ConvertStandardToSPIRV.cpp 45.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
//===- ConvertStandardToSPIRV.cpp - Standard to SPIR-V dialect conversion--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert standard ops to SPIR-V ops.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SPIRV/LayoutUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVLowering.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "std-to-spirv-pattern"

using namespace mlir;

//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//

/// Returns true if the given `type` is a boolean scalar or vector type.
static bool isBoolScalarOrVector(Type type) {
  if (type.isInteger(1))
    return true;
  if (auto vecType = type.dyn_cast<VectorType>())
    return vecType.getElementType().isInteger(1);
  return false;
}

/// Converts the given `srcAttr` into a boolean attribute if it holds an
/// integral value. Returns null attribute if conversion fails.
static BoolAttr convertBoolAttr(Attribute srcAttr, Builder builder) {
  if (auto boolAttr = srcAttr.dyn_cast<BoolAttr>())
    return boolAttr;
  if (auto intAttr = srcAttr.dyn_cast<IntegerAttr>())
    return builder.getBoolAttr(intAttr.getValue().getBoolValue());
  return BoolAttr();
}

/// Converts the given `srcAttr` to a new attribute of the given `dstType`.
/// Returns null attribute if conversion fails.
static IntegerAttr convertIntegerAttr(IntegerAttr srcAttr, IntegerType dstType,
                                      Builder builder) {
  // If the source number uses less active bits than the target bitwidth, then
  // it should be safe to convert.
  if (srcAttr.getValue().isIntN(dstType.getWidth()))
    return builder.getIntegerAttr(dstType, srcAttr.getInt());

  // XXX: Try again by interpreting the source number as a signed value.
  // Although integers in the standard dialect are signless, they can represent
  // a signed number. It's the operation decides how to interpret. This is
  // dangerous, but it seems there is no good way of handling this if we still
  // want to change the bitwidth. Emit a message at least.
  if (srcAttr.getValue().isSignedIntN(dstType.getWidth())) {
    auto dstAttr = builder.getIntegerAttr(dstType, srcAttr.getInt());
    LLVM_DEBUG(llvm::dbgs() << "attribute '" << srcAttr << "' converted to '"
                            << dstAttr << "' for type '" << dstType << "'\n");
    return dstAttr;
  }

  LLVM_DEBUG(llvm::dbgs() << "attribute '" << srcAttr
                          << "' illegal: cannot fit into target type '"
                          << dstType << "'\n");
  return IntegerAttr();
}

/// Converts the given `srcAttr` to a new attribute of the given `dstType`.
/// Returns null attribute if `dstType` is not 32-bit or conversion fails.
static FloatAttr convertFloatAttr(FloatAttr srcAttr, FloatType dstType,
                                  Builder builder) {
  // Only support converting to float for now.
  if (!dstType.isF32())
    return FloatAttr();

  // Try to convert the source floating-point number to single precision.
  APFloat dstVal = srcAttr.getValue();
  bool losesInfo = false;
  APFloat::opStatus status =
      dstVal.convert(APFloat::IEEEsingle(), APFloat::rmTowardZero, &losesInfo);
  if (status != APFloat::opOK || losesInfo) {
    LLVM_DEBUG(llvm::dbgs()
               << srcAttr << " illegal: cannot fit into converted type '"
               << dstType << "'\n");
    return FloatAttr();
  }

  return builder.getF32FloatAttr(dstVal.convertToFloat());
}

/// Returns signed remainder for `lhs` and `rhs` and lets the result follow
/// the sign of `signOperand`.
///
/// Note that this is needed for Vulkan. Per the Vulkan's SPIR-V environment
/// spec, "for the OpSRem and OpSMod instructions, if either operand is negative
/// the result is undefined."  So we cannot directly use spv.SRem/spv.SMod
/// if either operand can be negative. Emulate it via spv.UMod.
static Value emulateSignedRemainder(Location loc, Value lhs, Value rhs,
                                    Value signOperand, OpBuilder &builder) {
  assert(lhs.getType() == rhs.getType());
  assert(lhs == signOperand || rhs == signOperand);

  Type type = lhs.getType();

  // Calculate the remainder with spv.UMod.
  Value lhsAbs = builder.create<spirv::GLSLSAbsOp>(loc, type, lhs);
  Value rhsAbs = builder.create<spirv::GLSLSAbsOp>(loc, type, rhs);
  Value abs = builder.create<spirv::UModOp>(loc, lhsAbs, rhsAbs);

  // Fix the sign.
  Value isPositive;
  if (lhs == signOperand)
    isPositive = builder.create<spirv::IEqualOp>(loc, lhs, lhsAbs);
  else
    isPositive = builder.create<spirv::IEqualOp>(loc, rhs, rhsAbs);
  Value absNegate = builder.create<spirv::SNegateOp>(loc, type, abs);
  return builder.create<spirv::SelectOp>(loc, type, isPositive, abs, absNegate);
}

/// Returns the offset of the value in `targetBits` representation.
///
/// `srcIdx` is an index into a 1-D array with each element having `sourceBits`.
/// It's assumed to be non-negative.
///
/// When accessing an element in the array treating as having elements of
/// `targetBits`, multiple values are loaded in the same time. The method
/// returns the offset where the `srcIdx` locates in the value. For example, if
/// `sourceBits` equals to 8 and `targetBits` equals to 32, the x-th element is
/// located at (x % 4) * 8. Because there are four elements in one i32, and one
/// element has 8 bits.
static Value getOffsetForBitwidth(Location loc, Value srcIdx, int sourceBits,
                                  int targetBits, OpBuilder &builder) {
  assert(targetBits % sourceBits == 0);
  IntegerType targetType = builder.getIntegerType(targetBits);
  IntegerAttr idxAttr =
      builder.getIntegerAttr(targetType, targetBits / sourceBits);
  auto idx = builder.create<spirv::ConstantOp>(loc, targetType, idxAttr);
  IntegerAttr srcBitsAttr = builder.getIntegerAttr(targetType, sourceBits);
  auto srcBitsValue =
      builder.create<spirv::ConstantOp>(loc, targetType, srcBitsAttr);
  auto m = builder.create<spirv::UModOp>(loc, srcIdx, idx);
  return builder.create<spirv::IMulOp>(loc, targetType, m, srcBitsValue);
}

/// Returns an adjusted spirv::AccessChainOp. Based on the
/// extension/capabilities, certain integer bitwidths `sourceBits` might not be
/// supported. During conversion if a memref of an unsupported type is used,
/// load/stores to this memref need to be modified to use a supported higher
/// bitwidth `targetBits` and extracting the required bits. For an accessing a
/// 1D array (spv.array or spv.rt_array), the last index is modified to load the
/// bits needed. The extraction of the actual bits needed are handled
/// separately. Note that this only works for a 1-D tensor.
static Value adjustAccessChainForBitwidth(SPIRVTypeConverter &typeConverter,
                                          spirv::AccessChainOp op,
                                          int sourceBits, int targetBits,
                                          OpBuilder &builder) {
  assert(targetBits % sourceBits == 0);
  const auto loc = op.getLoc();
  IntegerType targetType = builder.getIntegerType(targetBits);
  IntegerAttr attr =
      builder.getIntegerAttr(targetType, targetBits / sourceBits);
  auto idx = builder.create<spirv::ConstantOp>(loc, targetType, attr);
  auto lastDim = op.getOperation()->getOperand(op.getNumOperands() - 1);
  auto indices = llvm::to_vector<4>(op.indices());
  // There are two elements if this is a 1-D tensor.
  assert(indices.size() == 2);
  indices.back() = builder.create<spirv::SDivOp>(loc, lastDim, idx);
  Type t = typeConverter.convertType(op.component_ptr().getType());
  return builder.create<spirv::AccessChainOp>(loc, t, op.base_ptr(), indices);
}

/// Returns the shifted `targetBits`-bit value with the given offset.
static Value shiftValue(Location loc, Value value, Value offset, Value mask,
                        int targetBits, OpBuilder &builder) {
  Type targetType = builder.getIntegerType(targetBits);
  Value result = builder.create<spirv::BitwiseAndOp>(loc, value, mask);
  return builder.create<spirv::ShiftLeftLogicalOp>(loc, targetType, result,
                                                   offset);
}

/// Returns true if the operator is operating on unsigned integers.
/// TODO: Have a TreatOperandsAsUnsignedInteger trait and bake the information
/// to the ops themselves.
template <typename SPIRVOp>
bool isUnsignedOp() {
  return false;
}

#define CHECK_UNSIGNED_OP(SPIRVOp)                                             \
  template <>                                                                  \
  bool isUnsignedOp<SPIRVOp>() {                                               \
    return true;                                                               \
  }

CHECK_UNSIGNED_OP(spirv::AtomicUMaxOp)
CHECK_UNSIGNED_OP(spirv::AtomicUMinOp)
CHECK_UNSIGNED_OP(spirv::BitFieldUExtractOp)
CHECK_UNSIGNED_OP(spirv::ConvertUToFOp)
CHECK_UNSIGNED_OP(spirv::GroupNonUniformUMaxOp)
CHECK_UNSIGNED_OP(spirv::GroupNonUniformUMinOp)
CHECK_UNSIGNED_OP(spirv::UConvertOp)
CHECK_UNSIGNED_OP(spirv::UDivOp)
CHECK_UNSIGNED_OP(spirv::UGreaterThanEqualOp)
CHECK_UNSIGNED_OP(spirv::UGreaterThanOp)
CHECK_UNSIGNED_OP(spirv::ULessThanEqualOp)
CHECK_UNSIGNED_OP(spirv::ULessThanOp)
CHECK_UNSIGNED_OP(spirv::UModOp)

#undef CHECK_UNSIGNED_OP

/// Returns true if the allocations of type `t` can be lowered to SPIR-V.
static bool isAllocationSupported(MemRefType t) {
  // Currently only support workgroup local memory allocations with static
  // shape and int or float or vector of int or float element type.
  if (!(t.hasStaticShape() &&
        SPIRVTypeConverter::getMemorySpaceForStorageClass(
            spirv::StorageClass::Workgroup) == t.getMemorySpace()))
    return false;
  Type elementType = t.getElementType();
  if (auto vecType = elementType.dyn_cast<VectorType>())
    elementType = vecType.getElementType();
  return elementType.isIntOrFloat();
}

/// Returns the scope to use for atomic operations use for emulating store
/// operations of unsupported integer bitwidths, based on the memref
/// type. Returns None on failure.
static Optional<spirv::Scope> getAtomicOpScope(MemRefType t) {
  Optional<spirv::StorageClass> storageClass =
      SPIRVTypeConverter::getStorageClassForMemorySpace(t.getMemorySpace());
  if (!storageClass)
    return {};
  switch (*storageClass) {
  case spirv::StorageClass::StorageBuffer:
    return spirv::Scope::Device;
  case spirv::StorageClass::Workgroup:
    return spirv::Scope::Workgroup;
  default: {
  }
  }
  return {};
}

//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//

// Note that DRR cannot be used for the patterns in this file: we may need to
// convert type along the way, which requires ConversionPattern. DRR generates
// normal RewritePattern.

namespace {

/// Converts an allocation operation to SPIR-V. Currently only supports lowering
/// to Workgroup memory when the size is constant.  Note that this pattern needs
/// to be applied in a pass that runs at least at spv.module scope since it wil
/// ladd global variables into the spv.module.
class AllocOpPattern final : public SPIRVOpLowering<AllocOp> {
public:
  using SPIRVOpLowering<AllocOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(AllocOp operation, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    MemRefType allocType = operation.getType();
    if (!isAllocationSupported(allocType))
      return operation.emitError("unhandled allocation type");

    // Get the SPIR-V type for the allocation.
    Type spirvType = typeConverter.convertType(allocType);

    // Insert spv.globalVariable for this allocation.
    Operation *parent =
        SymbolTable::getNearestSymbolTable(operation.getParentOp());
    if (!parent)
      return failure();
    Location loc = operation.getLoc();
    spirv::GlobalVariableOp varOp;
    {
      OpBuilder::InsertionGuard guard(rewriter);
      Block &entryBlock = *parent->getRegion(0).begin();
      rewriter.setInsertionPointToStart(&entryBlock);
      auto varOps = entryBlock.getOps<spirv::GlobalVariableOp>();
      std::string varName =
          std::string("__workgroup_mem__") +
          std::to_string(std::distance(varOps.begin(), varOps.end()));
      varOp = rewriter.create<spirv::GlobalVariableOp>(
          loc, TypeAttr::get(spirvType), varName,
          /*initializer = */ nullptr);
    }

    // Get pointer to global variable at the current scope.
    rewriter.replaceOpWithNewOp<spirv::AddressOfOp>(operation, varOp);
    return success();
  }
};

/// Removed a deallocation if it is a supported allocation. Currently only
/// removes deallocation if the memory space is workgroup memory.
class DeallocOpPattern final : public SPIRVOpLowering<DeallocOp> {
public:
  using SPIRVOpLowering<DeallocOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(DeallocOp operation, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    MemRefType deallocType = operation.memref().getType().cast<MemRefType>();
    if (!isAllocationSupported(deallocType))
      return operation.emitError("unhandled deallocation type");
    rewriter.eraseOp(operation);
    return success();
  }
};

/// Converts unary and binary standard operations to SPIR-V operations.
template <typename StdOp, typename SPIRVOp>
class UnaryAndBinaryOpPattern final : public SPIRVOpLowering<StdOp> {
public:
  using SPIRVOpLowering<StdOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(StdOp operation, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    assert(operands.size() <= 2);
    auto dstType = this->typeConverter.convertType(operation.getType());
    if (!dstType)
      return failure();
    if (isUnsignedOp<SPIRVOp>() && dstType != operation.getType()) {
      return operation.emitError(
          "bitwidth emulation is not implemented yet on unsigned op");
    }
    rewriter.template replaceOpWithNewOp<SPIRVOp>(operation, dstType, operands);
    return success();
  }
};

/// Converts std.remi_signed to SPIR-V ops.
///
/// This cannot be merged into the template unary/binary pattern due to
/// Vulkan restrictions over spv.SRem and spv.SMod.
class SignedRemIOpPattern final : public SPIRVOpLowering<SignedRemIOp> {
public:
  using SPIRVOpLowering<SignedRemIOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(SignedRemIOp remOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts bitwise standard operations to SPIR-V operations. This is a special
/// pattern other than the BinaryOpPatternPattern because if the operands are
/// boolean values, SPIR-V uses different operations (`SPIRVLogicalOp`). For
/// non-boolean operands, SPIR-V should use `SPIRVBitwiseOp`.
template <typename StdOp, typename SPIRVLogicalOp, typename SPIRVBitwiseOp>
class BitwiseOpPattern final : public SPIRVOpLowering<StdOp> {
public:
  using SPIRVOpLowering<StdOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(StdOp operation, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    assert(operands.size() == 2);
    auto dstType =
        this->typeConverter.convertType(operation.getResult().getType());
    if (!dstType)
      return failure();
    if (isBoolScalarOrVector(operands.front().getType())) {
      rewriter.template replaceOpWithNewOp<SPIRVLogicalOp>(operation, dstType,
                                                           operands);
    } else {
      rewriter.template replaceOpWithNewOp<SPIRVBitwiseOp>(operation, dstType,
                                                           operands);
    }
    return success();
  }
};

/// Converts composite std.constant operation to spv.constant.
class ConstantCompositeOpPattern final : public SPIRVOpLowering<ConstantOp> {
public:
  using SPIRVOpLowering<ConstantOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(ConstantOp constOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts scalar std.constant operation to spv.constant.
class ConstantScalarOpPattern final : public SPIRVOpLowering<ConstantOp> {
public:
  using SPIRVOpLowering<ConstantOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(ConstantOp constOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts floating-point comparison operations to SPIR-V ops.
class CmpFOpPattern final : public SPIRVOpLowering<CmpFOp> {
public:
  using SPIRVOpLowering<CmpFOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(CmpFOp cmpFOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts integer compare operation on i1 type opearnds to SPIR-V ops.
class BoolCmpIOpPattern final : public SPIRVOpLowering<CmpIOp> {
public:
  using SPIRVOpLowering<CmpIOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(CmpIOp cmpIOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts integer compare operation to SPIR-V ops.
class CmpIOpPattern final : public SPIRVOpLowering<CmpIOp> {
public:
  using SPIRVOpLowering<CmpIOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(CmpIOp cmpIOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.load to spv.Load.
class IntLoadOpPattern final : public SPIRVOpLowering<LoadOp> {
public:
  using SPIRVOpLowering<LoadOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(LoadOp loadOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.load to spv.Load.
class LoadOpPattern final : public SPIRVOpLowering<LoadOp> {
public:
  using SPIRVOpLowering<LoadOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(LoadOp loadOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.return to spv.Return.
class ReturnOpPattern final : public SPIRVOpLowering<ReturnOp> {
public:
  using SPIRVOpLowering<ReturnOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(ReturnOp returnOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.select to spv.Select.
class SelectOpPattern final : public SPIRVOpLowering<SelectOp> {
public:
  using SPIRVOpLowering<SelectOp>::SPIRVOpLowering;
  LogicalResult
  matchAndRewrite(SelectOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.store to spv.Store on integers.
class IntStoreOpPattern final : public SPIRVOpLowering<StoreOp> {
public:
  using SPIRVOpLowering<StoreOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(StoreOp storeOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.store to spv.Store.
class StoreOpPattern final : public SPIRVOpLowering<StoreOp> {
public:
  using SPIRVOpLowering<StoreOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(StoreOp storeOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

/// Converts std.zexti to spv.Select if the type of source is i1 or vector of
/// i1.
class ZeroExtendI1Pattern final : public SPIRVOpLowering<ZeroExtendIOp> {
public:
  using SPIRVOpLowering<ZeroExtendIOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(ZeroExtendIOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = operands.front().getType();
    if (!isBoolScalarOrVector(srcType))
      return failure();

    auto dstType = this->typeConverter.convertType(op.getResult().getType());
    Location loc = op.getLoc();
    Attribute zeroAttr, oneAttr;
    if (auto vectorType = dstType.dyn_cast<VectorType>()) {
      zeroAttr = DenseElementsAttr::get(vectorType, 0);
      oneAttr = DenseElementsAttr::get(vectorType, 1);
    } else {
      zeroAttr = IntegerAttr::get(dstType, 0);
      oneAttr = IntegerAttr::get(dstType, 1);
    }
    Value zero = rewriter.create<ConstantOp>(loc, zeroAttr);
    Value one = rewriter.create<ConstantOp>(loc, oneAttr);
    rewriter.template replaceOpWithNewOp<spirv::SelectOp>(
        op, dstType, operands.front(), one, zero);
    return success();
  }
};

/// Converts type-casting standard operations to SPIR-V operations.
template <typename StdOp, typename SPIRVOp>
class TypeCastingOpPattern final : public SPIRVOpLowering<StdOp> {
public:
  using SPIRVOpLowering<StdOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(StdOp operation, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    assert(operands.size() == 1);
    auto srcType = operands.front().getType();
    if (isBoolScalarOrVector(srcType))
      return failure();
    auto dstType =
        this->typeConverter.convertType(operation.getResult().getType());
    if (dstType == srcType) {
      // Due to type conversion, we are seeing the same source and target type.
      // Then we can just erase this operation by forwarding its operand.
      rewriter.replaceOp(operation, operands.front());
    } else {
      rewriter.template replaceOpWithNewOp<SPIRVOp>(operation, dstType,
                                                    operands);
    }
    return success();
  }
};

/// Converts std.xor to SPIR-V operations.
class XOrOpPattern final : public SPIRVOpLowering<XOrOp> {
public:
  using SPIRVOpLowering<XOrOp>::SPIRVOpLowering;

  LogicalResult
  matchAndRewrite(XOrOp xorOp, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};

} // namespace

//===----------------------------------------------------------------------===//
// SignedRemIOpPattern
//===----------------------------------------------------------------------===//

LogicalResult SignedRemIOpPattern::matchAndRewrite(
    SignedRemIOp remOp, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  Value result = emulateSignedRemainder(remOp.getLoc(), operands[0],
                                        operands[1], operands[0], rewriter);
  rewriter.replaceOp(remOp, result);

  return success();
}

//===----------------------------------------------------------------------===//
// ConstantOp with composite type.
//===----------------------------------------------------------------------===//

LogicalResult ConstantCompositeOpPattern::matchAndRewrite(
    ConstantOp constOp, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  auto srcType = constOp.getType().dyn_cast<ShapedType>();
  if (!srcType)
    return failure();

  // std.constant should only have vector or tenor types.
  assert((srcType.isa<VectorType, RankedTensorType>()));

  auto dstType = typeConverter.convertType(srcType);
  if (!dstType)
    return failure();

  auto dstElementsAttr = constOp.value().dyn_cast<DenseElementsAttr>();
  ShapedType dstAttrType = dstElementsAttr.getType();
  if (!dstElementsAttr)
    return failure();

  // If the composite type has more than one dimensions, perform linearization.
  if (srcType.getRank() > 1) {
    if (srcType.isa<RankedTensorType>()) {
      dstAttrType = RankedTensorType::get(srcType.getNumElements(),
                                          srcType.getElementType());
      dstElementsAttr = dstElementsAttr.reshape(dstAttrType);
    } else {
      // TODO: add support for large vectors.
      return failure();
    }
  }

  Type srcElemType = srcType.getElementType();
  Type dstElemType;
  // Tensor types are converted to SPIR-V array types; vector types are
  // converted to SPIR-V vector/array types.
  if (auto arrayType = dstType.dyn_cast<spirv::ArrayType>())
    dstElemType = arrayType.getElementType();
  else
    dstElemType = dstType.cast<VectorType>().getElementType();

  // If the source and destination element types are different, perform
  // attribute conversion.
  if (srcElemType != dstElemType) {
    SmallVector<Attribute, 8> elements;
    if (srcElemType.isa<FloatType>()) {
      for (Attribute srcAttr : dstElementsAttr.getAttributeValues()) {
        FloatAttr dstAttr = convertFloatAttr(
            srcAttr.cast<FloatAttr>(), dstElemType.cast<FloatType>(), rewriter);
        if (!dstAttr)
          return failure();
        elements.push_back(dstAttr);
      }
    } else if (srcElemType.isInteger(1)) {
      return failure();
    } else {
      for (Attribute srcAttr : dstElementsAttr.getAttributeValues()) {
        IntegerAttr dstAttr =
            convertIntegerAttr(srcAttr.cast<IntegerAttr>(),
                               dstElemType.cast<IntegerType>(), rewriter);
        if (!dstAttr)
          return failure();
        elements.push_back(dstAttr);
      }
    }

    // Unfortunately, we cannot use dialect-specific types for element
    // attributes; element attributes only works with standard types. So we need
    // to prepare another converted standard types for the destination elements
    // attribute.
    if (dstAttrType.isa<RankedTensorType>())
      dstAttrType = RankedTensorType::get(dstAttrType.getShape(), dstElemType);
    else
      dstAttrType = VectorType::get(dstAttrType.getShape(), dstElemType);

    dstElementsAttr = DenseElementsAttr::get(dstAttrType, elements);
  }

  rewriter.replaceOpWithNewOp<spirv::ConstantOp>(constOp, dstType,
                                                 dstElementsAttr);
  return success();
}

//===----------------------------------------------------------------------===//
// ConstantOp with scalar type.
//===----------------------------------------------------------------------===//

LogicalResult ConstantScalarOpPattern::matchAndRewrite(
    ConstantOp constOp, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  Type srcType = constOp.getType();
  if (!srcType.isIntOrIndexOrFloat())
    return failure();

  Type dstType = typeConverter.convertType(srcType);
  if (!dstType)
    return failure();

  // Floating-point types.
  if (srcType.isa<FloatType>()) {
    auto srcAttr = constOp.value().cast<FloatAttr>();
    auto dstAttr = srcAttr;

    // Floating-point types not supported in the target environment are all
    // converted to float type.
    if (srcType != dstType) {
      dstAttr = convertFloatAttr(srcAttr, dstType.cast<FloatType>(), rewriter);
      if (!dstAttr)
        return failure();
    }

    rewriter.replaceOpWithNewOp<spirv::ConstantOp>(constOp, dstType, dstAttr);
    return success();
  }

  // Bool type.
  if (srcType.isInteger(1)) {
    // std.constant can use 0/1 instead of true/false for i1 values. We need to
    // handle that here.
    auto dstAttr = convertBoolAttr(constOp.value(), rewriter);
    if (!dstAttr)
      return failure();
    rewriter.replaceOpWithNewOp<spirv::ConstantOp>(constOp, dstType, dstAttr);
    return success();
  }

  // IndexType or IntegerType. Index values are converted to 32-bit integer
  // values when converting to SPIR-V.
  auto srcAttr = constOp.value().cast<IntegerAttr>();
  auto dstAttr =
      convertIntegerAttr(srcAttr, dstType.cast<IntegerType>(), rewriter);
  if (!dstAttr)
    return failure();
  rewriter.replaceOpWithNewOp<spirv::ConstantOp>(constOp, dstType, dstAttr);
  return success();
}

//===----------------------------------------------------------------------===//
// CmpFOp
//===----------------------------------------------------------------------===//

LogicalResult
CmpFOpPattern::matchAndRewrite(CmpFOp cmpFOp, ArrayRef<Value> operands,
                               ConversionPatternRewriter &rewriter) const {
  CmpFOpAdaptor cmpFOpOperands(operands);

  switch (cmpFOp.getPredicate()) {
#define DISPATCH(cmpPredicate, spirvOp)                                        \
  case cmpPredicate:                                                           \
    rewriter.replaceOpWithNewOp<spirvOp>(cmpFOp, cmpFOp.getResult().getType(), \
                                         cmpFOpOperands.lhs(),                 \
                                         cmpFOpOperands.rhs());                \
    return success();

    // Ordered.
    DISPATCH(CmpFPredicate::OEQ, spirv::FOrdEqualOp);
    DISPATCH(CmpFPredicate::OGT, spirv::FOrdGreaterThanOp);
    DISPATCH(CmpFPredicate::OGE, spirv::FOrdGreaterThanEqualOp);
    DISPATCH(CmpFPredicate::OLT, spirv::FOrdLessThanOp);
    DISPATCH(CmpFPredicate::OLE, spirv::FOrdLessThanEqualOp);
    DISPATCH(CmpFPredicate::ONE, spirv::FOrdNotEqualOp);
    // Unordered.
    DISPATCH(CmpFPredicate::UEQ, spirv::FUnordEqualOp);
    DISPATCH(CmpFPredicate::UGT, spirv::FUnordGreaterThanOp);
    DISPATCH(CmpFPredicate::UGE, spirv::FUnordGreaterThanEqualOp);
    DISPATCH(CmpFPredicate::ULT, spirv::FUnordLessThanOp);
    DISPATCH(CmpFPredicate::ULE, spirv::FUnordLessThanEqualOp);
    DISPATCH(CmpFPredicate::UNE, spirv::FUnordNotEqualOp);

#undef DISPATCH

  default:
    break;
  }
  return failure();
}

//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//

LogicalResult
BoolCmpIOpPattern::matchAndRewrite(CmpIOp cmpIOp, ArrayRef<Value> operands,
                                   ConversionPatternRewriter &rewriter) const {
  CmpIOpAdaptor cmpIOpOperands(operands);

  Type operandType = cmpIOp.lhs().getType();
  if (!operandType.isa<IntegerType>() ||
      operandType.cast<IntegerType>().getWidth() != 1)
    return failure();

  switch (cmpIOp.getPredicate()) {
#define DISPATCH(cmpPredicate, spirvOp)                                        \
  case cmpPredicate:                                                           \
    rewriter.replaceOpWithNewOp<spirvOp>(cmpIOp, cmpIOp.getResult().getType(), \
                                         cmpIOpOperands.lhs(),                 \
                                         cmpIOpOperands.rhs());                \
    return success();

    DISPATCH(CmpIPredicate::eq, spirv::LogicalEqualOp);
    DISPATCH(CmpIPredicate::ne, spirv::LogicalNotEqualOp);

#undef DISPATCH
  default:;
  }
  return failure();
}

LogicalResult
CmpIOpPattern::matchAndRewrite(CmpIOp cmpIOp, ArrayRef<Value> operands,
                               ConversionPatternRewriter &rewriter) const {
  CmpIOpAdaptor cmpIOpOperands(operands);

  Type operandType = cmpIOp.lhs().getType();
  if (operandType.isa<IntegerType>() &&
      operandType.cast<IntegerType>().getWidth() == 1)
    return failure();

  switch (cmpIOp.getPredicate()) {
#define DISPATCH(cmpPredicate, spirvOp)                                        \
  case cmpPredicate:                                                           \
    if (isUnsignedOp<spirvOp>() &&                                             \
        operandType != this->typeConverter.convertType(operandType)) {         \
      return cmpIOp.emitError(                                                 \
          "bitwidth emulation is not implemented yet on unsigned op");         \
    }                                                                          \
    rewriter.replaceOpWithNewOp<spirvOp>(cmpIOp, cmpIOp.getResult().getType(), \
                                         cmpIOpOperands.lhs(),                 \
                                         cmpIOpOperands.rhs());                \
    return success();

    DISPATCH(CmpIPredicate::eq, spirv::IEqualOp);
    DISPATCH(CmpIPredicate::ne, spirv::INotEqualOp);
    DISPATCH(CmpIPredicate::slt, spirv::SLessThanOp);
    DISPATCH(CmpIPredicate::sle, spirv::SLessThanEqualOp);
    DISPATCH(CmpIPredicate::sgt, spirv::SGreaterThanOp);
    DISPATCH(CmpIPredicate::sge, spirv::SGreaterThanEqualOp);
    DISPATCH(CmpIPredicate::ult, spirv::ULessThanOp);
    DISPATCH(CmpIPredicate::ule, spirv::ULessThanEqualOp);
    DISPATCH(CmpIPredicate::ugt, spirv::UGreaterThanOp);
    DISPATCH(CmpIPredicate::uge, spirv::UGreaterThanEqualOp);

#undef DISPATCH
  }
  return failure();
}

//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//

LogicalResult
IntLoadOpPattern::matchAndRewrite(LoadOp loadOp, ArrayRef<Value> operands,
                                  ConversionPatternRewriter &rewriter) const {
  LoadOpAdaptor loadOperands(operands);
  auto loc = loadOp.getLoc();
  auto memrefType = loadOp.memref().getType().cast<MemRefType>();
  if (!memrefType.getElementType().isSignlessInteger())
    return failure();
  spirv::AccessChainOp accessChainOp =
      spirv::getElementPtr(typeConverter, memrefType, loadOperands.memref(),
                           loadOperands.indices(), loc, rewriter);

  int srcBits = memrefType.getElementType().getIntOrFloatBitWidth();
  auto dstType = typeConverter.convertType(memrefType)
                     .cast<spirv::PointerType>()
                     .getPointeeType()
                     .cast<spirv::StructType>()
                     .getElementType(0)
                     .cast<spirv::ArrayType>()
                     .getElementType();
  int dstBits = dstType.getIntOrFloatBitWidth();
  assert(dstBits % srcBits == 0);

  // If the rewrited load op has the same bit width, use the loading value
  // directly.
  if (srcBits == dstBits) {
    rewriter.replaceOpWithNewOp<spirv::LoadOp>(loadOp,
                                               accessChainOp.getResult());
    return success();
  }

  // Assume that getElementPtr() works linearizely. If it's a scalar, the method
  // still returns a linearized accessing. If the accessing is not linearized,
  // there will be offset issues.
  assert(accessChainOp.indices().size() == 2);
  Value adjustedPtr = adjustAccessChainForBitwidth(typeConverter, accessChainOp,
                                                   srcBits, dstBits, rewriter);
  Value spvLoadOp = rewriter.create<spirv::LoadOp>(
      loc, dstType, adjustedPtr,
      loadOp.getAttrOfType<IntegerAttr>(
          spirv::attributeName<spirv::MemoryAccess>()),
      loadOp.getAttrOfType<IntegerAttr>("alignment"));

  // Shift the bits to the rightmost.
  // ____XXXX________ -> ____________XXXX
  Value lastDim = accessChainOp.getOperation()->getOperand(
      accessChainOp.getNumOperands() - 1);
  Value offset = getOffsetForBitwidth(loc, lastDim, srcBits, dstBits, rewriter);
  Value result = rewriter.create<spirv::ShiftRightArithmeticOp>(
      loc, spvLoadOp.getType(), spvLoadOp, offset);

  // Apply the mask to extract corresponding bits.
  Value mask = rewriter.create<spirv::ConstantOp>(
      loc, dstType, rewriter.getIntegerAttr(dstType, (1 << srcBits) - 1));
  result = rewriter.create<spirv::BitwiseAndOp>(loc, dstType, result, mask);

  // Apply sign extension on the loading value unconditionally. The signedness
  // semantic is carried in the operator itself, we relies other pattern to
  // handle the casting.
  IntegerAttr shiftValueAttr =
      rewriter.getIntegerAttr(dstType, dstBits - srcBits);
  Value shiftValue =
      rewriter.create<spirv::ConstantOp>(loc, dstType, shiftValueAttr);
  result = rewriter.create<spirv::ShiftLeftLogicalOp>(loc, dstType, result,
                                                      shiftValue);
  result = rewriter.create<spirv::ShiftRightArithmeticOp>(loc, dstType, result,
                                                          shiftValue);
  rewriter.replaceOp(loadOp, result);

  assert(accessChainOp.use_empty());
  rewriter.eraseOp(accessChainOp);

  return success();
}

LogicalResult
LoadOpPattern::matchAndRewrite(LoadOp loadOp, ArrayRef<Value> operands,
                               ConversionPatternRewriter &rewriter) const {
  LoadOpAdaptor loadOperands(operands);
  auto memrefType = loadOp.memref().getType().cast<MemRefType>();
  if (memrefType.getElementType().isSignlessInteger())
    return failure();
  auto loadPtr =
      spirv::getElementPtr(typeConverter, memrefType, loadOperands.memref(),
                           loadOperands.indices(), loadOp.getLoc(), rewriter);
  rewriter.replaceOpWithNewOp<spirv::LoadOp>(loadOp, loadPtr);
  return success();
}

//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//

LogicalResult
ReturnOpPattern::matchAndRewrite(ReturnOp returnOp, ArrayRef<Value> operands,
                                 ConversionPatternRewriter &rewriter) const {
  if (returnOp.getNumOperands()) {
    return failure();
  }
  rewriter.replaceOpWithNewOp<spirv::ReturnOp>(returnOp);
  return success();
}

//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//

LogicalResult
SelectOpPattern::matchAndRewrite(SelectOp op, ArrayRef<Value> operands,
                                 ConversionPatternRewriter &rewriter) const {
  SelectOpAdaptor selectOperands(operands);
  rewriter.replaceOpWithNewOp<spirv::SelectOp>(op, selectOperands.condition(),
                                               selectOperands.true_value(),
                                               selectOperands.false_value());
  return success();
}

//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//

LogicalResult
IntStoreOpPattern::matchAndRewrite(StoreOp storeOp, ArrayRef<Value> operands,
                                   ConversionPatternRewriter &rewriter) const {
  StoreOpAdaptor storeOperands(operands);
  auto memrefType = storeOp.memref().getType().cast<MemRefType>();
  if (!memrefType.getElementType().isSignlessInteger())
    return failure();

  auto loc = storeOp.getLoc();
  spirv::AccessChainOp accessChainOp =
      spirv::getElementPtr(typeConverter, memrefType, storeOperands.memref(),
                           storeOperands.indices(), loc, rewriter);
  int srcBits = memrefType.getElementType().getIntOrFloatBitWidth();
  auto dstType = typeConverter.convertType(memrefType)
                     .cast<spirv::PointerType>()
                     .getPointeeType()
                     .cast<spirv::StructType>()
                     .getElementType(0)
                     .cast<spirv::ArrayType>()
                     .getElementType();
  int dstBits = dstType.getIntOrFloatBitWidth();
  assert(dstBits % srcBits == 0);

  if (srcBits == dstBits) {
    rewriter.replaceOpWithNewOp<spirv::StoreOp>(
        storeOp, accessChainOp.getResult(), storeOperands.value());
    return success();
  }

  // Since there are multi threads in the processing, the emulation will be done
  // with atomic operations. E.g., if the storing value is i8, rewrite the
  // StoreOp to
  // 1) load a 32-bit integer
  // 2) clear 8 bits in the loading value
  // 3) store 32-bit value back
  // 4) load a 32-bit integer
  // 5) modify 8 bits in the loading value
  // 6) store 32-bit value back
  // The step 1 to step 3 are done by AtomicAnd as one atomic step, and the step
  // 4 to step 6 are done by AtomicOr as another atomic step.
  assert(accessChainOp.indices().size() == 2);
  Value lastDim = accessChainOp.getOperation()->getOperand(
      accessChainOp.getNumOperands() - 1);
  Value offset = getOffsetForBitwidth(loc, lastDim, srcBits, dstBits, rewriter);

  // Create a mask to clear the destination. E.g., if it is the second i8 in
  // i32, 0xFFFF00FF is created.
  Value mask = rewriter.create<spirv::ConstantOp>(
      loc, dstType, rewriter.getIntegerAttr(dstType, (1 << srcBits) - 1));
  Value clearBitsMask =
      rewriter.create<spirv::ShiftLeftLogicalOp>(loc, dstType, mask, offset);
  clearBitsMask = rewriter.create<spirv::NotOp>(loc, dstType, clearBitsMask);

  Value storeVal =
      shiftValue(loc, storeOperands.value(), offset, mask, dstBits, rewriter);
  Value adjustedPtr = adjustAccessChainForBitwidth(typeConverter, accessChainOp,
                                                   srcBits, dstBits, rewriter);
  Optional<spirv::Scope> scope = getAtomicOpScope(memrefType);
  if (!scope)
    return failure();
  Value result = rewriter.create<spirv::AtomicAndOp>(
      loc, dstType, adjustedPtr, *scope, spirv::MemorySemantics::AcquireRelease,
      clearBitsMask);
  result = rewriter.create<spirv::AtomicOrOp>(
      loc, dstType, adjustedPtr, *scope, spirv::MemorySemantics::AcquireRelease,
      storeVal);

  // The AtomicOrOp has no side effect. Since it is already inserted, we can
  // just remove the original StoreOp. Note that rewriter.replaceOp()
  // doesn't work because it only accepts that the numbers of result are the
  // same.
  rewriter.eraseOp(storeOp);

  assert(accessChainOp.use_empty());
  rewriter.eraseOp(accessChainOp);

  return success();
}

LogicalResult
StoreOpPattern::matchAndRewrite(StoreOp storeOp, ArrayRef<Value> operands,
                                ConversionPatternRewriter &rewriter) const {
  StoreOpAdaptor storeOperands(operands);
  auto memrefType = storeOp.memref().getType().cast<MemRefType>();
  if (memrefType.getElementType().isSignlessInteger())
    return failure();
  auto storePtr =
      spirv::getElementPtr(typeConverter, memrefType, storeOperands.memref(),
                           storeOperands.indices(), storeOp.getLoc(), rewriter);
  rewriter.replaceOpWithNewOp<spirv::StoreOp>(storeOp, storePtr,
                                              storeOperands.value());
  return success();
}

//===----------------------------------------------------------------------===//
// XorOp
//===----------------------------------------------------------------------===//

LogicalResult
XOrOpPattern::matchAndRewrite(XOrOp xorOp, ArrayRef<Value> operands,
                              ConversionPatternRewriter &rewriter) const {
  assert(operands.size() == 2);

  if (isBoolScalarOrVector(operands.front().getType()))
    return failure();

  auto dstType = typeConverter.convertType(xorOp.getType());
  if (!dstType)
    return failure();
  rewriter.replaceOpWithNewOp<spirv::BitwiseXorOp>(xorOp, dstType, operands);

  return success();
}

//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//

namespace mlir {
void populateStandardToSPIRVPatterns(MLIRContext *context,
                                     SPIRVTypeConverter &typeConverter,
                                     OwningRewritePatternList &patterns) {
  patterns.insert<
      // Unary and binary patterns
      BitwiseOpPattern<AndOp, spirv::LogicalAndOp, spirv::BitwiseAndOp>,
      BitwiseOpPattern<OrOp, spirv::LogicalOrOp, spirv::BitwiseOrOp>,
      UnaryAndBinaryOpPattern<AbsFOp, spirv::GLSLFAbsOp>,
      UnaryAndBinaryOpPattern<AddFOp, spirv::FAddOp>,
      UnaryAndBinaryOpPattern<AddIOp, spirv::IAddOp>,
      UnaryAndBinaryOpPattern<CeilFOp, spirv::GLSLCeilOp>,
      UnaryAndBinaryOpPattern<CosOp, spirv::GLSLCosOp>,
      UnaryAndBinaryOpPattern<DivFOp, spirv::FDivOp>,
      UnaryAndBinaryOpPattern<ExpOp, spirv::GLSLExpOp>,
      UnaryAndBinaryOpPattern<FloorFOp, spirv::GLSLFloorOp>,
      UnaryAndBinaryOpPattern<LogOp, spirv::GLSLLogOp>,
      UnaryAndBinaryOpPattern<MulFOp, spirv::FMulOp>,
      UnaryAndBinaryOpPattern<MulIOp, spirv::IMulOp>,
      UnaryAndBinaryOpPattern<NegFOp, spirv::FNegateOp>,
      UnaryAndBinaryOpPattern<RemFOp, spirv::FRemOp>,
      UnaryAndBinaryOpPattern<RsqrtOp, spirv::GLSLInverseSqrtOp>,
      UnaryAndBinaryOpPattern<ShiftLeftOp, spirv::ShiftLeftLogicalOp>,
      UnaryAndBinaryOpPattern<SignedDivIOp, spirv::SDivOp>,
      UnaryAndBinaryOpPattern<SignedShiftRightOp,
                              spirv::ShiftRightArithmeticOp>,
      UnaryAndBinaryOpPattern<SinOp, spirv::GLSLSinOp>,
      UnaryAndBinaryOpPattern<SqrtOp, spirv::GLSLSqrtOp>,
      UnaryAndBinaryOpPattern<SubFOp, spirv::FSubOp>,
      UnaryAndBinaryOpPattern<SubIOp, spirv::ISubOp>,
      UnaryAndBinaryOpPattern<TanhOp, spirv::GLSLTanhOp>,
      UnaryAndBinaryOpPattern<UnsignedDivIOp, spirv::UDivOp>,
      UnaryAndBinaryOpPattern<UnsignedRemIOp, spirv::UModOp>,
      UnaryAndBinaryOpPattern<UnsignedShiftRightOp, spirv::ShiftRightLogicalOp>,
      SignedRemIOpPattern, XOrOpPattern,

      // Comparison patterns
      BoolCmpIOpPattern, CmpFOpPattern, CmpIOpPattern,

      // Constant patterns
      ConstantCompositeOpPattern, ConstantScalarOpPattern,

      // Memory patterns
      AllocOpPattern, DeallocOpPattern, IntLoadOpPattern, IntStoreOpPattern,
      LoadOpPattern, StoreOpPattern,

      ReturnOpPattern, SelectOpPattern,

      // Type cast patterns
      ZeroExtendI1Pattern, TypeCastingOpPattern<IndexCastOp, spirv::SConvertOp>,
      TypeCastingOpPattern<SIToFPOp, spirv::ConvertSToFOp>,
      TypeCastingOpPattern<ZeroExtendIOp, spirv::UConvertOp>,
      TypeCastingOpPattern<TruncateIOp, spirv::SConvertOp>,
      TypeCastingOpPattern<FPToSIOp, spirv::ConvertFToSOp>,
      TypeCastingOpPattern<FPExtOp, spirv::FConvertOp>,
      TypeCastingOpPattern<FPTruncOp, spirv::FConvertOp>>(context,
                                                          typeConverter);
}
} // namespace mlir