return genericOp.emitError("unable to compute modified indexing_maps");

    // Compute the iterator types of the modified op by dropping the one-trip
    // count loops.
    SmallVector<Attribute, 4> newIteratorTypes;
    for (auto attr : llvm::enumerate(iteratorTypes)) {
      if (!unitDims.count(attr.index()))
        newIteratorTypes.push_back(attr.value());
    }

    rewriter.startRootUpdate(genericOp);
    genericOp.indexing_mapsAttr(newIndexingMapAttr);
    genericOp.iterator_typesAttr(ArrayAttr::get(newIteratorTypes, context));
    rewriter.finalizeRootUpdate(genericOp);
    return success();
  }
};

struct UnitExtentReplacementInfo {
  RankedTensorType type;
  AffineMap indexMap;
  ArrayAttr reassociation;
};
} // namespace

/// Utility function for replacing operands/results to a linalg generic
/// operation on tensors with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that didimensionmension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
///   modified tensor type.
static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
                                                    RankedTensorType type,
                                                    MLIRContext *context) {
  ArrayRef<int64_t> shape = type.getShape();
  ArrayRef<AffineExpr> exprs = indexMap.getResults();
  SmallVector<AffineExpr, 2> reassociations;
  SmallVector<Attribute, 4> reassociationMaps;
  SmallVector<AffineExpr, 4> newIndexExprs;
  SmallVector<int64_t, 4> newShape;

  int64_t origRank = type.getRank();
  AffineExpr zeroExpr = getAffineConstantExpr(0, context);
  auto isUnitExtent = [&](int64_t dim) -> bool {
    return shape[dim] == 1 && exprs[dim] == zeroExpr;
  };

  unsigned dim = 0;
  // Fold dimensions that are unit-extent at the beginning of the tensor.
  while (dim < origRank && isUnitExtent(dim))
    reassociations.push_back(getAffineDimExpr(dim++, context));
  while (dim < origRank) {
    reassociations.push_back(getAffineDimExpr(dim, context));
    newIndexExprs.push_back(exprs[dim]);
    newShape.push_back(shape[dim]);
    // Fold all following dimensions that are unit-extent.
    while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
      ++dim;
      reassociations.push_back(getAffineDimExpr(dim, context));
    }
    reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
        origRank, /*numSymbols = */ 0, reassociations, context)));
    reassociations.clear();
    ++dim;
  }
  UnitExtentReplacementInfo info = {
      RankedTensorType::get(newShape, type.getElementType()),
      AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
                     newIndexExprs, context),
      ArrayAttr::get(reassociationMaps, context)};
  return info;
}

namespace {

/// Pattern to replace tensors operands/results that are unit extents.
struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    // TODO: support init_tensors and reductions.
    if (!genericOp.hasTensorSemantics() || !genericOp.init_tensors().empty())
      return failure();

    MLIRContext *context = rewriter.getContext();
    Location loc = genericOp.getLoc();

    SmallVector<AffineMap, 4> newIndexingMaps;
    SmallVector<ArrayAttr, 4> reassociationMaps;
    SmallVector<ShapedType, 4> newInputOutputTypes;
    bool doCanonicalization = false;
    for (auto it : llvm::zip(genericOp.getIndexingMaps(),
                             genericOp.getInputOutputShapedTypes())) {
      auto replacementInfo = replaceUnitExtents(
          std::get<0>(it), std::get<1>(it).cast<RankedTensorType>(), context);
      reassociationMaps.push_back(replacementInfo.reassociation);
      newIndexingMaps.push_back(replacementInfo.indexMap);
      newInputOutputTypes.push_back(replacementInfo.type);
      doCanonicalization |= replacementInfo.type != std::get<1>(it);
    }

    // If the indexing maps of the result operation are not invertible (i.e. not
    // legal), abort.
    if (!doCanonicalization ||
        !inversePermutation(concatAffineMaps(newIndexingMaps)))
      return failure();

    // If any operand type change, insert a reshape to convert from the original
    // type to the new type.
    // TODO: get rid of flattenedIdx which assumes operand order and contiguity.
    unsigned flattenedIdx = 0;
    auto insertReshapes = [&](ValueRange values) {
      SmallVector<Value, 4> res;
      res.reserve(values.size());
      for (auto operand : llvm::enumerate(values)) {
        if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
          res.push_back(operand.value());
        else
          res.push_back(rewriter.create<linalg::TensorReshapeOp>(
              loc, newInputOutputTypes[flattenedIdx], operand.value(),
              reassociationMaps[flattenedIdx]));
        ++flattenedIdx;
      }
      return res;
    };

    SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs());
    SmallVector<Value, 4> newOutputBuffers =
        insertReshapes(genericOp.output_buffers());
    SmallVector<Value, 4> newInitTensors =
        insertReshapes(genericOp.init_tensors());

    // If any result type change, insert a reshape to convert from the original
    // type to the new type.
    SmallVector<Type, 4> resultTypes;
    resultTypes.reserve(genericOp.getNumResults());
    for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
      resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]);
    GenericOp replacementOp = rewriter.create<GenericOp>(
        loc, resultTypes, newInputs, newOutputBuffers, newInitTensors,
        newIndexingMaps,
        llvm::to_vector<4>(
            genericOp.iterator_types().getAsValueRange<StringAttr>()));
    rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(),
                                replacementOp.region().begin());

    // If any result tensor has a modified shape, then add reshape to recover
    // the original shape.
    SmallVector<Value, 4> resultReplacements;
    for (auto result : llvm::enumerate(replacementOp.getResults())) {
      unsigned index = result.index() + replacementOp.getNumOperands();
      RankedTensorType origResultType = genericOp.getResult(result.index())
                                            .getType()
                                            .cast<RankedTensorType>();
      if (origResultType != result.value().getType())
        resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
            loc, origResultType, result.value(), reassociationMaps[index]));
      else
        resultReplacements.push_back(result.value());
    }
    rewriter.replaceOp(genericOp, resultReplacements);
    return success();
  }
};
} // namespace

namespace {
/// Pattern to fold pair of reshape ops where the intermediate has unit-dims for
/// example:
///
///  %0 = linalg.tensor_reshape %arg0
///    [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
///    : tensor<2048xf32> into tensor<1x4x1x512xf32>
///  %1 = linalg.tensor_reshape %0
///    [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
///     affine_map<(d0, d1, d2, d3) -> (d3)>]
///    : tensor<1x4x1x512xf32> into tensor<4x512xf32>
///
/// can be replaced with
///
///  %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
///    : tensor<2048xf32> into tensor<4x512xf32>
///
/// Similarly,
///
///  %0 = linalg.tensor_reshape %arg0
///    [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>,
///     affine_map<(d0, d1, d2, d3) -> (d3)>]
///    : tensor<4x512xf32> into tensor<1x4x1x512xf32>
///  %1 = linalg.tensor_reshape %0
///   [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>]
///    : tensor<1x4x1x512xf32> into tensor<2048xf32>
///
/// can be replaced with
///
///  %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>]
///    : tensor<4x512xf32> into tensor<2048xf32>
struct FoldReshapeOpWithUnitExtent : OpRewritePattern<TensorReshapeOp> {
  using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    // Check that the source operand is created from a reshape as well.
    TensorReshapeOp parentReshapeOp =
        reshapeOp.src().getDefiningOp<TensorReshapeOp>();
    if (!parentReshapeOp)
      return failure();

    RankedTensorType srcType = reshapeOp.getSrcType(),
                     dstType = reshapeOp.getResultType(),
                     parentSrcType = parentReshapeOp.getSrcType();
    if (!srcType.hasStaticShape() || !dstType.hasStaticShape() ||
        !parentSrcType.hasStaticShape() ||
        srcType.getRank() < dstType.getRank() ||
        parentSrcType.getRank() == dstType.getRank())
      return failure();

    // Check if the result tensor_reshape after folding the reshapeOp and
    // parentReshapeOp are combined.
    // If the final tensor_reshape is folding, the parentReshapeOp is
    // introducing unit-dims, and the reshapeOp does an actual reshape.
    // If the final tensor_reshape op is expanding, the reshapeOp is
    // introducing unit-dims, and the parentReshapeOp does an actual reshape.
    bool isFoldingPattern = parentSrcType.getRank() > dstType.getRank();
    ArrayRef<int64_t> expandedShape =
        isFoldingPattern ? parentSrcType.getShape() : dstType.getShape();
    ArrayRef<int64_t> foldedShape =
        isFoldingPattern ? dstType.getShape() : parentSrcType.getShape();

    unsigned expandedDim = 0, foldedDim = 0;
    SmallVector<SmallVector<AffineExpr, 4>, 4> reassociationExprs(
        foldedShape.size());
    while (expandedDim < expandedShape.size() &&
           foldedDim < foldedShape.size()) {
      int64_t dstSize = foldedShape[foldedDim];
      int64_t srcSize = expandedShape[expandedDim];
      while (srcSize < dstSize && expandedDim < expandedShape.size()) {
        reassociationExprs[foldedDim].push_back(
            rewriter.getAffineDimExpr(expandedDim++));
        srcSize *= expandedShape[expandedDim];
      }
      if (srcSize == dstSize) {
        reassociationExprs[foldedDim].push_back(
            rewriter.getAffineDimExpr(expandedDim++));
        // If the next dim in foldedShape is not 1, treat subsequent dims in
        // expandedShape which are 1 to be collapsed.
        if (foldedDim == foldedShape.size() - 1 ||
            foldedShape[foldedDim + 1] != 1) {
          while (expandedDim < expandedShape.size() &&
                 expandedShape[expandedDim] == 1) {
            reassociationExprs[foldedDim].push_back(
                rewriter.getAffineDimExpr(expandedDim++));
          }
        }
      } else {
        return failure();
      }
      foldedDim++;
    }
    if (expandedDim != expandedShape.size())
      return failure();

    SmallVector<AffineMap, 4> reassociationMaps =
        llvm::to_vector<4>(llvm::map_range(
            reassociationExprs, [&](ArrayRef<AffineExpr> exprs) -> AffineMap {
              return AffineMap::get(expandedShape.size(), 0, exprs,
                                    rewriter.getContext());
            }));
    rewriter.replaceOpWithNewOp<TensorReshapeOp>(
        reshapeOp, dstType, parentReshapeOp.src(),
        rewriter.getAffineMapArrayAttr(reassociationMaps));
    return success();
  }
};
} // namespace

/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
void mlir::populateLinalgFoldUnitExtentDimsPatterns(
    MLIRContext *context, OwningRewritePatternList &patterns) {
  patterns.insert<FoldUnitDimLoops, ReplaceUnitExtentTensors>(context);
  TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
  patterns.insert<FoldReshapeOpWithUnitExtent>(context);
}

namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
    : public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
  void runOnFunction() override {
    OwningRewritePatternList patterns;
    FuncOp funcOp = getFunction();
    MLIRContext *context = funcOp.getContext();
    if (foldOneTripLoopsOnly)
      patterns.insert<FoldUnitDimLoops>(context);
    else
      populateLinalgFoldUnitExtentDimsPatterns(context, patterns);
    applyPatternsAndFoldGreedily(funcOp.getBody(), patterns);
  }
};
} // namespace

std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgFoldUnitExtentDimsPass() {
  return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}