ConvertLaunchFuncToRuntimeCalls.cpp
16.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// GPU runtime calls. As most of GPU runtimes does not have a stable published
// ABI, this pass uses a slim runtime layer that builds on top of the public
// API from GPU runtime headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "../PassDetail.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
namespace {
class GpuToLLVMConversionPass
: public GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
public:
GpuToLLVMConversionPass(StringRef gpuBinaryAnnotation) {
if (!gpuBinaryAnnotation.empty())
this->gpuBinaryAnnotation = gpuBinaryAnnotation.str();
}
// Run the dialect converter on the module.
void runOnOperation() override;
};
class FunctionCallBuilder {
public:
FunctionCallBuilder(StringRef functionName, LLVM::LLVMType returnType,
ArrayRef<LLVM::LLVMType> argumentTypes)
: functionName(functionName),
functionType(LLVM::LLVMType::getFunctionTy(returnType, argumentTypes,
/*isVarArg=*/false)) {}
LLVM::CallOp create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const;
private:
StringRef functionName;
LLVM::LLVMType functionType;
};
template <typename OpTy>
class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
public:
explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
protected:
MLIRContext *context = &this->typeConverter.getContext();
LLVM::LLVMType llvmVoidType = LLVM::LLVMType::getVoidTy(context);
LLVM::LLVMType llvmPointerType = LLVM::LLVMType::getInt8PtrTy(context);
LLVM::LLVMType llvmPointerPointerType = llvmPointerType.getPointerTo();
LLVM::LLVMType llvmInt8Type = LLVM::LLVMType::getInt8Ty(context);
LLVM::LLVMType llvmInt32Type = LLVM::LLVMType::getInt32Ty(context);
LLVM::LLVMType llvmInt64Type = LLVM::LLVMType::getInt64Ty(context);
LLVM::LLVMType llvmIntPtrType = LLVM::LLVMType::getIntNTy(
context, this->typeConverter.getPointerBitwidth(0));
FunctionCallBuilder moduleLoadCallBuilder = {
"mgpuModuleLoad",
llvmPointerType /* void *module */,
{llvmPointerType /* void *cubin */}};
FunctionCallBuilder moduleGetFunctionCallBuilder = {
"mgpuModuleGetFunction",
llvmPointerType /* void *function */,
{
llvmPointerType, /* void *module */
llvmPointerType /* char *name */
}};
FunctionCallBuilder launchKernelCallBuilder = {
"mgpuLaunchKernel",
llvmVoidType,
{
llvmPointerType, /* void* f */
llvmIntPtrType, /* intptr_t gridXDim */
llvmIntPtrType, /* intptr_t gridyDim */
llvmIntPtrType, /* intptr_t gridZDim */
llvmIntPtrType, /* intptr_t blockXDim */
llvmIntPtrType, /* intptr_t blockYDim */
llvmIntPtrType, /* intptr_t blockZDim */
llvmInt32Type, /* unsigned int sharedMemBytes */
llvmPointerType, /* void *hstream */
llvmPointerPointerType, /* void **kernelParams */
llvmPointerPointerType /* void **extra */
}};
FunctionCallBuilder streamCreateCallBuilder = {
"mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
FunctionCallBuilder streamSynchronizeCallBuilder = {
"mgpuStreamSynchronize",
llvmVoidType,
{llvmPointerType /* void *stream */}};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuMemHostRegisterMemRef",
llvmVoidType,
{llvmIntPtrType /* intptr_t rank */,
llvmPointerType /* void *memrefDesc */,
llvmIntPtrType /* intptr_t elementSizeBytes */}};
};
/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertHostRegisterOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
public:
ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite patter to convert gpu.launch_func operations into a sequence of
/// GPU runtime calls. Currently it supports CUDA and ROCm (HIP).
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * moduleLoad -- loads the module given the cubin / hsaco data
/// * moduleGetFunction -- gets a handle to the actual kernel function
/// * getStreamHelper -- initializes a new compute stream on GPU
/// * launchKernel -- launches the kernel on a stream
/// * streamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class ConvertLaunchFuncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
public:
ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter,
StringRef gpuBinaryAnnotation)
: ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
gpuBinaryAnnotation(gpuBinaryAnnotation) {}
private:
Value generateParamsArray(gpu::LaunchFuncOp launchOp,
ArrayRef<Value> operands, OpBuilder &builder) const;
Value generateKernelNameConstant(StringRef moduleName, StringRef name,
Location loc, OpBuilder &builder) const;
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
llvm::SmallString<32> gpuBinaryAnnotation;
};
class EraseGpuModuleOpPattern : public OpRewritePattern<gpu::GPUModuleOp> {
using OpRewritePattern<gpu::GPUModuleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::GPUModuleOp op,
PatternRewriter &rewriter) const override {
// GPU kernel modules are no longer necessary since we have a global
// constant with the CUBIN, or HSACO data.
rewriter.eraseOp(op);
return success();
}
};
} // namespace
void GpuToLLVMConversionPass::runOnOperation() {
LLVMTypeConverter converter(&getContext());
OwningRewritePatternList patterns;
populateStdToLLVMConversionPatterns(converter, patterns);
populateGpuToLLVMConversionPatterns(converter, patterns, gpuBinaryAnnotation);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(getOperation(), target, patterns)))
signalPassFailure();
}
LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const {
auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
auto function = [&] {
if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
return function;
return OpBuilder(module.getBody()->getTerminator())
.create<LLVM::LLVMFuncOp>(loc, functionName, functionType);
}();
return builder.create<LLVM::CallOp>(
loc, const_cast<LLVM::LLVMType &>(functionType).getFunctionResultType(),
builder.getSymbolRefAttr(function), arguments);
}
// Returns whether value is of LLVM type.
static bool isLLVMType(Value value) {
return value.getType().isa<LLVM::LLVMType>();
}
LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (!llvm::all_of(operands, isLLVMType))
return rewriter.notifyMatchFailure(
op, "Cannot convert if operands aren't of LLVM type.");
Location loc = op->getLoc();
auto memRefType = cast<gpu::HostRegisterOp>(op).value().getType();
auto elementType = memRefType.cast<UnrankedMemRefType>().getElementType();
auto elementSize = getSizeInBytes(loc, elementType, rewriter);
auto arguments =
typeConverter.promoteOperands(loc, op->getOperands(), operands, rewriter);
arguments.push_back(elementSize);
hostRegisterCallBuilder.create(loc, rewriter, arguments);
rewriter.eraseOp(op);
return success();
}
// Creates a struct containing all kernel parameters on the stack and returns
// an array of type-erased pointers to the fields of the struct. The array can
// then be passed to the CUDA / ROCm (HIP) kernel launch calls.
// The generated code is essentially as follows:
//
// %struct = alloca(sizeof(struct { Parameters... }))
// %array = alloca(NumParameters * sizeof(void *))
// for (i : [0, NumParameters))
// %fieldPtr = llvm.getelementptr %struct[0, i]
// llvm.store parameters[i], %fieldPtr
// %elementPtr = llvm.getelementptr %array[i]
// llvm.store %fieldPtr, %elementPtr
// return %array
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray(
gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
OpBuilder &builder) const {
auto loc = launchOp.getLoc();
auto numKernelOperands = launchOp.getNumKernelOperands();
auto arguments = typeConverter.promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
operands.take_back(numKernelOperands), builder);
auto numArguments = arguments.size();
SmallVector<LLVM::LLVMType, 4> argumentTypes;
argumentTypes.reserve(numArguments);
for (auto argument : arguments)
argumentTypes.push_back(argument.getType().cast<LLVM::LLVMType>());
auto structType = LLVM::LLVMType::createStructTy(argumentTypes, StringRef());
auto one = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
builder.getI32IntegerAttr(1));
auto structPtr = builder.create<LLVM::AllocaOp>(
loc, structType.getPointerTo(), one, /*alignment=*/0);
auto arraySize = builder.create<LLVM::ConstantOp>(
loc, llvmInt32Type, builder.getI32IntegerAttr(numArguments));
auto arrayPtr = builder.create<LLVM::AllocaOp>(loc, llvmPointerPointerType,
arraySize, /*alignment=*/0);
auto zero = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
builder.getI32IntegerAttr(0));
for (auto en : llvm::enumerate(arguments)) {
auto index = builder.create<LLVM::ConstantOp>(
loc, llvmInt32Type, builder.getI32IntegerAttr(en.index()));
auto fieldPtr =
builder.create<LLVM::GEPOp>(loc, structType.getPointerTo(), structPtr,
ArrayRef<Value>{zero, index.getResult()});
builder.create<LLVM::StoreOp>(loc, en.value(), fieldPtr);
auto elementPtr = builder.create<LLVM::GEPOp>(loc, llvmPointerPointerType,
arrayPtr, index.getResult());
auto casted =
builder.create<LLVM::BitcastOp>(loc, llvmPointerType, fieldPtr);
builder.create<LLVM::StoreOp>(loc, casted, elementPtr);
}
return arrayPtr;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant(
StringRef moduleName, StringRef name, Location loc,
OpBuilder &builder) const {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(name.begin(), name.end());
kernelName.push_back('\0');
std::string globalName =
std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
LLVM::Linkage::Internal);
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
// hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
//
// %0 = call %binarygetter
// %1 = call %moduleLoad(%0)
// %2 = <see generateKernelNameConstant>
// %3 = call %moduleGetFunction(%1, %2)
// %4 = call %streamCreate()
// %5 = <see generateParamsArray>
// call %launchKernel(%3, <launchOp operands 0..5>, 0, %4, %5, nullptr)
// call %streamSynchronize(%4)
LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite(
Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (!llvm::all_of(operands, isLLVMType))
return rewriter.notifyMatchFailure(
op, "Cannot convert if operands aren't of LLVM type.");
auto launchOp = cast<gpu::LaunchFuncOp>(op);
Location loc = launchOp.getLoc();
// Create an LLVM global with CUBIN extracted from the kernel annotation and
// obtain a pointer to the first byte in it.
auto kernelModule = SymbolTable::lookupNearestSymbolFrom<gpu::GPUModuleOp>(
launchOp, launchOp.getKernelModuleName());
assert(kernelModule && "expected a kernel module");
auto binaryAttr = kernelModule.getAttrOfType<StringAttr>(gpuBinaryAnnotation);
if (!binaryAttr) {
kernelModule.emitOpError()
<< "missing " << gpuBinaryAnnotation << " attribute";
return failure();
}
SmallString<128> nameBuffer(kernelModule.getName());
nameBuffer.append(kGpuBinaryStorageSuffix);
Value data =
LLVM::createGlobalString(loc, rewriter, nameBuffer.str(),
binaryAttr.getValue(), LLVM::Linkage::Internal);
auto module = moduleLoadCallBuilder.create(loc, rewriter, data);
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto kernelName = generateKernelNameConstant(
launchOp.getKernelModuleName(), launchOp.getKernelName(), loc, rewriter);
auto function = moduleGetFunctionCallBuilder.create(
loc, rewriter, {module.getResult(0), kernelName});
auto zero = rewriter.create<LLVM::ConstantOp>(loc, llvmInt32Type,
rewriter.getI32IntegerAttr(0));
// Grab the global stream needed for execution.
auto stream = streamCreateCallBuilder.create(loc, rewriter, {});
// Create array of pointers to kernel arguments.
auto kernelParams = generateParamsArray(launchOp, operands, rewriter);
auto nullpointer = rewriter.create<LLVM::NullOp>(loc, llvmPointerPointerType);
launchKernelCallBuilder.create(
loc, rewriter,
{function.getResult(0), launchOp.gridSizeX(), launchOp.gridSizeY(),
launchOp.gridSizeZ(), launchOp.blockSizeX(), launchOp.blockSizeY(),
launchOp.blockSizeZ(), zero, /* sharedMemBytes */
stream.getResult(0), /* stream */
kernelParams, /* kernel params */
nullpointer /* extra */});
streamSynchronizeCallBuilder.create(loc, rewriter, stream.getResult(0));
rewriter.eraseOp(op);
return success();
}
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
mlir::createGpuToLLVMConversionPass(StringRef gpuBinaryAnnotation) {
return std::make_unique<GpuToLLVMConversionPass>(gpuBinaryAnnotation);
}
void mlir::populateGpuToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
StringRef gpuBinaryAnnotation) {
patterns.insert<ConvertHostRegisterOpToGpuRuntimeCallPattern>(converter);
patterns.insert<ConvertLaunchFuncOpToGpuRuntimeCallPattern>(
converter, gpuBinaryAnnotation);
patterns.insert<EraseGpuModuleOpPattern>(&converter.getContext());
}