LoopTiling.cpp
7.04 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to tile loop nests.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
#define DEBUG_TYPE "affine-loop-tile"
namespace {
/// A pass to perform loop tiling on all suitable loop nests of a Function.
struct LoopTiling : public AffineLoopTilingBase<LoopTiling> {
LoopTiling() = default;
explicit LoopTiling(uint64_t cacheSizeBytes, bool avoidMaxMinBounds = true)
: avoidMaxMinBounds(avoidMaxMinBounds) {
this->cacheSizeInKiB = cacheSizeBytes / 1024;
}
void runOnFunction() override;
void getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes);
// Default tile size if nothing is provided.
constexpr static unsigned kDefaultTileSize = 4;
// If true, tile sizes are set to avoid max/min in bounds if possible.
bool avoidMaxMinBounds = true;
};
} // end anonymous namespace
/// Creates a pass to perform loop tiling on all suitable loop nests of a
/// Function.
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
return std::make_unique<LoopTiling>(cacheSizeBytes);
}
std::unique_ptr<OperationPass<FuncOp>> mlir::createLoopTilingPass() {
return std::make_unique<LoopTiling>();
}
/// Reduces each tile size to the largest divisor of the corresponding trip
/// count (if the trip count is known).
static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
assert(band.size() == tileSizes->size() && "invalid tile size count");
for (unsigned i = 0, e = band.size(); i < e; i++) {
unsigned &tSizeAdjusted = (*tileSizes)[i];
Optional<uint64_t> mayConst = getConstantTripCount(band[i]);
if (!mayConst)
continue;
// Adjust the tile size to largest factor of the trip count less than
// tSize.
uint64_t constTripCount = mayConst.getValue();
if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
tSizeAdjusted = constTripCount / 2;
while (constTripCount % tSizeAdjusted != 0)
tSizeAdjusted--;
}
}
// Returns tile sizes to use. Checks CL options; if none are specified, sets it
// based on a simple model that looks at the memory footprint and determines
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
// along each of the dimensions being tiled.
// TODO: evolve this model. Tile size determination is a large area
// to play with in general.
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
SmallVectorImpl<unsigned> *tileSizes) {
if (band.empty())
return;
// Use command-line tileSize for all loops if specified.
if (tileSize) {
tileSizes->assign(band.size(), tileSize);
return;
}
// Use tileSizes and fill them with default tile size if it's short.
if (!this->tileSizes.empty()) {
tileSizes->assign(this->tileSizes.begin(), this->tileSizes.end());
tileSizes->resize(band.size(), kDefaultTileSize);
return;
}
tileSizes->resize(band.size());
// The first loop in the band.
AffineForOp rootForOp = band[0];
(void)rootForOp;
// Obtain memory footprint and set tile sizes so that a tile fits in
// the cache size. This is an approximation with the assumption that the
// footprint increases with the tile size linearly in that dimension (i.e.,
// assumes one-to-one access function).
Optional<int64_t> fp = getMemoryFootprintBytes(band[0], 0);
if (!fp) {
// Fill with default tile sizes if footprint is unknown.
std::fill(tileSizes->begin(), tileSizes->end(),
LoopTiling::kDefaultTileSize);
if (avoidMaxMinBounds)
adjustToDivisorsOfTripCounts(band, tileSizes);
LLVM_DEBUG(
rootForOp.emitWarning("memory footprint unknown: using default tile "
"sizes adjusted to trip count divisors"));
return;
}
// Check how many times larger the cache size is when compared to footprint.
uint64_t cacheSizeBytes = cacheSizeInKiB * 1024;
uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes);
if (excessFactor <= 1) {
// No need of any tiling - set tile size to 1.
std::fill(tileSizes->begin(), tileSizes->end(), 1);
return;
}
// Divide all loops equally in an attempt to reduce footprint.
// TODO: this is approximate. Ideally, obtain reuse factor /
// profitability along each dimension and weight tile sizes based on that as
// one possible approach. Or compute a polynomial in tile sizes and solve for
// it.
// For an n-d tileable band, compute the n^th root of the excess.
unsigned tSize =
static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
// We'll keep a running product to determine the last tile size better.
unsigned cumulProductOfTileSizes = 1;
for (unsigned i = 0, e = band.size(); i < e; i++) {
if (i < e - 1)
(*tileSizes)[i] = tSize;
else
// Set last tile size to cover the balance.
(*tileSizes)[i] = std::max(
1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
cumulProductOfTileSizes *= (*tileSizes)[i];
}
if (avoidMaxMinBounds)
adjustToDivisorsOfTripCounts(band, tileSizes);
}
void LoopTiling::runOnFunction() {
// Bands of loops to tile.
std::vector<SmallVector<AffineForOp, 6>> bands;
getTileableBands(getFunction(), &bands);
// Tile each band.
for (auto &band : bands) {
// Set up tile sizes; fill missing tile sizes at the end with default tile
// size or tileSize if one was provided.
SmallVector<unsigned, 6> tileSizes;
getTileSizes(band, &tileSizes);
if (llvm::DebugFlag) {
auto diag = band[0].emitRemark("using tile sizes [");
for (unsigned tSize : tileSizes)
diag << tSize << ' ';
diag << "]\n";
}
SmallVector<AffineForOp, 6> tiledNest;
if (failed(tilePerfectlyNested(band, tileSizes, &tiledNest)))
return signalPassFailure();
// Separate full and partial tiles.
if (separate) {
auto intraTileLoops =
MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size());
separateFullTiles(intraTileLoops);
}
}
}
constexpr unsigned LoopTiling::kDefaultTileSize;