LinalgToStandard.cpp
10.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//===- LinalgToStandard.cpp - conversion from Linalg to Standard dialect --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToStandard/LinalgToStandard.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
using namespace mlir;
using namespace mlir::linalg;
/// Helper function to extract the operand types that are passed to the
/// generated CallOp. MemRefTypes have their layout canonicalized since the
/// information is not used in signature generation.
/// Note that static size information is not modified.
template <typename LinalgOp>
static SmallVector<Type, 4> extractOperandTypes(Operation *op) {
SmallVector<Type, 4> result;
result.reserve(op->getNumOperands());
for (auto type : op->getOperandTypes()) {
// The underlying descriptor type (e.g. LLVM) does not have layout
// information. Canonicalizing the type at the level of std when going into
// a library call avoids needing to introduce DialectCastOp.
if (auto memrefType = type.dyn_cast<MemRefType>())
result.push_back(eraseStridedLayout(memrefType));
else
result.push_back(type);
}
return result;
}
template <>
SmallVector<Type, 4> extractOperandTypes<IndexedGenericOp>(Operation *op) {
auto *ctx = op->getContext();
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Type, 4> result(numLoops, IndexType::get(ctx));
auto canonicalizedOperands = extractOperandTypes<LinalgOp>(op);
result.append(canonicalizedOperands.begin(), canonicalizedOperands.end());
return result;
}
// Get a SymbolRefAttr containing the library function name for the LinalgOp.
// If the library function does not exist, insert a declaration.
template <typename LinalgOp>
static FlatSymbolRefAttr getLibraryCallSymbolRef(Operation *op,
PatternRewriter &rewriter) {
auto linalgOp = cast<LinalgOp>(op);
auto fnName = linalgOp.getLibraryCallName();
if (fnName.empty()) {
op->emitWarning("No library call defined for: ") << *op;
return {};
}
// fnName is a dynamic std::string, unique it via a SymbolRefAttr.
FlatSymbolRefAttr fnNameAttr = rewriter.getSymbolRefAttr(fnName);
auto module = op->getParentOfType<ModuleOp>();
if (module.lookupSymbol(fnName)) {
return fnNameAttr;
}
SmallVector<Type, 4> inputTypes(extractOperandTypes<LinalgOp>(op));
assert(op->getNumResults() == 0 &&
"Library call for linalg operation can be generated only for ops that "
"have void return types");
auto libFnType = FunctionType::get(inputTypes, {}, rewriter.getContext());
OpBuilder::InsertionGuard guard(rewriter);
// Insert before module terminator.
rewriter.setInsertionPoint(module.getBody(),
std::prev(module.getBody()->end()));
FuncOp funcOp =
rewriter.create<FuncOp>(op->getLoc(), fnNameAttr.getValue(), libFnType);
// Insert a function attribute that will trigger the emission of the
// corresponding `_mlir_ciface_xxx` interface so that external libraries see
// a normalized ABI. This interface is added during std to llvm conversion.
funcOp.setAttr("llvm.emit_c_interface", UnitAttr::get(op->getContext()));
return fnNameAttr;
}
namespace {
SmallVector<Value, 4>
createTypeCanonicalizedMemRefOperands(OpBuilder &b, Location loc,
ValueRange operands) {
SmallVector<Value, 4> res;
res.reserve(operands.size());
for (auto op : operands) {
auto memrefType = op.getType().dyn_cast<MemRefType>();
if (!memrefType) {
res.push_back(op);
continue;
}
Value cast =
b.create<MemRefCastOp>(loc, eraseStridedLayout(memrefType), op);
res.push_back(cast);
}
return res;
}
// LinalgOpConversion<LinalgOp> creates a new call to the type-canonicalized
// `LinalgOp::getLibraryCallName()` function.
// The implementation of the function can be either in the same module or in an
// externally linked library.
template <typename LinalgOp>
class LinalgOpConversion : public OpRewritePattern<LinalgOp> {
public:
using OpRewritePattern<LinalgOp>::OpRewritePattern;
LogicalResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
auto libraryCallName = getLibraryCallSymbolRef<LinalgOp>(op, rewriter);
if (!libraryCallName)
return failure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op.getLoc(),
op.getOperands()));
return success();
}
};
/// Conversion pattern specialization for CopyOp. This kicks in when both input
/// and output permutations are left unspecified or are the identity.
template <>
class LinalgOpConversion<CopyOp> : public OpRewritePattern<CopyOp> {
public:
using OpRewritePattern<CopyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CopyOp op,
PatternRewriter &rewriter) const override {
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
return failure();
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
return failure();
auto libraryCallName = getLibraryCallSymbolRef<CopyOp>(op, rewriter);
if (!libraryCallName)
return failure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op.getLoc(),
op.getOperands()));
return success();
}
};
/// Conversion pattern specialization for IndexedGenericOp.
template <>
class LinalgOpConversion<IndexedGenericOp>
: public OpRewritePattern<IndexedGenericOp> {
public:
using OpRewritePattern<IndexedGenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IndexedGenericOp op,
PatternRewriter &rewriter) const override {
auto libraryCallName =
getLibraryCallSymbolRef<IndexedGenericOp>(op, rewriter);
if (!libraryCallName)
return failure();
// TODO: Use induction variables values instead of zeros, when
// IndexedGenericOp is tiled.
auto zero = rewriter.create<mlir::ConstantOp>(
op.getLoc(), rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Value, 4> operands;
operands.reserve(numLoops + op.getNumOperands());
for (unsigned i = 0; i < numLoops; ++i)
operands.push_back(zero);
for (auto operand : op.getOperands())
operands.push_back(operand);
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op.getLoc(), operands));
return success();
}
};
/// A non-conversion rewrite pattern kicks in to convert CopyOp with
/// permutations into a sequence of TransposeOp and permutation-free CopyOp.
/// This interplays together with TransposeOpConversion and
/// LinalgConversion<CopyOp> to create a path to the LLVM dialect.
class CopyTransposeConversion : public OpRewritePattern<CopyOp> {
public:
using OpRewritePattern<CopyOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CopyOp op,
PatternRewriter &rewriter) const override {
Value in = op.input(), out = op.output();
// If either inputPerm or outputPerm are non-identities, insert transposes.
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
in = rewriter.create<linalg::TransposeOp>(op.getLoc(), in,
AffineMapAttr::get(*inputPerm));
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
out = rewriter.create<linalg::TransposeOp>(
op.getLoc(), out, AffineMapAttr::get(*outputPerm));
// If nothing was transposed, fail and let the conversion kick in.
if (in == op.input() && out == op.output())
return failure();
rewriter.replaceOpWithNewOp<CopyOp>(op, in, out);
return success();
}
};
} // namespace
/// Populate the given list with patterns that convert from Linalg to Standard.
void mlir::populateLinalgToStandardConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
// TODO: ConvOp conversion needs to export a descriptor with relevant
// attribute values such as kernel striding and dilation.
// clang-format off
patterns.insert<
CopyTransposeConversion,
LinalgOpConversion<ConvOp>,
LinalgOpConversion<PoolingMaxOp>,
LinalgOpConversion<PoolingMinOp>,
LinalgOpConversion<PoolingSumOp>,
LinalgOpConversion<CopyOp>,
LinalgOpConversion<FillOp>,
LinalgOpConversion<GenericOp>,
LinalgOpConversion<IndexedGenericOp>>(ctx);
// TODO: collect all auto-generated named ops with a tblgen directive.
patterns.insert<
LinalgOpConversion<DotOp>,
LinalgOpConversion<BatchMatmulOp>,
LinalgOpConversion<MatvecOp>,
LinalgOpConversion<VecmatOp>,
LinalgOpConversion<MatmulOp>,
LinalgOpConversion<ConvWOp>,
LinalgOpConversion<ConvNWCOp>,
LinalgOpConversion<ConvNCWOp>,
LinalgOpConversion<ConvHWOp>,
LinalgOpConversion<ConvNHWCOp>,
LinalgOpConversion<ConvNCHWOp>,
LinalgOpConversion<ConvDHWOp>,
LinalgOpConversion<ConvNDHWCOp>,
LinalgOpConversion<ConvNCDHWOp>>(ctx);
// clang-format on
}
namespace {
struct ConvertLinalgToStandardPass
: public ConvertLinalgToStandardBase<ConvertLinalgToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertLinalgToStandardPass::runOnOperation() {
auto module = getOperation();
ConversionTarget target(getContext());
target.addLegalDialect<AffineDialect, scf::SCFDialect, StandardOpsDialect>();
target.addLegalOp<ModuleOp, FuncOp, ModuleTerminatorOp, ReturnOp>();
target.addLegalOp<linalg::TransposeOp, linalg::ReshapeOp, linalg::RangeOp>();
OwningRewritePatternList patterns;
populateLinalgToStandardConversionPatterns(patterns, &getContext());
if (failed(applyFullConversion(module, target, patterns)))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertLinalgToStandardPass() {
return std::make_unique<ConvertLinalgToStandardPass>();
}