LinalgOps.cpp 64.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
//===- LinalgOps.cpp - Implementation of the linalg operations ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Linalg operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/LLVM.h"

#include "llvm/ADT/StringSet.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"

using namespace mlir;
using namespace mlir::linalg;

/// Forward declarations.
template <typename NamedStructuredOpType>
static void buildNamedStructuredOpRegionAndAttributes(
    OpBuilder &opBuilder, OperationState &result, TypeRange inputTypes,
    TypeRange outputBufferTypes, TypeRange initTensorTypes,
    TypeRange resultTypes);

static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
                             SmallVectorImpl<Type> &inputTypes,
                             SmallVectorImpl<Type> &outputBufferTypes,
                             SmallVectorImpl<Type> &initTensorTypes);

template <typename NamedStructuredOpType>
static ParseResult
parseNamedStructuredOpRegion(OpAsmParser &parser, Region &region,
                             TypeRange inputTypes, TypeRange outputBufferTypes,
                             TypeRange initTensorTypes, TypeRange resultTypes);
static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
                              SmallVectorImpl<Type> &resultTypes);

template <typename NamedStructuredOpType>
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
                                          OperationState &result);

template <typename NamedStructuredOpType>
static void printCommonStructuredOpParts(OpAsmPrinter &p,
                                         NamedStructuredOpType op);

static void printNamedStructuredOpResults(OpAsmPrinter &p,
                                          TypeRange resultTypes);

template <typename NamedStructuredOpType>
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op);

template <typename NamedStructuredOpType>
static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op);

/// This is a common class used for patterns of the form
/// ```
///    someop(memrefcast) -> someop
/// ```
/// It folds the source of the memref_cast into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
  bool folded = false;
  for (OpOperand &operand : op->getOpOperands()) {
    auto castOp = operand.get().getDefiningOp<MemRefCastOp>();
    if (castOp && canFoldIntoConsumerOp(castOp)) {
      operand.set(castOp.getOperand());
      folded = true;
    }
  }
  return success(folded);
}

///////////////////// Operations defined with Tablegen /////////////////////////
// For such operations that do not correspond to library calls (i.e. defined in
// LinalgOps.td), we define an overloaded `print` function and a
// parse`className` function.

//===----------------------------------------------------------------------===//
// GenericOps
//===----------------------------------------------------------------------===//
void GenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
    StringRef doc, StringRef libraryCall, IntegerAttr symbolSource,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
        builder.getAffineMapArrayAttr(indexingMaps),
        builder.getStrArrayAttr(iteratorTypes),
        doc.empty() ? StringAttr() : builder.getStringAttr(doc),
        libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
        symbolSource);
  if (!bodyBuild)
    return;

  SmallVector<Type, 4> blockArgTypes;
  for (ValueRange container : {inputs, outputBuffers, initTensors})
    for (Value v : container)
      blockArgTypes.push_back(v.getType().cast<ShapedType>().getElementType());

  OpBuilder::InsertionGuard guard(builder);
  auto &region = *result.regions.front();
  Block *bodyBlock = builder.createBlock(&region, region.end(), blockArgTypes);
  bodyBuild(builder, result.location, bodyBlock->getArguments());
}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
    IntegerAttr symbolSource,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
  build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
        indexingMaps, iteratorTypes, doc, libraryCall, symbolSource, bodyBuild);
}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<StringRef> iteratorTypes,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
  build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
        /*doc=*/"",
        /*libraryCall=*/"",
        /*symbolSource=*/IntegerAttr(), bodyBuild);
}

void GenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
        indexingMaps, iteratorTypes,
        /*doc=*/"",
        /*libraryCall=*/"",
        /*symbolSource=*/IntegerAttr(), bodyBuild);
}

void IndexedGenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
    StringRef doc, StringRef libraryCall, IntegerAttr symbolSource,
    function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
        bodyBuild) {
  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
        builder.getAffineMapArrayAttr(indexingMaps),
        builder.getStrArrayAttr(iteratorTypes),
        doc.empty() ? StringAttr() : builder.getStringAttr(doc),
        libraryCall.empty() ? StringAttr() : builder.getStringAttr(libraryCall),
        symbolSource);
  if (!bodyBuild)
    return;

  unsigned nLoops = iteratorTypes.size();
  SmallVector<Type, 4> blockArgTypes(nLoops, builder.getIndexType());
  for (ValueRange container : {inputs, outputBuffers, initTensors})
    for (Value v : container)
      blockArgTypes.push_back(v.getType().cast<ShapedType>().getElementType());

  OpBuilder::InsertionGuard guard(builder);
  auto &region = *result.regions.front();
  Block *bodyBlock = builder.createBlock(&region, region.end(), blockArgTypes);
  bodyBuild(builder, result.location,
            bodyBlock->getArguments().take_front(nLoops),
            bodyBlock->getArguments().drop_front(nLoops));
}

void IndexedGenericOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<StringRef> iteratorTypes, StringRef doc, StringRef libraryCall,
    IntegerAttr symbolSource,
    function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
        bodyBuild) {
  build(builder, result, TypeRange{}, inputs, outputBuffers, ValueRange{},
        indexingMaps, iteratorTypes, doc, libraryCall, symbolSource, bodyBuild);
}

void IndexedGenericOp::build(
    OpBuilder &builder, OperationState &result, ValueRange inputs,
    ValueRange outputBuffers, ArrayRef<AffineMap> indexingMaps,
    ArrayRef<StringRef> iteratorTypes,
    function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
        bodyBuild) {
  build(builder, result, inputs, outputBuffers, indexingMaps, iteratorTypes,
        /*doc=*/"",
        /*libraryCall=*/"",
        /*symbolSource=*/IntegerAttr(), bodyBuild);
}

void IndexedGenericOp::build(
    OpBuilder &builder, OperationState &result, TypeRange resultTensorTypes,
    ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors,
    ArrayRef<AffineMap> indexingMaps, ArrayRef<StringRef> iteratorTypes,
    function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
        bodyBuild) {
  build(builder, result, resultTensorTypes, inputs, outputBuffers, initTensors,
        indexingMaps, iteratorTypes,
        /*doc=*/"",
        /*libraryCall=*/"",
        /*symbolSource=*/IntegerAttr(), bodyBuild);
}

template <typename GenericOpType>
static void printGenericOp(OpAsmPrinter &p, GenericOpType op) {
  p << op.getOperationName() << " ";

  // Print extra attributes.
  auto genericAttrNames = op.linalgTraitAttrNames();

  llvm::StringSet<> genericAttrNamesSet;
  genericAttrNamesSet.insert(genericAttrNames.begin(), genericAttrNames.end());
  SmallVector<NamedAttribute, 8> genericAttrs;
  for (auto attr : op.getAttrs())
    if (genericAttrNamesSet.count(attr.first.strref()) > 0)
      genericAttrs.push_back(attr);
  if (!genericAttrs.empty()) {
    auto genericDictAttr = DictionaryAttr::get(genericAttrs, op.getContext());
    p << genericDictAttr;
  }

  // Printing is shared with named ops, except for the region and attributes
  printCommonStructuredOpParts(p, op);

  genericAttrNames.push_back("operand_segment_sizes");
  genericAttrNamesSet.insert(genericAttrNames.back());

  bool hasExtraAttrs = false;
  for (NamedAttribute n : op.getAttrs()) {
    if ((hasExtraAttrs = !genericAttrNamesSet.contains(n.first.strref())))
      break;
  }
  if (hasExtraAttrs) {
    p << " attrs = ";
    p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/genericAttrNames);
  }

  // Print region.
  if (!op.region().empty())
    p.printRegion(op.region());

  // Print results.
  printNamedStructuredOpResults(p, op.result_tensors().getTypes());
}

static void print(OpAsmPrinter &p, GenericOp op) { printGenericOp(p, op); }

static void print(OpAsmPrinter &p, IndexedGenericOp op) {
  printGenericOp(p, op);
}

static ParseResult parseGenericOp(OpAsmParser &parser, OperationState &result) {
  DictionaryAttr dictAttr;
  // Parse the core linalg traits that must check into a dictAttr.
  // The name is unimportant as we will overwrite result.attributes.
  // The core linalg traits must contain the information necessary to pass the
  // verifier.
  if (parser.parseAttribute(dictAttr, "_", result.attributes))
    return failure();
  result.attributes.assign(dictAttr.getValue().begin(),
                           dictAttr.getValue().end());

  // Parsing is shared with named ops, except for the region.
  SmallVector<Type, 1> inputTypes, outputBufferTypes, initTensorTypes;
  if (parseCommonStructuredOpParts(parser, result, inputTypes,
                                   outputBufferTypes, initTensorTypes))
    return failure();

  // Optional attributes may be added.
  if (succeeded(parser.parseOptionalKeyword("attrs")))
    if (failed(parser.parseEqual()) ||
        failed(parser.parseOptionalAttrDict(result.attributes)))
      return failure();

  SmallVector<OpAsmParser::OperandType, 8> regionOperands;
  std::unique_ptr<Region> region = std::make_unique<Region>();
  SmallVector<Type, 8> operandTypes, regionTypes;
  if (parser.parseRegion(*region, regionOperands, regionTypes))
    return failure();
  result.addRegion(std::move(region));

  // Generic ops may specify that a subset of its outputs are tensors. Such
  // outputs are specified in the result type.
  // TODO: may need to move output parsing before region parsing.
  // Need to wait for declarative assembly resolution to decide.
  SmallVector<Type, 1> outputTensorsTypes;
  if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
    return failure();
  result.addTypes(outputTensorsTypes);

  return success();
}

namespace {
template <typename GenericOpType>
struct BlockArgsVerifier {
  static LogicalResult verify(GenericOpType op, Block &block);
};

template <typename GenericOpType>
LogicalResult BlockArgsVerifier<GenericOpType>::verify(GenericOpType op,
                                                       Block &block) {
  auto nOperands = op.getNumOperands();
  if (block.getNumArguments() != nOperands)
    return op.emitOpError("expected number of block arguments to match number "
                          "of operands");

  // Note: the number and type of yield values are checked in the YieldOp.
  auto nInputViews = op.getNumInputs();
  for (unsigned i = 0; i < nOperands; ++i) {
    auto viewType = op.getShapedType(i);
    if (viewType.getElementType() != block.getArgument(i).getType())
      return op.emitOpError("expected block argument ")
             << (i + 1) << " of the same type as elemental type of "
             << ((i < nInputViews) ? "input " : "output ")
             << "operand: " << viewType;
  }
  return success();
}

template <>
LogicalResult BlockArgsVerifier<IndexedGenericOp>::verify(IndexedGenericOp op,
                                                          Block &block) {
  auto nInputViews = op.getNumInputs();
  auto nLoops = op.getNumLoops();
  auto nOperands = op.getNumOperands();
  if (block.getNumArguments() != nOperands + nLoops)
    return op.emitOpError(
        "expected number of block arguments to match number of operands + "
        "number of loops");

  // Note: the number and type of yield values are checked in the YieldOp.
  for (unsigned i = 0; i < nLoops; ++i)
    if (!block.getArgument(i).getType().isIndex())
      return op.emitOpError("expected block argument ")
             << (i + 1) << " to be an index";

  for (unsigned i = 0; i < nOperands; ++i) {
    unsigned memrefArgIndex = i + nLoops;
    auto viewType = op.getShapedType(i);
    if (viewType.getElementType() !=
        block.getArgument(memrefArgIndex).getType())
      return op.emitOpError("expected block argument ")
             << (memrefArgIndex + 1)
             << " of the same type as elemental type of "
             << ((i < nInputViews) ? "input " : "output ")
             << "operand: " << viewType;
  }
  return success();
}
} // namespace

template <typename GenericOpType>
static LogicalResult verifyGenericOp(GenericOpType op) {
  auto nInputViews = op.getNumInputs();
  auto nLoops = op.getNumLoops();

  if (op.inputs().size() + op.output_buffers().size() +
          op.init_tensors().size() + op.getNumResults() ==
      0)
    return op.emitOpError("expected at least 1 Shaped operand or return");

  auto &region = op.region();
  if (!llvm::hasSingleElement(region))
    return op.emitOpError("expected region with 1 block");
  if (failed(BlockArgsVerifier<GenericOpType>::verify(op, region.front())))
    return failure();

  auto symbolSourceAttr =
      op.template getAttrOfType<IntegerAttr>("symbol_source");
  int64_t expectedNumSymbols = 0;
  if (symbolSourceAttr) {
    unsigned index = symbolSourceAttr.getInt();
    if (index >= op.getNumOperands())
      return op.emitOpError("symbol_source index out of range");
    expectedNumSymbols = op.getShapedType(index).getRank();
  }

  SmallVector<AffineMap, 4> indexingMaps;
  indexingMaps.reserve(op.indexing_maps().size());
  for (auto en : llvm::enumerate(op.indexing_maps())) {
    auto idx = en.index();
    auto m = en.value().template cast<AffineMapAttr>().getValue();
    indexingMaps.push_back(m); // Save reference to map for further checks.
    auto view = (idx < nInputViews) ? op.getInputShapedType(idx)
                                    : op.getOutputShapedType(idx - nInputViews);

    if (m.getNumSymbols() != expectedNumSymbols)
      return op.emitOpError("expected the number of symbols in indexing_map #")
             << idx << " to match rank of operand `symbol_source`";

    if (m.getNumDims() != nLoops)
      return op.emitOpError("expected indexing_map #")
             << idx << " to have " << nLoops
             << " dim(s) to match the number of loops";

    if (m.getNumResults() != view.getRank())
      return op.emitOpError("expected indexing_map #")
             << idx << " results to match view rank: " << view;
  }

  auto concatMap = concatAffineMaps(indexingMaps);
  // TODO: Bound inference for maps with symbols
  if (!concatMap.getNumSymbols() && !inversePermutation(concatMap))
    return op.emitOpError("expected the concatenation of maps in indexing_map "
                          "to be invertible");

  return success();
}

static LogicalResult verify(GenericOp op) { return verifyGenericOp(op); }

static LogicalResult verify(IndexedGenericOp op) { return verifyGenericOp(op); }

//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//

/// Collapse reassociation maps that are used in pair of reshape ops where one
/// is a producer and other is the consumer. Only valid to use this method when
/// both the producer and consumer are collapsing dimensions or both are
/// expanding dimensions.
///
/// For example,
///   mapsProducer = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1)>,
///                   affine_map<(d0, d1, d2, d3, d4) -> (d2)>,
///                   affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
///   mapsConsumer = [affine_map<(d0, d1, d2) -> (d0, d1)>,
///                   affine_map<(d0, d1, d2) -> (d2)>]
///
/// is folded into
///
///   result = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>,
///             affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)>]
static ArrayAttr collapseReassociationMaps(ArrayRef<AffineMap> mapsProducer,
                                           ArrayRef<AffineMap> mapsConsumer,
                                           MLIRContext *context) {
  if (mapsProducer.empty() || mapsConsumer.empty() ||
      mapsProducer[0].getNumDims() < mapsConsumer[0].getNumDims() ||
      mapsProducer.size() != mapsConsumer[0].getNumDims())
    return nullptr;
  unsigned numLhsDims = mapsProducer[0].getNumDims();
  unsigned currDim = 0;
  SmallVector<AffineExpr, 4> reassociations;
  SmallVector<Attribute, 4> reassociationMaps;
  for (AffineMap rhs : mapsConsumer) {
    for (AffineExpr rhsExpr : rhs.getResults()) {
      AffineDimExpr dimExpr = rhsExpr.cast<AffineDimExpr>();
      for (int i = 0, e = mapsProducer[dimExpr.getPosition()].getNumResults();
           i < e; ++i) {
        reassociations.push_back(getAffineDimExpr(currDim++, context));
      }
    }
    reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
        numLhsDims, /*numSymbols =*/0, reassociations, context)));
    reassociations.clear();
  }
  return ArrayAttr::get(reassociationMaps, context);
}

namespace {
/// Pattern to collapse producer/consumer reshape ops that are both collapsing
/// dimensions or are both expanding dimensions.
template <typename ReshapeOpTy>
struct CollapseReshapeOps : public OpRewritePattern<ReshapeOpTy> {
  using OpRewritePattern<ReshapeOpTy>::OpRewritePattern;
  LogicalResult matchAndRewrite(ReshapeOpTy reshapeOp,
                                PatternRewriter &rewriter) const override {
    auto srcReshapeOp = reshapeOp.src().template getDefiningOp<ReshapeOpTy>();
    if (!srcReshapeOp)
      return failure();

    auto areReshapeOpsFoldable = [](ShapedType largerType,
                                    ShapedType intermediateType,
                                    ShapedType smallerType) -> bool {
      return largerType.getRank() > intermediateType.getRank() &&
             intermediateType.getRank() > smallerType.getRank() &&
             smallerType.getRank() > 0;
    };
    // Check if producer and consumer are both expanding dims.
    if (areReshapeOpsFoldable(reshapeOp.getResultType(), reshapeOp.getSrcType(),
                              srcReshapeOp.getSrcType())) {
      rewriter.replaceOpWithNewOp<ReshapeOpTy>(
          reshapeOp, reshapeOp.getResultType(), srcReshapeOp.src(),
          collapseReassociationMaps(reshapeOp.getReassociationMaps(),
                                    srcReshapeOp.getReassociationMaps(),
                                    rewriter.getContext()));
      return success();
    }
    // Check if producer and consumer are both collapsing dims.
    else if (areReshapeOpsFoldable(srcReshapeOp.getSrcType(),
                                   reshapeOp.getSrcType(),
                                   reshapeOp.getResultType())) {
      rewriter.replaceOpWithNewOp<ReshapeOpTy>(
          reshapeOp, reshapeOp.getResultType(), srcReshapeOp.src(),
          collapseReassociationMaps(srcReshapeOp.getReassociationMaps(),
                                    reshapeOp.getReassociationMaps(),
                                    rewriter.getContext()));
      return success();
    }
    return failure();
  }
};
} // namespace

template <typename ReshapeOpTy>
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
                                  ArrayRef<Attribute> operands) {
  // Fold producer-consumer reshape ops that where the operand type of the
  // producer is same as the return type of the consumer. This can only be
  // verified if the shapes in question are static.
  ReshapeOpTy reshapeSrcOp =
      reshapeOp.src().template getDefiningOp<ReshapeOpTy>();
  if (reshapeSrcOp && reshapeSrcOp.getSrcType().hasStaticShape() &&
      reshapeOp.getResultType().hasStaticShape() &&
      reshapeSrcOp.getSrcType() == reshapeOp.getResultType())
    return reshapeSrcOp.src();
  // Reshape of a constant can be replaced with a new constant.
  if (auto elements = operands.front().dyn_cast_or_null<DenseElementsAttr>()) {
    return elements.reshape(
        reshapeOp.getResult().getType().template cast<ShapedType>());
  }
  return nullptr;
}

/// Return true if the reassociation specification is valid, false otherwise.
/// When false, the `invalidIndex` integer pointer is optionally filled with the
/// index of the offending reassociation map.
static bool isReassociationValid(ArrayRef<AffineMap> reassociation,
                                 int *invalidIndex = nullptr) {
  if (reassociation.empty())
    return true;
  unsigned nDims = reassociation[0].getNumDims();
  unsigned nextExpectedDim = 0;
  for (auto it : llvm::enumerate(reassociation)) {
    auto m = it.value();
    if (m.getNumDims() != nDims || m.getNumSymbols() != 0) {
      if (invalidIndex)
        *invalidIndex = it.index();
      return false;
    }
    for (auto e : m.getResults()) {
      auto d = e.dyn_cast<AffineDimExpr>();
      if (!d || d.getPosition() != nextExpectedDim++) {
        if (invalidIndex)
          *invalidIndex = it.index();
        return false;
      }
    }
  }
  if (nextExpectedDim != nDims) {
    if (invalidIndex)
      *invalidIndex = reassociation.size() - 1;
    return false;
  }
  return true;
}

/// Detect whether memref dims [dim, dim + extent) can be reshaped without
/// copies.
static bool isReshapableDimBand(unsigned dim, unsigned extent,
                                ArrayRef<int64_t> sizes,
                                ArrayRef<AffineExpr> strides) {
  assert(sizes.size() == strides.size() && "mismatched ranks");
  // off by 1 indexing to avoid out of bounds
  //                       V
  for (auto idx = dim, e = dim + extent; idx + 1 < e; ++idx) {
    // Only bands of static shapes are reshapable. This is due to the fact that
    // there is no relation between dynamic sizes and dynamic strides: we do not
    // have enough information to know whether a "-1" size corresponds to the
    // proper symbol in the AffineExpr of a stride.
    if (ShapedType::isDynamic(sizes[dim + 1]))
      return false;
    // TODO: Refine this by passing the proper nDims and nSymbols so we can
    // simplify on the fly and catch more reshapable cases.
    if (strides[idx] != strides[idx + 1] * sizes[idx + 1])
      return false;
  }
  return true;
}

/// Compute the MemRefType obtained by applying the `reassociation` (which is
/// expected to be valid) to `type`.
/// If `type` is Contiguous MemRefType, this always produce a contiguous
/// MemRefType.
static MemRefType
computeReshapeCollapsedType(MemRefType type,
                            ArrayRef<AffineMap> reassociation) {
  auto sizes = type.getShape();
  AffineExpr offset;
  SmallVector<AffineExpr, 4> strides;
  auto status = getStridesAndOffset(type, strides, offset);
  (void)status;
  assert(succeeded(status) && "expected strided memref");

  SmallVector<int64_t, 4> newSizes;
  newSizes.reserve(reassociation.size());
  SmallVector<AffineExpr, 4> newStrides;
  newStrides.reserve(reassociation.size());

  // Use the fact that reassociation is valid to simplify the logic: only use
  // each map's rank.
  assert(isReassociationValid(reassociation) && "invalid reassociation");
  unsigned currentDim = 0;
  for (AffineMap m : reassociation) {
    unsigned dim = m.getNumResults();
    int64_t size = 1;
    AffineExpr stride = strides[currentDim + dim - 1];
    if (!isReshapableDimBand(currentDim, dim, sizes, strides)) {
      size = ShapedType::kDynamicSize;
      stride = AffineExpr();
    } else {
      for (unsigned d = 0; d < dim; ++d)
        size *= sizes[currentDim + d];
    }
    newSizes.push_back(size);
    newStrides.push_back(stride);
    currentDim += dim;
  }

  // Early-exit: if `type` is contiguous, the result must be contiguous.
  if (canonicalizeStridedLayout(type).getAffineMaps().empty())
    return MemRefType::Builder(type).setShape(newSizes).setAffineMaps({});

  // Convert back to int64_t because we don't have enough information to create
  // new strided layouts from AffineExpr only. This corresponds to a case where
  // copies may be necessary.
  int64_t intOffset = ShapedType::kDynamicStrideOrOffset;
  if (auto o = offset.dyn_cast<AffineConstantExpr>())
    intOffset = o.getValue();
  SmallVector<int64_t, 4> intStrides;
  intStrides.reserve(strides.size());
  for (auto stride : newStrides) {
    if (auto cst = stride.dyn_cast_or_null<AffineConstantExpr>())
      intStrides.push_back(cst.getValue());
    else
      intStrides.push_back(ShapedType::kDynamicStrideOrOffset);
  }
  auto layout =
      makeStridedLinearLayoutMap(intStrides, intOffset, type.getContext());
  return canonicalizeStridedLayout(
      MemRefType::Builder(type).setShape(newSizes).setAffineMaps({layout}));
}

/// Helper functions assert Attribute of the proper type in attr and returns the
/// corresponding vector.
/// TODO: this should be evolved into a generic
/// `getRangeOfType<AffineMap>(ArrayAttr attrs)` that does not copy.
static SmallVector<AffineMap, 4> getAffineMaps(ArrayAttr attrs) {
  return llvm::to_vector<8>(llvm::map_range(
      attrs, [](Attribute a) { return a.cast<AffineMapAttr>().getValue(); }));
}

template <typename AffineExprTy>
unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) {
  unsigned pos = 0;
  for (const auto &exprs : exprArrays) {
    for (auto expr : exprs) {
      expr.walk([&pos](AffineExpr e) {
        if (auto d = e.dyn_cast<AffineExprTy>())
          pos = std::max(pos, d.getPosition());
      });
    }
  }
  return pos;
}

static SmallVector<AffineMap, 4>
getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation) {
  unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation);
  assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 &&
         "Expected symbol-less expressions");
  SmallVector<AffineMap, 4> maps;
  maps.reserve(reassociation.size());
  for (const auto &exprs : reassociation) {
    assert(!exprs.empty());
    maps.push_back(AffineMap::get(maxDim + 1, 0, exprs, exprs[0].getContext()));
  }
  return maps;
}

static SmallVector<SmallVector<AffineExpr, 2>, 2>
convertReassociationIndicesToMaps(
    OpBuilder &b, ArrayRef<ReassociationIndices> reassociationIndices) {
  SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps;
  for (const auto &indicies : reassociationIndices) {
    SmallVector<AffineExpr, 2> reassociationMap;
    reassociationMap.reserve(indicies.size());
    for (int64_t index : indicies)
      reassociationMap.push_back(b.getAffineDimExpr(index));
    reassociationMaps.push_back(std::move(reassociationMap));
  }
  return reassociationMaps;
}

void mlir::linalg::ReshapeOp::build(OpBuilder &b, OperationState &result,
                                    Value src,
                                    ArrayRef<ReassociationExprs> reassociation,
                                    ArrayRef<NamedAttribute> attrs) {
  auto maps = getSymbolLessAffineMaps(reassociation);
  auto memRefType = src.getType().cast<MemRefType>();
  auto resultType = computeReshapeCollapsedType(memRefType, maps);
  build(b, result, resultType, src, attrs);
  result.addAttribute(ReshapeOp::getReassociationAttrName(),
                      b.getAffineMapArrayAttr(maps));
}

void mlir::linalg::ReshapeOp::build(OpBuilder &b, OperationState &result,
                                    Type resultType, Value src,
                                    ArrayRef<ReassociationExprs> reassociation,
                                    ArrayRef<NamedAttribute> attrs) {
  auto maps = getSymbolLessAffineMaps(reassociation);
  build(b, result, resultType, src, attrs);
  result.addAttribute(ReshapeOp::getReassociationAttrName(),
                      b.getAffineMapArrayAttr(maps));
}

Value mlir::linalg::ReshapeOp::getViewSource() { return src(); }

// Common verifier for reshape-like types. Fills `expandedType` and
// `collapsedType` with the proper `src` or `result` type.
template <typename Op, typename T>
static LogicalResult verifyReshapeLikeTypes(Op op, T &expandedType,
                                            T &collapsedType) {
  expandedType = op.getSrcType();
  collapsedType = op.getResultType();
  unsigned expandedRank = expandedType.getRank();
  unsigned collapsedRank = collapsedType.getRank();
  bool isCollapse = expandedRank > collapsedRank;
  if (!isCollapse) {
    std::swap(expandedRank, collapsedRank);
    std::swap(expandedType, collapsedType);
  }
  if (expandedRank == 0)
    return op.emitOpError("expected non-zero memref ranks");
  if (expandedRank == collapsedRank)
    return op.emitOpError("expected to collapse or expand dims");

  if (collapsedRank == 0) {
    // If collapsed rank is 0, then expanded type must be static shaped and of
    // sizes 1.
    if (llvm::any_of(expandedType.getShape(),
                     [](int64_t dim) -> bool { return dim != 1; }))
      return op.emitOpError(
          "invalid to reshape tensor/memref with non-unit extent dimensions to "
          "zero-rank tensor/memref");
    return success();
  }
  if (collapsedRank != op.reassociation().size())
    return op.emitOpError("expected rank of the collapsed type(")
           << collapsedRank << ") to be the number of reassociation maps("
           << op.reassociation().size() << ")";
  auto maps = getAffineMaps(op.reassociation());
  for (auto it : llvm::enumerate(maps))
    if (it.value().getNumDims() != expandedRank)
      return op.emitOpError("expected reassociation map #")
             << it.index() << " of same rank as expanded memref("
             << expandedRank << "), but got " << it.value().getNumDims();
  int invalidIdx = 0;
  if (!isReassociationValid(maps, &invalidIdx))
    return op.emitOpError("expected reassociation map #")
           << invalidIdx << " to be valid and contiguous";
  return success();
}

static LogicalResult verify(ReshapeOp op) {
  MemRefType expandedType, collapsedType;
  if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
    return failure();
  auto maps = getAffineMaps(op.reassociation());
  MemRefType expectedType = computeReshapeCollapsedType(expandedType, maps);
  if (collapsedType != expectedType)
    return op.emitOpError("expected collapsed type to be ")
           << expectedType << ", but got " << collapsedType;
  return success();
}

void ReshapeOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                            MLIRContext *context) {
  results.insert<CollapseReshapeOps<ReshapeOp>>(context);
}

//===----------------------------------------------------------------------===//
// TensorReshapeOp
//===----------------------------------------------------------------------===//

/// Compute the RankedTensorType obtained by applying `reassociation` to `type`.
static RankedTensorType
computeTensorReshapeCollapsedType(RankedTensorType type,
                                  ArrayRef<AffineMap> reassociation) {
  auto shape = type.getShape();
  SmallVector<int64_t, 4> newShape;
  newShape.reserve(reassociation.size());

  // Use the fact that reassociation is valid to simplify the logic: only use
  // each map's rank.
  assert(isReassociationValid(reassociation) && "invalid reassociation");
  unsigned currentDim = 0;
  for (AffineMap m : reassociation) {
    unsigned dim = m.getNumResults();
    auto band = shape.slice(currentDim, dim);
    int64_t size = 1;
    if (llvm::is_contained(band, ShapedType::kDynamicSize))
      size = ShapedType::kDynamicSize;
    else
      for (unsigned d = 0; d < dim; ++d)
        size *= shape[currentDim + d];
    newShape.push_back(size);
    currentDim += dim;
  }

  return RankedTensorType::get(newShape, type.getElementType());
}

void mlir::linalg::TensorReshapeOp::build(
    OpBuilder &b, OperationState &result, Value src,
    ArrayRef<ReassociationExprs> reassociation,
    ArrayRef<NamedAttribute> attrs) {
  auto maps = getSymbolLessAffineMaps(reassociation);
  auto resultType = computeTensorReshapeCollapsedType(
      src.getType().cast<RankedTensorType>(), maps);
  build(b, result, resultType, src, attrs);
  result.addAttribute(TensorReshapeOp::getReassociationAttrName(),
                      b.getAffineMapArrayAttr(maps));
}

void mlir::linalg::TensorReshapeOp::build(
    OpBuilder &b, OperationState &result, Type resultType, Value src,
    ArrayRef<ReassociationExprs> reassociation,
    ArrayRef<NamedAttribute> attrs) {
  auto maps = getSymbolLessAffineMaps(reassociation);
  build(b, result, resultType, src, attrs);
  result.addAttribute(TensorReshapeOp::getReassociationAttrName(),
                      b.getAffineMapArrayAttr(maps));
}

static LogicalResult verify(TensorReshapeOp op) {
  RankedTensorType expandedType, collapsedType;
  if (failed(verifyReshapeLikeTypes(op, expandedType, collapsedType)))
    return failure();
  auto maps = getAffineMaps(op.reassociation());
  // TODO: expanding a ? with a non-constant is under-specified. Error
  // out.
  RankedTensorType expectedType =
      computeTensorReshapeCollapsedType(expandedType, maps);
  if (collapsedType != expectedType)
    return op.emitOpError("expected collapsed type to be ")
           << expectedType << ", but got " << collapsedType;
  return success();
}

namespace {
/// Reshape of a splat constant can be replaced with a constant of the result
/// type.
struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
  using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    DenseElementsAttr attr;
    if (!matchPattern(reshapeOp.src(), m_Constant(&attr)))
      return failure();
    if (!attr || !attr.isSplat())
      return failure();
    DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
        reshapeOp.getResultType(), attr.getRawData(), true);
    rewriter.replaceOpWithNewOp<ConstantOp>(reshapeOp, newAttr);
    return success();
  }
};
} // namespace

void TensorReshapeOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<CollapseReshapeOps<TensorReshapeOp>, FoldReshapeWithConstant>(
      context);
}

//===----------------------------------------------------------------------===//
// SliceOp
//===----------------------------------------------------------------------===//
void mlir::linalg::SliceOp::build(OpBuilder &b, OperationState &result,
                                  Value base, ValueRange indexings) {
  result.addOperands(base);
  result.addOperands(indexings);

  auto memRefType = base.getType().cast<MemRefType>();
  int64_t offset;
  SmallVector<int64_t, 4> strides;
  auto res = getStridesAndOffset(memRefType, strides, offset);
  assert(succeeded(res) && strides.size() == indexings.size());
  (void)res;

  unsigned rank = memRefType.getRank();
  // TODO: propagate static size and stride information when available.
  SmallVector<int64_t, 4> sizes(rank, -1); // -1 encodes dynamic size.
  result.addTypes({MemRefType::Builder(memRefType)
                       .setShape(sizes)
                       .setAffineMaps(makeStridedLinearLayoutMap(
                           strides, offset, b.getContext()))});
}

static void print(OpAsmPrinter &p, SliceOp op) {
  auto indexings = op.indexings();
  p << SliceOp::getOperationName() << " " << op.view() << "[" << indexings
    << "] ";
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.getBaseViewType();
  if (!indexings.empty())
    p << ", " << op.indexings().getTypes();
  p << ", " << op.getType();
}

static ParseResult parseSliceOp(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::OperandType baseInfo;
  SmallVector<OpAsmParser::OperandType, 8> operands;
  SmallVector<Type, 8> types;
  if (parser.parseOperand(baseInfo) ||
      parser.parseOperandList(operands, OpAsmParser::Delimiter::Square) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonTypeList(types))
    return failure();

  if (types.size() < 2)
    return parser.emitError(parser.getCurrentLocation(),
                            "expected at least input and result view types");

  ArrayRef<Type> indexingTypes = ArrayRef<Type>(types).drop_front().drop_back();
  return failure(
      parser.resolveOperand(baseInfo, types.front(), result.operands) ||
      (!operands.empty() &&
       parser.resolveOperands(operands, indexingTypes,
                              operands.front().location, result.operands)) ||
      parser.addTypeToList(types.back(), result.types));
}

static LogicalResult verify(SliceOp op) {
  unsigned rank = op.getBaseViewRank();
  if (rank != llvm::size(op.indexings()))
    return op.emitOpError("expected ")
           << rank << " indexings, got " << llvm::size(op.indexings());
  unsigned index = 0;
  for (auto indexing : op.indexings()) {
    if (indexing.getType().isa<IndexType>())
      --rank;
    ++index;
  }
  if (op.getRank() != rank)
    return op.emitOpError() << "expected rank of the view(" << op.getRank()
                            << ") to be the number of ranges(" << rank << ")";
  return success();
}

Value SliceOp::getViewSource() { return view(); }

//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//

static MemRefType inferTransposeResultType(MemRefType memRefType,
                                           AffineMap permutationMap) {
  auto rank = memRefType.getRank();
  auto originalSizes = memRefType.getShape();
  // Compute permuted sizes.
  SmallVector<int64_t, 4> sizes(rank, 0);
  for (auto en : llvm::enumerate(permutationMap.getResults()))
    sizes[en.index()] =
        originalSizes[en.value().cast<AffineDimExpr>().getPosition()];

  // Compute permuted strides.
  int64_t offset;
  SmallVector<int64_t, 4> strides;
  auto res = getStridesAndOffset(memRefType, strides, offset);
  assert(succeeded(res) && strides.size() == static_cast<unsigned>(rank));
  (void)res;
  auto map =
      makeStridedLinearLayoutMap(strides, offset, memRefType.getContext());
  map = permutationMap ? map.compose(permutationMap) : map;
  return MemRefType::Builder(memRefType).setShape(sizes).setAffineMaps(map);
}

void mlir::linalg::TransposeOp::build(OpBuilder &b, OperationState &result,
                                      Value view, AffineMapAttr permutation,
                                      ArrayRef<NamedAttribute> attrs) {
  auto permutationMap = permutation.getValue();
  assert(permutationMap);

  auto memRefType = view.getType().cast<MemRefType>();
  // Compute result type.
  MemRefType resultType = inferTransposeResultType(memRefType, permutationMap);

  build(b, result, resultType, view, attrs);
  result.addAttribute(TransposeOp::getPermutationAttrName(), permutation);
}

static void print(OpAsmPrinter &p, TransposeOp op) {
  p << op.getOperationName() << " " << op.view() << " " << op.permutation();
  p.printOptionalAttrDict(op.getAttrs(),
                          {TransposeOp::getPermutationAttrName()});
  p << " : " << op.view().getType() << " to " << op.getType();
}

static ParseResult parseTransposeOp(OpAsmParser &parser,
                                    OperationState &result) {
  OpAsmParser::OperandType view;
  AffineMap permutation;
  MemRefType srcType, dstType;
  if (parser.parseOperand(view) || parser.parseAffineMap(permutation) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(srcType) ||
      parser.resolveOperand(view, srcType, result.operands) ||
      parser.parseKeywordType("to", dstType) ||
      parser.addTypeToList(dstType, result.types))
    return failure();

  result.addAttribute(TransposeOp::getPermutationAttrName(),
                      AffineMapAttr::get(permutation));
  return success();
}

static LogicalResult verify(TransposeOp op) {
  if (!op.permutation().isPermutation())
    return op.emitOpError("expected a permutation map");
  if (op.permutation().getNumDims() != op.getShapedType().getRank())
    return op.emitOpError(
        "expected a permutation map of same rank as the view");

  auto srcType = op.view().getType().cast<MemRefType>();
  auto dstType = op.getType().cast<MemRefType>();
  if (dstType != inferTransposeResultType(srcType, op.permutation()))
    return op.emitOpError("output type ")
           << dstType << " does not match transposed input type " << srcType;
  return success();
}

//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter &p, linalg::YieldOp op) {
  p << op.getOperationName();
  if (op.getNumOperands() > 0)
    p << ' ' << op.getOperands();
  p.printOptionalAttrDict(op.getAttrs());
  if (op.getNumOperands() > 0)
    p << " : " << op.getOperandTypes();
}

static ParseResult parseYieldOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 2> opInfo;
  SmallVector<Type, 2> types;
  llvm::SMLoc loc = parser.getCurrentLocation();
  return failure(parser.parseOperandList(opInfo) ||
                 parser.parseOptionalAttrDict(result.attributes) ||
                 (!opInfo.empty() && parser.parseColonTypeList(types)) ||
                 parser.resolveOperands(opInfo, types, loc, result.operands));
}

// Check the operand number and types must match the element types of the
// LinalgOp interface's shaped operands.
static LogicalResult verifyYield(linalg::YieldOp op,
                                 LinalgOp linalgOpInterface) {
  auto nOutputs = linalgOpInterface.getNumOutputs();
  if (op.getNumOperands() != nOutputs)
    return op.emitOpError("expected number of yield values (")
           << nOutputs << ") to match the number of operands of the enclosing "
           << "LinalgOp (" << op.getNumOperands() << ")";

  for (unsigned i = 0; i != nOutputs; ++i) {
    auto elementType =
        linalgOpInterface.getOutputShapedType(i).getElementType();
    if (op.getOperand(i).getType() != elementType)
      return op.emitOpError("type of yield operand ")
             << (i + 1) << " (" << op.getOperand(i).getType()
             << ") doesn't match "
             << "the element type of the enclosing linalg.generic op ("
             << elementType << ")";
  }
  return success();
}

static LogicalResult verify(linalg::YieldOp op) {
  auto *parentOp = op.getParentOp();
  if (parentOp->getNumRegions() != 1 || parentOp->getRegion(0).empty())
    return op.emitOpError("expected single non-empty parent region");

  if (auto linalgOp = dyn_cast<LinalgOp>(parentOp))
    return verifyYield(op, cast<LinalgOp>(parentOp));

  return op.emitOpError("expected parent op with LinalgOp interface");
}

/////// Operations corresponding to library calls defined with Tablegen ////////

static LogicalResult verify(FillOp op) {
  auto viewType = op.getOutputShapedType(0);
  auto fillType = op.value().getType();
  if (viewType.getElementType() != fillType)
    return op.emitOpError("expects fill type to match view elemental type");
  return success();
}

static LogicalResult verify(CopyOp op) {
  auto outputViewType = op.getOutputShapedType(0);
  auto inputViewType = op.getInputShapedType(0);
  if (inputViewType.getElementType() != outputViewType.getElementType())
    return op.emitOpError("expects views of the same type");
  if (inputViewType.getRank() != outputViewType.getRank())
    return op.emitOpError("expects views of the same rank");
  auto rank = op.getNumParallelLoops();
  auto inputPermutationMap = op.inputPermutation();
  if (inputPermutationMap) {
    if (inputPermutationMap->getNumInputs() != rank)
      return op.emitOpError("expects optional input_permutation map of rank ")
             << rank;
    if (!inputPermutationMap->isPermutation())
      return op.emitOpError(
          "expects optional input_permutation map to be a permutation");
  }
  auto outputPermutationMap = op.outputPermutation();
  if (outputPermutationMap) {
    if (outputPermutationMap->getNumInputs() != rank)
      return op.emitOpError("expects optional output_permutation map of rank ")
             << rank;
    if (!outputPermutationMap->isPermutation())
      return op.emitOpError(
          "expects optional output_permutation map to be a permutation");
  }
  if (rank == 0 && inputPermutationMap)
    return op.emitOpError("expected no input permutation when rank == 0");
  if (rank == 0 && outputPermutationMap)
    return op.emitOpError("expected no output permutation when rank == 0");
  return success();
}

template <typename LinalgPoolingOp>
static LogicalResult verifyStrideOrDilation(LinalgPoolingOp op,
                                            ArrayRef<Attribute> attrs,
                                            bool isStride) {
  auto strideOrDilation = isStride ? "stride" : "dilation";
  if (attrs.size() != op.getNumWindowLoops())
    return op.emitOpError("expects num ")
           << strideOrDilation
           << "s equal to number of window dimensions: " << attrs.size()
           << " vs " << op.getNumWindowLoops();
  return success();
}

static LogicalResult verify(ConvOp op) {
  auto oType = op.output().getType().cast<MemRefType>();
  auto fType = op.filter().getType().cast<MemRefType>();
  auto iType = op.input().getType().cast<MemRefType>();
  if (oType.getElementType() != iType.getElementType() ||
      oType.getElementType() != fType.getElementType())
    return op.emitOpError("expects memref elemental types to match");
  if (oType.getRank() != iType.getRank() || oType.getRank() != fType.getRank())
    return op.emitOpError("expects memref ranks to match");
  if (oType.getRank() <= 2)
    return op.emitOpError("expects memref ranks to be greater than 2");
  if (auto strides = op.strides()) {
    if (failed(
            verifyStrideOrDilation(op, strides->getValue(), /*isStride=*/true)))
      return failure();
  }
  if (auto dilations = op.dilations()) {
    if (failed(verifyStrideOrDilation(op, dilations->getValue(),
                                      /*isStride=*/false)))
      return failure();
  }
  return success();
}

template <typename PoolingOp>
static LogicalResult verifySingleInputPoolingOp(PoolingOp op) {
  auto inputType = op.input().getType().template cast<MemRefType>();
  auto outputType = op.output().getType().template cast<MemRefType>();
  if (outputType.getElementType() != inputType.getElementType())
    return op.emitOpError("expects memref elemental types to match");

  auto windowDimsType = op.windowDims().getType().template cast<MemRefType>();
  if (outputType.getRank() != inputType.getRank() ||
      outputType.getRank() != windowDimsType.getRank())
    return op.emitOpError("expects memref ranks to match");

  if (auto strides = op.strides()) {
    if (failed(
            verifyStrideOrDilation(op, strides->getValue(), /*isStride=*/true)))
      return failure();
  }
  if (auto dilations = op.dilations()) {
    if (failed(verifyStrideOrDilation(op, dilations->getValue(),
                                      /*isStride=*/false)))
      return failure();
  }
  return success();
}

static LogicalResult verify(PoolingMaxOp op) {
  return verifySingleInputPoolingOp(op);
}
static LogicalResult verify(PoolingMinOp op) {
  return verifySingleInputPoolingOp(op);
}
static LogicalResult verify(PoolingSumOp op) {
  return verifySingleInputPoolingOp(op);
}

#include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterfaces.cpp.inc"

#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.cpp.inc"

#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgOps.cpp.inc"

#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"

/// Return the dims that are `iteratorTypeName` loops in the LinalgOp `op`.
/// Assumes `op` is a LinalgOp.
void mlir::linalg::getDimsOfType(Operation *op, StringRef iteratorTypeName,
                                 SmallVectorImpl<AffineExpr> &res) {
  if (!cast<LinalgOp>(op).iterator_types())
    return;

  unsigned dim = 0;
  MLIRContext *ctx = op->getContext();
  for (auto tn :
       cast<LinalgOp>(op).iterator_types().getAsValueRange<StringAttr>()) {
    if (tn == iteratorTypeName)
      res.push_back(getAffineDimExpr(dim, ctx));
    ++dim;
  }
}

AffineMap mlir::linalg::extractOrIdentityMap(Optional<AffineMap> maybeMap,
                                             unsigned rank,
                                             MLIRContext *context) {
  if (maybeMap)
    return maybeMap.getValue();
  if (rank == 0)
    return AffineMap::get(context);
  return AffineMap::getMultiDimIdentityMap(rank, context);
}

SmallVector<AffineExpr, 4>
mlir::linalg::makeAffineDimExprs(unsigned num, unsigned &startIdx,
                                 MLIRContext *context) {
  SmallVector<AffineExpr, 4> res;
  res.reserve(num);
  for (unsigned i = 0; i < num; ++i)
    res.push_back(getAffineDimExpr(startIdx++, context));
  return res;
}

template <typename PoolingOp>
SmallVector<AffineExpr, 4>
mlir::linalg::weightedPoolingInputIndex(PoolingOp op,
                                        ArrayRef<AffineExpr> outputDims,
                                        ArrayRef<AffineExpr> windowDims) {
  assert(outputDims.size() == windowDims.size());
  SmallVector<AffineExpr, 4> res;
  res.reserve(outputDims.size());
  for (unsigned i = 0, e = outputDims.size(); i < e; ++i) {
    // TODO: add a level of indirection to linalg.generic.
    auto expr = op.getStride(i) * outputDims[i] +
                op.getDilation(i) * windowDims[i] - op.getLowPad(i);
    res.push_back(expr);
  }
  return res;
}

#define INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(OP_TYPE)                      \
  template SmallVector<AffineExpr, 4>                                          \
  mlir::linalg::weightedPoolingInputIndex<OP_TYPE>(                            \
      OP_TYPE op, ArrayRef<AffineExpr> outputDims,                             \
      ArrayRef<AffineExpr> windowDims);

INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(ConvOp)
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingMaxOp)
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingMinOp)
INSTANTIATE_WEIGHTED_POOLING_INPUT_INDEX(PoolingSumOp)

SmallVector<AffineExpr, 4> mlir::linalg::concat(ArrayRef<AffineExpr> a,
                                                ArrayRef<AffineExpr> b) {
  auto rangeA = llvm::make_range(a.begin(), a.end());
  auto rangeB = llvm::make_range(b.begin(), b.end());
  auto concatRanges = llvm::concat<const AffineExpr>(rangeA, rangeB);
  return llvm::to_vector<4>(concatRanges);
}

static void appendMangledType(llvm::raw_string_ostream &ss, Type t) {
  if (auto memref = t.dyn_cast<MemRefType>()) {
    ss << "view";
    for (auto size : memref.getShape())
      if (size < 0)
        ss << "sx";
      else
        ss << size << "x";
    appendMangledType(ss, memref.getElementType());
  } else if (auto vec = t.dyn_cast<VectorType>()) {
    ss << "vector";
    llvm::interleave(
        vec.getShape(), [&](int64_t i) { ss << i; }, [&]() { ss << "x"; });
    appendMangledType(ss, vec.getElementType());
  } else if (t.isSignlessIntOrIndexOrFloat()) {
    ss << t;
  } else {
    llvm_unreachable("Invalid type for linalg library name mangling");
  }
}

std::string mlir::linalg::generateLibraryCallName(Operation *op) {
  assert(isa<LinalgOp>(op));
  std::string name(op->getName().getStringRef().str());
  name.reserve(128);
  std::replace(name.begin(), name.end(), '.', '_');
  llvm::raw_string_ostream ss(name);
  ss << "_";
  auto types = op->getOperandTypes();
  llvm::interleave(
      types.begin(), types.end(), [&](Type t) { appendMangledType(ss, t); },
      [&]() { ss << "_"; });
  return ss.str();
}

// TODO: Consider making all this boilerplate easy to autogenerate
// with Tablegen. This seems a desirable property in the context of
// OpInterfaces where a Linalg "named" op **isa** LinalgOp.
OpFoldResult ReshapeOp::fold(ArrayRef<Attribute> operands) {
  if (succeeded(foldMemRefCast(*this)))
    return getResult();
  return foldReshapeOp(*this, operands);
}
OpFoldResult SliceOp::fold(ArrayRef<Attribute>) {
  if (succeeded(foldMemRefCast(*this)))
    return getResult();
  return {};
}
OpFoldResult TensorReshapeOp::fold(ArrayRef<Attribute> operands) {
  return foldReshapeOp(*this, operands);
}
OpFoldResult TransposeOp::fold(ArrayRef<Attribute>) {
  if (succeeded(foldMemRefCast(*this)))
    return getResult();
  return {};
}

//===----------------------------------------------------------------------===//
// Auto-generated Linalg named ops.
//===----------------------------------------------------------------------===//

template <typename NamedStructuredOpType>
static void buildNamedStructuredOpRegionAndAttributesImpl(
    OpBuilder &opBuilder, Region &region, TypeRange inputTypes,
    TypeRange outputBufferTypes, TypeRange initTensorTypes,
    TypeRange resultTypes,
    std::function<void(unsigned, unsigned)> errorHandler) {
  // TODO: atm all operands go through getElementTypeOrSelf,
  // reconsider when we have evidence we need to.
  SmallVector<Type, 8> argTypes;
  for (auto containers : {inputTypes, outputBufferTypes, resultTypes})
    for (auto t : containers)
      argTypes.push_back(getElementTypeOrSelf(t));

  // RAII.
  OpBuilder::InsertionGuard guard(opBuilder);
  Block *body = opBuilder.createBlock(&region, {}, argTypes);
  unsigned actual = body->getNumArguments();
  unsigned expected = NamedStructuredOpType::getNumRegionArgs();
  if (expected != actual)
    return errorHandler(expected, actual);

  opBuilder.setInsertionPointToStart(body);
  mlir::edsc::ScopedContext scope(opBuilder, opBuilder.getUnknownLoc());
  NamedStructuredOpType::regionBuilder(*body);

  // indexing_maps is an auto-generated method.

  // iterator_types is an auto-generated method.
}

template <typename NamedStructuredOpType>
void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
                                               OperationState &result,
                                               TypeRange inputTypes,
                                               TypeRange outputBufferTypes,
                                               TypeRange initTensorTypes,
                                               TypeRange resultTypes) {
  Region &region = *result.addRegion();
  buildNamedStructuredOpRegionAndAttributesImpl<NamedStructuredOpType>(
      opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
      resultTypes, [&](unsigned expected, unsigned actual) {
        llvm::errs() << "region expects " << expected << " args, got "
                     << actual;
        assert(expected != actual && "incorrect number of arguments");
      });
}

template <typename NamedStructuredOpType>
static ParseResult
parseNamedStructuredOpRegion(OpAsmParser &parser, Region &region,
                             TypeRange inputTypes, TypeRange outputBufferTypes,
                             TypeRange initTensorTypes, TypeRange resultTypes) {
  ParseResult res = success();
  OpBuilder opBuilder(parser.getBuilder().getContext());
  buildNamedStructuredOpRegionAndAttributesImpl<NamedStructuredOpType>(
      opBuilder, region, inputTypes, outputBufferTypes, initTensorTypes,
      resultTypes, [&](unsigned expected, unsigned actual) {
        res = parser.emitError(parser.getCurrentLocation(),
                               llvm::formatv("region expects {0} args, got {1}",
                                             expected, actual));
      });
  return res;
}

static ParseResult
parseNamedStructuredOpResults(OpAsmParser &parser,
                              SmallVectorImpl<Type> &resultTypes) {
  if (succeeded(parser.parseOptionalArrow()))
    if (parser.parseTypeList(resultTypes))
      return failure();
  return success();
}

static ParseResult
parseCommonStructuredOpParts(OpAsmParser &parser, OperationState &result,
                             SmallVectorImpl<Type> &inputTypes,
                             SmallVectorImpl<Type> &outputBufferTypes,
                             SmallVectorImpl<Type> &initTensorTypes) {
  llvm::SMLoc inputsOperandsLoc, outputBuffersOperandsLoc,
      initTensorsOperandsLoc;
  SmallVector<OpAsmParser::OperandType, 4> inputsOperands,
      outputBuffersOperands, initTensorsOperands;

  parser.parseOptionalAttrDict(result.attributes);

  if (succeeded(parser.parseOptionalKeyword("ins"))) {
    if (parser.parseLParen())
      return failure();

    inputsOperandsLoc = parser.getCurrentLocation();
    if (parser.parseOperandList(inputsOperands) ||
        parser.parseColonTypeList(inputTypes) || parser.parseRParen())
      return failure();
  }

  if (succeeded(parser.parseOptionalKeyword("outs"))) {
    outputBuffersOperandsLoc = parser.getCurrentLocation();
    if (parser.parseLParen() ||
        parser.parseOperandList(outputBuffersOperands) ||
        parser.parseColonTypeList(outputBufferTypes) || parser.parseRParen())
      return failure();
  }
  if (succeeded(parser.parseOptionalKeyword("init"))) {
    initTensorsOperandsLoc = parser.getCurrentLocation();
    if (parser.parseLParen() || parser.parseOperandList(initTensorsOperands) ||
        parser.parseColonTypeList(initTensorTypes) || parser.parseRParen())
      return failure();
  }

  if (parser.resolveOperands(inputsOperands, inputTypes, inputsOperandsLoc,
                             result.operands) ||
      parser.resolveOperands(outputBuffersOperands, outputBufferTypes,
                             outputBuffersOperandsLoc, result.operands) ||
      parser.resolveOperands(initTensorsOperands, initTensorTypes,
                             initTensorsOperandsLoc, result.operands))
    return failure();

  result.addAttribute("operand_segment_sizes",
                      parser.getBuilder().getI32VectorAttr(
                          {static_cast<int32_t>(inputsOperands.size()),
                           static_cast<int32_t>(outputBuffersOperands.size()),
                           static_cast<int32_t>(initTensorsOperands.size())}));
  return success();
}

template <typename NamedStructuredOpType>
static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
                                          OperationState &result) {
  SmallVector<Type, 1> inputTypes, outputBufferTypes, initTensorTypes;
  if (parseCommonStructuredOpParts(parser, result, inputTypes,
                                   outputBufferTypes, initTensorTypes))
    return failure();

  // TODO: consider merging results parsing into region parsing.
  // Need to wait for declarative assembly resolution to decide.
  SmallVector<Type, 1> outputTensorsTypes;
  if (parseNamedStructuredOpResults(parser, outputTensorsTypes))
    return failure();
  result.addTypes(outputTensorsTypes);

  std::unique_ptr<Region> region = std::make_unique<Region>();
  if (parseNamedStructuredOpRegion<NamedStructuredOpType>(
          parser, *region, inputTypes, outputBufferTypes, initTensorTypes,
          outputTensorsTypes))
    return failure();
  result.addRegion(std::move(region));

  return success();
}

static void printNamedStructuredOpResults(OpAsmPrinter &p,
                                          TypeRange resultTypes) {
  if (resultTypes.empty())
    return;
  p.printOptionalArrowTypeList(resultTypes);
}

template <typename NamedStructuredOpType>
static void printCommonStructuredOpParts(OpAsmPrinter &p,
                                         NamedStructuredOpType op) {
  p << " ins(" << op.inputs() << " : " << op.inputs().getTypes() << ")";
  if (!op.output_buffers().empty())
    p << " outs(" << op.output_buffers() << " : "
      << op.output_buffers().getTypes() << ")";
  if (!op.init_tensors().empty())
    p << " init(" << op.init_tensors() << " : " << op.init_tensors().getTypes()
      << ") ";
}

template <typename NamedStructuredOpType>
static void printNamedStructuredOp(OpAsmPrinter &p, NamedStructuredOpType op) {
  p << op.getOperationName();
  p.printOptionalAttrDict(op.getAttrs(),
                          /*elidedAttrs=*/{"operand_segment_sizes"});

  // Printing is shared with generic ops, except for the region and attributes.
  printCommonStructuredOpParts(p, op);

  // Results printing.
  printNamedStructuredOpResults(p, op.result_tensors().getTypes());

  // Region is elided.
}

template <typename NamedStructuredOpType>
static LogicalResult verifyNamedStructuredOp(NamedStructuredOpType op) {
  return verifyGenericOp<NamedStructuredOpType>(op);
}

namespace {
struct EraseDeadLinalgOp : public RewritePattern {
  EraseDeadLinalgOp(PatternBenefit benefit = 1)
      : RewritePattern(benefit, MatchAnyOpTypeTag()) {}

  LogicalResult matchAndRewrite(Operation *op,
                                PatternRewriter &rewriter) const override {
    auto linalgOp = dyn_cast<LinalgOp>(op);
    if (!linalgOp)
      return failure();
    for (Value v : linalgOp.getInputsAndOutputBuffers()) {
      // Linalg "inputs" may be either tensor or memref type.
      // tensor<0xelt_type> is a convention that may not always mean
      // "0 iterations". Only erase in cases we see memref<...x0x...>.
      auto mt = v.getType().dyn_cast<MemRefType>();
      if (!mt)
        continue;
      if (llvm::is_contained(mt.getShape(), 0)) {
        rewriter.eraseOp(linalgOp);
        return success();
      }
    }
    return failure();
  }
};
} // namespace

#define CANONICALIZERS_AND_FOLDERS(XXX)                                        \
  void XXX::getCanonicalizationPatterns(OwningRewritePatternList &results,     \
                                        MLIRContext *context) {                \
    results.insert<EraseDeadLinalgOp>();                                       \
  }                                                                            \
                                                                               \
  LogicalResult XXX::fold(ArrayRef<Attribute>,                                 \
                          SmallVectorImpl<OpFoldResult> &) {                   \
    return foldMemRefCast(*this);                                              \
  }

CANONICALIZERS_AND_FOLDERS(ConvOp)
CANONICALIZERS_AND_FOLDERS(PoolingMaxOp)
CANONICALIZERS_AND_FOLDERS(PoolingMinOp)
CANONICALIZERS_AND_FOLDERS(PoolingSumOp)
CANONICALIZERS_AND_FOLDERS(CopyOp)
CANONICALIZERS_AND_FOLDERS(FillOp)
CANONICALIZERS_AND_FOLDERS(GenericOp)
CANONICALIZERS_AND_FOLDERS(IndexedGenericOp)

// TODO: Determine whether we can generate the folders and verifiers.
CANONICALIZERS_AND_FOLDERS(BatchMatmulOp)
CANONICALIZERS_AND_FOLDERS(DotOp)
CANONICALIZERS_AND_FOLDERS(MatmulOp)
CANONICALIZERS_AND_FOLDERS(MatvecOp)
CANONICALIZERS_AND_FOLDERS(VecmatOp)
CANONICALIZERS_AND_FOLDERS(ConvWOp)
CANONICALIZERS_AND_FOLDERS(ConvNWCOp)
CANONICALIZERS_AND_FOLDERS(ConvNCWOp)
CANONICALIZERS_AND_FOLDERS(ConvHWOp)
CANONICALIZERS_AND_FOLDERS(ConvNHWCOp)
CANONICALIZERS_AND_FOLDERS(ConvNCHWOp)
CANONICALIZERS_AND_FOLDERS(ConvDHWOp)
CANONICALIZERS_AND_FOLDERS(ConvNDHWCOp)
CANONICALIZERS_AND_FOLDERS(ConvNCDHWOp)