ShapeToStandard.cpp 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"

#include "../PassDetail.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Transforms/DialectConversion.h"

using namespace mlir;
using namespace mlir::shape;
using namespace mlir::scf;

/// Conversion patterns.
namespace {
class AnyOpConversion : public OpConversionPattern<AnyOp> {
public:
  using OpConversionPattern<AnyOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(AnyOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult
AnyOpConversion::matchAndRewrite(AnyOp op, ArrayRef<Value> operands,
                                 ConversionPatternRewriter &rewriter) const {
  AnyOp::Adaptor transformed(operands);

  // Replace `any` with its first operand.
  // Any operand would be a valid substitution.
  rewriter.replaceOp(op, {transformed.inputs().front()});
  return success();
}

namespace {
template <typename SrcOpTy, typename DstOpTy>
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
public:
  using OpConversionPattern<SrcOpTy>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(SrcOpTy op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    typename SrcOpTy::Adaptor transformed(operands);

    // For now, only error-free types are supported by this lowering.
    if (op.getType().template isa<SizeType>())
      return failure();

    rewriter.replaceOpWithNewOp<DstOpTy>(op, transformed.lhs(),
                                         transformed.rhs());
    return success();
  }
};
} // namespace

namespace {
struct BroadcastOpConverter : public OpConversionPattern<BroadcastOp> {
  using OpConversionPattern<BroadcastOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(BroadcastOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult BroadcastOpConverter::matchAndRewrite(
    BroadcastOp op, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  // For now, this lowering is only defined on `tensor<?xindex>` operands, not
  // on shapes.
  if (op.getType().isa<ShapeType>())
    return failure();

  assert(!op.lhs().getType().isa<ShapeType>() &&
         !op.rhs().getType().isa<ShapeType>());
  auto loc = op.getLoc();
  BroadcastOp::Adaptor transformed(operands);
  Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
  Value one = rewriter.create<ConstantIndexOp>(loc, 1);

  // Find smaller and greater rank and extent tensor.
  Value lhsRank = rewriter.create<DimOp>(loc, op.lhs(), zero);
  Value rhsRank = rewriter.create<DimOp>(loc, op.rhs(), zero);
  Value lhsRankULE =
      rewriter.create<CmpIOp>(loc, CmpIPredicate::ule, lhsRank, rhsRank);
  Type indexTy = rewriter.getIndexType();
  Value lesserRank =
      rewriter.create<SelectOp>(loc, lhsRankULE, lhsRank, rhsRank);
  Value greaterRank =
      rewriter.create<SelectOp>(loc, lhsRankULE, rhsRank, lhsRank);
  Value lesserRankOperand =
      rewriter.create<SelectOp>(loc, lhsRankULE, op.lhs(), op.rhs());
  Value greaterRankOperand =
      rewriter.create<SelectOp>(loc, lhsRankULE, op.rhs(), op.lhs());

  // Allocate stack memory for the broadcasted extent tensor.
  Type memTy = MemRefType::get({ShapedType::kDynamicSize}, indexTy);
  Value mem = rewriter.create<AllocaOp>(loc, memTy, ValueRange{greaterRank});

  // Copy extents from greater operand that are not challenged.
  Value rankDiff =
      rewriter.create<SubIOp>(loc, indexTy, greaterRank, lesserRank);
  rewriter.create<ForOp>(loc, zero, rankDiff, one, llvm::None,
                         [&](OpBuilder &b, Location loc, Value iv, ValueRange) {
                           Value extent = b.create<ExtractElementOp>(
                               loc, greaterRankOperand, ValueRange{iv});
                           b.create<StoreOp>(loc, extent, mem, ValueRange{iv});
                           b.create<scf::YieldOp>(loc);
                         });

  // Determine remaining broadcasted extents.
  rewriter.create<ForOp>(
      loc, rankDiff, greaterRank, one, llvm::None,
      [&](OpBuilder &b, Location loc, Value iv, ValueRange) {
        Value greaterOperandExtent =
            b.create<ExtractElementOp>(loc, greaterRankOperand, ValueRange{iv});
        Value greaterOperandExtentIsOne =
            b.create<CmpIOp>(loc, CmpIPredicate::eq, greaterOperandExtent, one);
        auto ifOp = b.create<IfOp>(
            loc, TypeRange{indexTy}, greaterOperandExtentIsOne,
            [&](OpBuilder &b, Location loc) {
              Value ivShifted = b.create<SubIOp>(loc, indexTy, iv, rankDiff);
              Value lesserRankOperandExtent = b.create<ExtractElementOp>(
                  loc, lesserRankOperand, ValueRange{ivShifted});
              b.create<scf::YieldOp>(loc, lesserRankOperandExtent);
            },
            [&](OpBuilder &b, Location loc) {
              b.create<scf::YieldOp>(loc, greaterOperandExtent);
            });
        Value extent = ifOp.getResult(0);
        b.create<StoreOp>(loc, extent, mem, ValueRange{iv});
        b.create<scf::YieldOp>(loc);
      });

  // Load broadcasted shape as an extent tensor.
  rewriter.replaceOpWithNewOp<TensorLoadOp>(op, mem);
  return success();
}

namespace {
class ConstShapeOpConverter : public OpConversionPattern<ConstShapeOp> {
public:
  using OpConversionPattern<ConstShapeOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(ConstShapeOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult ConstShapeOpConverter::matchAndRewrite(
    ConstShapeOp op, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {

  // For now, this lowering supports only extent tensors, not `shape.shape`
  // types.
  if (op.getType().isa<ShapeType>())
    return failure();

  auto loc = op.getLoc();
  SmallVector<Value, 4> extentOperands;
  for (auto extent : op.shape()) {
    extentOperands.push_back(
        rewriter.create<ConstantIndexOp>(loc, extent.getLimitedValue()));
  }
  Type indexTy = rewriter.getIndexType();
  Value tensor =
      rewriter.create<TensorFromElementsOp>(loc, indexTy, extentOperands);
  Type resultTy = RankedTensorType::get({ShapedType::kDynamicSize}, indexTy);
  rewriter.replaceOpWithNewOp<TensorCastOp>(op, tensor, resultTy);
  return success();
}

namespace {
class ConstSizeOpConversion : public OpConversionPattern<ConstSizeOp> {
public:
  using OpConversionPattern<ConstSizeOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(ConstSizeOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult ConstSizeOpConversion::matchAndRewrite(
    ConstSizeOp op, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, op.value().getSExtValue());
  return success();
}

namespace {
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
  using OpConversionPattern<GetExtentOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(GetExtentOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult GetExtentOpConverter::matchAndRewrite(
    GetExtentOp op, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  GetExtentOp::Adaptor transformed(operands);

  // For now, only error-free types are supported by this lowering.
  if (op.getType().isa<SizeType>())
    return failure();

  // Derive shape extent directly from shape origin if possible. This
  // circumvents the necessity to materialize the shape in memory.
  if (auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>()) {
    if (shapeOfOp.arg().getType().isa<ShapedType>()) {
      rewriter.replaceOpWithNewOp<DimOp>(op, shapeOfOp.arg(),
                                         transformed.dim());
      return success();
    }
  }

  rewriter.replaceOpWithNewOp<ExtractElementOp>(op, rewriter.getIndexType(),
                                                transformed.shape(),
                                                ValueRange{transformed.dim()});
  return success();
}

namespace {
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
public:
  using OpConversionPattern<shape::RankOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult
RankOpConverter::matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
                                 ConversionPatternRewriter &rewriter) const {
  // For now, this lowering supports only error-free types.
  if (op.getType().isa<SizeType>())
    return failure();

  shape::RankOp::Adaptor transformed(operands);
  rewriter.replaceOpWithNewOp<DimOp>(op, transformed.shape(), 0);
  return success();
}

namespace {
/// Converts `shape.reduce` to `scf.for`.
struct ReduceOpConverter : public OpConversionPattern<shape::ReduceOp> {
public:
  using OpConversionPattern::OpConversionPattern;

  LogicalResult
  matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final;
};
} // namespace

LogicalResult
ReduceOpConverter::matchAndRewrite(shape::ReduceOp op, ArrayRef<Value> operands,
                                   ConversionPatternRewriter &rewriter) const {
  // For now, this lowering is only defined on `tensor<?xindex>` operands.
  if (op.shape().getType().isa<ShapeType>())
    return failure();

  auto loc = op.getLoc();
  shape::ReduceOp::Adaptor transformed(operands);

  Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
  Value one = rewriter.create<ConstantIndexOp>(loc, 1);
  Type indexTy = rewriter.getIndexType();
  Value rank = rewriter.create<DimOp>(loc, indexTy, transformed.shape(), zero);

  auto loop = rewriter.create<scf::ForOp>(
      loc, zero, rank, one, op.initVals(),
      [&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
        Value extent = b.create<ExtractElementOp>(loc, transformed.shape(), iv);

        SmallVector<Value, 2> mappedValues{iv, extent};
        mappedValues.append(args.begin(), args.end());

        BlockAndValueMapping mapping;
        Block *reduceBody = op.getBody();
        mapping.map(reduceBody->getArguments(), mappedValues);
        for (auto &nested : reduceBody->without_terminator())
          b.clone(nested, mapping);

        SmallVector<Value, 2> mappedResults;
        for (auto result : reduceBody->getTerminator()->getOperands())
          mappedResults.push_back(mapping.lookup(result));
        b.create<scf::YieldOp>(loc, mappedResults);
      });

  rewriter.replaceOp(op, loop.getResults());
  return success();
}

namespace {
/// Converts `shape.shape_eq` to an `scf.for` loop. For now, the lowering is
/// only defined on `tensor<?xindex>` operands. The test for equality first
/// compares their size and, if equal, checks every extent for equality.
///
/// Example:
///
/// %result = shape.shape_eq %a, %b : tensor<?xindex>, tensor<?xindex>
///
/// becomes
///
/// %c0 = constant 0 : index
/// %0 = dim %arg0, %c0 : tensor<?xindex>
/// %1 = dim %arg1, %c0 : tensor<?xindex>
/// %2 = cmpi "eq", %0, %1 : index
/// %result = scf.if %2 -> (i1) {
///   %c1 = constant 1 : index
///   %true = constant true
///   %4 = scf.for %arg2 = %c0 to %0 step %c1 iter_args(%arg3 = %true) -> (i1) {
///     %5 = extract_element %arg0[%arg2] : tensor<?xindex>
///     %6 = extract_element %arg1[%arg2] : tensor<?xindex>
///     %7 = cmpi "eq", %5, %6 : index
///     %8 = and %arg3, %7 : i1
///     scf.yield %8 : i1
///   }
///   scf.yield %4 : i1
/// } else {
///   %false = constant false
///   scf.yield %false : i1
/// }
///
struct ShapeEqOpConverter : public OpConversionPattern<ShapeEqOp> {
  using OpConversionPattern<ShapeEqOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult
ShapeEqOpConverter::matchAndRewrite(ShapeEqOp op, ArrayRef<Value> operands,
                                    ConversionPatternRewriter &rewriter) const {
  // For now, this lowering is only defined on `tensor<?xindex>` operands, not
  // on shapes.
  if (op.lhs().getType().isa<ShapeType>() ||
      op.rhs().getType().isa<ShapeType>()) {
    return failure();
  }

  ShapeEqOp::Adaptor transformed(operands);
  auto loc = op.getLoc();
  Type indexTy = rewriter.getIndexType();
  Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
  Value lhsRank = rewriter.create<DimOp>(loc, indexTy, transformed.lhs(), zero);
  Value rhsRank = rewriter.create<DimOp>(loc, indexTy, transformed.rhs(), zero);
  Value eqRank =
      rewriter.create<CmpIOp>(loc, CmpIPredicate::eq, lhsRank, rhsRank);
  Type i1Ty = rewriter.getI1Type();
  rewriter.replaceOpWithNewOp<IfOp>(
      op, i1Ty, eqRank,
      [&](OpBuilder &b, Location loc) {
        Value one = b.create<ConstantIndexOp>(loc, 1);
        Value init = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(true));
        auto loop = b.create<scf::ForOp>(
            loc, zero, lhsRank, one, ValueRange{init},
            [&](OpBuilder &b, Location nestedLoc, Value iv, ValueRange args) {
              Value conj = args[0];
              Value lhsExtent =
                  b.create<ExtractElementOp>(loc, transformed.lhs(), iv);
              Value rhsExtent =
                  b.create<ExtractElementOp>(loc, transformed.rhs(), iv);
              Value eqExtent = b.create<CmpIOp>(loc, CmpIPredicate::eq,
                                                lhsExtent, rhsExtent);
              Value conjNext = b.create<AndOp>(loc, conj, eqExtent);
              b.create<scf::YieldOp>(loc, ValueRange({conjNext}));
            });
        b.create<scf::YieldOp>(loc, loop.getResults());
      },
      [&](OpBuilder &b, Location loc) {
        Value result = b.create<ConstantOp>(loc, i1Ty, b.getBoolAttr(false));
        b.create<scf::YieldOp>(loc, result);
      });
  return success();
}

namespace {
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
public:
  using OpConversionPattern<ShapeOfOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override;
};
} // namespace

LogicalResult ShapeOfOpConversion::matchAndRewrite(
    ShapeOfOp op, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {

  // For now, only error-free types are supported by this lowering.
  if (op.getType().isa<ShapeType>())
    return failure();

  // For ranked tensor arguments, lower to `tensor_from_elements`.
  auto loc = op.getLoc();
  ShapeOfOp::Adaptor transformed(operands);
  Value tensor = transformed.arg();
  Type tensorTy = tensor.getType();
  if (tensorTy.isa<RankedTensorType>()) {

    // Build values for individual extents.
    SmallVector<Value, 8> extentValues;
    RankedTensorType rankedTensorTy = tensorTy.cast<RankedTensorType>();
    int64_t rank = rankedTensorTy.getRank();
    for (int64_t i = 0; i < rank; i++) {
      if (rankedTensorTy.isDynamicDim(i)) {
        Value extent = rewriter.create<DimOp>(loc, tensor, i);
        extentValues.push_back(extent);
      } else {
        Value extent =
            rewriter.create<ConstantIndexOp>(loc, rankedTensorTy.getDimSize(i));
        extentValues.push_back(extent);
      }
    }

    // Materialize extent tensor.
    Value staticExtentTensor = rewriter.create<TensorFromElementsOp>(
        loc, rewriter.getIndexType(), extentValues);
    rewriter.replaceOpWithNewOp<TensorCastOp>(op, staticExtentTensor,
                                              op.getType());
    return success();
  }

  // Lower to `dynamic_tensor_from_elements` otherwise.
  auto *ctx = rewriter.getContext();
  Value rank = rewriter.create<mlir::RankOp>(loc, tensor);
  rewriter.replaceOpWithNewOp<DynamicTensorFromElementsOp>(
      op, getExtentTensorType(ctx), ValueRange{rank},
      [&](OpBuilder &b, Location loc, ValueRange args) {
        Value dim = args.front();
        Value extent = b.create<DimOp>(loc, tensor, dim);
        b.create<mlir::YieldOp>(loc, extent);
      });

  return success();
}

namespace {
class ToExtentTensorOpConversion
    : public OpConversionPattern<ToExtentTensorOp> {
public:
  using OpConversionPattern<ToExtentTensorOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(ToExtentTensorOp op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    ToExtentTensorOpAdaptor adaptor(operands);

    if (!adaptor.input().getType().isa<RankedTensorType>())
      return rewriter.notifyMatchFailure(op, "input needs to be a tensor");

    rewriter.replaceOpWithNewOp<TensorCastOp>(op, adaptor.input(),
                                              op.getType());
    return success();
  }
};
} // namespace

namespace {
/// Conversion pass.
class ConvertShapeToStandardPass
    : public ConvertShapeToStandardBase<ConvertShapeToStandardPass> {

  void runOnOperation() override;
};
} // namespace

void ConvertShapeToStandardPass::runOnOperation() {
  // Setup target legality.
  MLIRContext &ctx = getContext();
  ConversionTarget target(ctx);
  target.addLegalDialect<StandardOpsDialect, SCFDialect>();
  target.addLegalOp<FuncOp, ModuleOp, ModuleTerminatorOp>();

  // Setup conversion patterns.
  OwningRewritePatternList patterns;
  populateShapeToStandardConversionPatterns(patterns, &ctx);

  // Apply conversion.
  auto module = getOperation();
  if (failed(applyPartialConversion(module, target, patterns)))
    signalPassFailure();
}

void mlir::populateShapeToStandardConversionPatterns(
    OwningRewritePatternList &patterns, MLIRContext *ctx) {
  // clang-format off
  patterns.insert<
      AnyOpConversion,
      BinaryOpConversion<AddOp, AddIOp>,
      BinaryOpConversion<MulOp, MulIOp>,
      BroadcastOpConverter,
      ConstShapeOpConverter,
      ConstSizeOpConversion,
      GetExtentOpConverter,
      RankOpConverter,
      ReduceOpConverter,
      ShapeEqOpConverter,
      ShapeOfOpConversion,
      ToExtentTensorOpConversion>(ctx);
  // clang-format on
}

std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertShapeToStandardPass() {
  return std::make_unique<ConvertShapeToStandardPass>();
}