LegalizerInfoTest.cpp 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
//===- llvm/unittest/CodeGen/GlobalISel/LegalizerInfoTest.cpp -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "GISelMITest.h"
#include "gtest/gtest.h"

using namespace llvm;
using namespace LegalizeActions;

// Define a couple of pretty printers to help debugging when things go wrong.
namespace llvm {
std::ostream &
operator<<(std::ostream &OS, const LegalizeAction Act) {
  switch (Act) {
  case Lower: OS << "Lower"; break;
  case Legal: OS << "Legal"; break;
  case NarrowScalar: OS << "NarrowScalar"; break;
  case WidenScalar:  OS << "WidenScalar"; break;
  case FewerElements:  OS << "FewerElements"; break;
  case MoreElements:  OS << "MoreElements"; break;
  case Libcall: OS << "Libcall"; break;
  case Custom: OS << "Custom"; break;
  case Bitcast: OS << "Bitcast"; break;
  case Unsupported: OS << "Unsupported"; break;
  case NotFound: OS << "NotFound"; break;
  case UseLegacyRules: OS << "UseLegacyRules"; break;
  }
  return OS;
}

std::ostream &operator<<(std::ostream &OS, const llvm::LegalizeActionStep Ty) {
  OS << "LegalizeActionStep(" << Ty.Action << ", " << Ty.TypeIdx << ", "
     << Ty.NewType << ')';
  return OS;
}
}

namespace {


TEST(LegalizerInfoTest, ScalarRISC) {
  using namespace TargetOpcode;
  LegalizerInfo L;
  // Typical RISCy set of operations based on AArch64.
  for (unsigned Op : {G_ADD, G_SUB}) {
    for (unsigned Size : {32, 64})
      L.setAction({Op, 0, LLT::scalar(Size)}, Legal);
    L.setLegalizeScalarToDifferentSizeStrategy(
        Op, 0, LegalizerInfo::widenToLargerTypesAndNarrowToLargest);
  }

  L.computeTables();

  for (unsigned opcode : {G_ADD, G_SUB}) {
    // Check we infer the correct types and actually do what we're told.
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(8)}}),
              LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(16)}}),
              LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(32)}}),
              LegalizeActionStep(Legal, 0, LLT{}));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(64)}}),
              LegalizeActionStep(Legal, 0, LLT{}));

    // Make sure the default for over-sized types applies.
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(128)}}),
              LegalizeActionStep(NarrowScalar, 0, LLT::scalar(64)));
    // Make sure we also handle unusual sizes
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(1)}}),
              LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(31)}}),
              LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(33)}}),
              LegalizeActionStep(WidenScalar, 0, LLT::scalar(64)));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(63)}}),
              LegalizeActionStep(WidenScalar, 0, LLT::scalar(64)));
    EXPECT_EQ(L.getAction({opcode, {LLT::scalar(65)}}),
              LegalizeActionStep(NarrowScalar, 0, LLT::scalar(64)));
  }
}

TEST(LegalizerInfoTest, VectorRISC) {
  using namespace TargetOpcode;
  LegalizerInfo L;
  // Typical RISCy set of operations based on ARM.
  L.setAction({G_ADD, LLT::vector(8, 8)}, Legal);
  L.setAction({G_ADD, LLT::vector(16, 8)}, Legal);
  L.setAction({G_ADD, LLT::vector(4, 16)}, Legal);
  L.setAction({G_ADD, LLT::vector(8, 16)}, Legal);
  L.setAction({G_ADD, LLT::vector(2, 32)}, Legal);
  L.setAction({G_ADD, LLT::vector(4, 32)}, Legal);

  L.setLegalizeVectorElementToDifferentSizeStrategy(
      G_ADD, 0, LegalizerInfo::widenToLargerTypesUnsupportedOtherwise);

  L.setAction({G_ADD, 0, LLT::scalar(32)}, Legal);

  L.computeTables();

  // Check we infer the correct types and actually do what we're told for some
  // simple cases.
  EXPECT_EQ(L.getAction({G_ADD, {LLT::vector(8, 8)}}),
            LegalizeActionStep(Legal, 0, LLT{}));
  EXPECT_EQ(L.getAction({G_ADD, {LLT::vector(8, 7)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::vector(8, 8)));
  EXPECT_EQ(L.getAction({G_ADD, {LLT::vector(2, 8)}}),
            LegalizeActionStep(MoreElements, 0, LLT::vector(8, 8)));
  EXPECT_EQ(L.getAction({G_ADD, {LLT::vector(8, 32)}}),
            LegalizeActionStep(FewerElements, 0, LLT::vector(4, 32)));
  // Check a few non-power-of-2 sizes:
  EXPECT_EQ(L.getAction({G_ADD, {LLT::vector(3, 3)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::vector(3, 8)));
  EXPECT_EQ(L.getAction({G_ADD, {LLT::vector(3, 8)}}),
            LegalizeActionStep(MoreElements, 0, LLT::vector(8, 8)));
}

TEST(LegalizerInfoTest, MultipleTypes) {
  using namespace TargetOpcode;
  LegalizerInfo L;
  LLT p0 = LLT::pointer(0, 64);
  LLT s64 = LLT::scalar(64);

  // Typical RISCy set of operations based on AArch64.
  L.setAction({G_PTRTOINT, 0, s64}, Legal);
  L.setAction({G_PTRTOINT, 1, p0}, Legal);

  L.setLegalizeScalarToDifferentSizeStrategy(
      G_PTRTOINT, 0, LegalizerInfo::widenToLargerTypesAndNarrowToLargest);

  L.computeTables();

  // Check we infer the correct types and actually do what we're told.
  EXPECT_EQ(L.getAction({G_PTRTOINT, {s64, p0}}),
            LegalizeActionStep(Legal, 0, LLT{}));

  // Make sure we also handle unusual sizes
  EXPECT_EQ(
      L.getAction({G_PTRTOINT, {LLT::scalar(65), s64}}),
      LegalizeActionStep(NarrowScalar, 0, s64));
  EXPECT_EQ(
      L.getAction({G_PTRTOINT, {s64, LLT::pointer(0, 32)}}),
      LegalizeActionStep(Unsupported, 1, LLT::pointer(0, 32)));
}

TEST(LegalizerInfoTest, MultipleSteps) {
  using namespace TargetOpcode;
  LegalizerInfo L;
  LLT s32 = LLT::scalar(32);
  LLT s64 = LLT::scalar(64);

  L.setLegalizeScalarToDifferentSizeStrategy(
      G_UREM, 0, LegalizerInfo::widenToLargerTypesUnsupportedOtherwise);
  L.setAction({G_UREM, 0, s32}, Lower);
  L.setAction({G_UREM, 0, s64}, Lower);

  L.computeTables();

  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(16)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(32)}}),
            LegalizeActionStep(Lower, 0, LLT::scalar(32)));
}

TEST(LegalizerInfoTest, SizeChangeStrategy) {
  using namespace TargetOpcode;
  LegalizerInfo L;
  for (unsigned Size : {1, 8, 16, 32})
    L.setAction({G_UREM, 0, LLT::scalar(Size)}, Legal);

  L.setLegalizeScalarToDifferentSizeStrategy(
      G_UREM, 0, LegalizerInfo::widenToLargerTypesUnsupportedOtherwise);
  L.computeTables();

  // Check we infer the correct types and actually do what we're told.
  for (unsigned Size : {1, 8, 16, 32}) {
    EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(Size)}}),
              LegalizeActionStep(Legal, 0, LLT{}));
  }
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(2)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::scalar(8)));
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(7)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::scalar(8)));
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(9)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::scalar(16)));
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(17)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(31)}}),
            LegalizeActionStep(WidenScalar, 0, LLT::scalar(32)));
  EXPECT_EQ(L.getAction({G_UREM, {LLT::scalar(33)}}),
            LegalizeActionStep(Unsupported, 0, LLT::scalar(33)));
}
}

#define EXPECT_ACTION(Action, Index, Type, Query)                              \
  do {                                                                         \
    auto A = LI.getAction(Query);                                              \
    EXPECT_EQ(LegalizeActionStep(Action, Index, Type), A) << A;                \
  } while (0)

TEST(LegalizerInfoTest, RuleSets) {
  using namespace TargetOpcode;

  const LLT s5 = LLT::scalar(5);
  const LLT s8 = LLT::scalar(8);
  const LLT s16 = LLT::scalar(16);
  const LLT s32 = LLT::scalar(32);
  const LLT s33 = LLT::scalar(33);
  const LLT s64 = LLT::scalar(64);

  const LLT v2s5 = LLT::vector(2, 5);
  const LLT v2s8 = LLT::vector(2, 8);
  const LLT v2s16 = LLT::vector(2, 16);
  const LLT v2s32 = LLT::vector(2, 32);
  const LLT v3s32 = LLT::vector(3, 32);
  const LLT v4s32 = LLT::vector(4, 32);
  const LLT v2s33 = LLT::vector(2, 33);
  const LLT v2s64 = LLT::vector(2, 64);

  const LLT p0 = LLT::pointer(0, 32);
  const LLT v3p0 = LLT::vector(3, p0);
  const LLT v4p0 = LLT::vector(4, p0);

  {
    LegalizerInfo LI;

    LI.getActionDefinitionsBuilder(G_IMPLICIT_DEF)
      .legalFor({v4s32, v4p0})
      .moreElementsToNextPow2(0);
    LI.computeTables();

    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_IMPLICIT_DEF, {s32}));
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_IMPLICIT_DEF, {v2s32}));
    EXPECT_ACTION(MoreElements, 0, v4p0, LegalityQuery(G_IMPLICIT_DEF, {v3p0}));
    EXPECT_ACTION(MoreElements, 0, v4s32, LegalityQuery(G_IMPLICIT_DEF, {v3s32}));
  }

  // Test minScalarOrElt
  {
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_OR)
      .legalFor({s32})
      .minScalarOrElt(0, s32);
    LI.computeTables();

    EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_OR, {s16}));
    EXPECT_ACTION(WidenScalar, 0, v2s32, LegalityQuery(G_OR, {v2s16}));
  }

  // Test maxScalarOrELt
  {
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_AND)
      .legalFor({s16})
      .maxScalarOrElt(0, s16);
    LI.computeTables();

    EXPECT_ACTION(NarrowScalar, 0, s16, LegalityQuery(G_AND, {s32}));
    EXPECT_ACTION(NarrowScalar, 0, v2s16, LegalityQuery(G_AND, {v2s32}));
  }

  // Test clampScalarOrElt
  {
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_XOR)
      .legalFor({s16})
      .clampScalarOrElt(0, s16, s32);
    LI.computeTables();

    EXPECT_ACTION(NarrowScalar, 0, s32, LegalityQuery(G_XOR, {s64}));
    EXPECT_ACTION(WidenScalar, 0, s16, LegalityQuery(G_XOR, {s8}));

    // Make sure the number of elements is preserved.
    EXPECT_ACTION(NarrowScalar, 0, v2s32, LegalityQuery(G_XOR, {v2s64}));
    EXPECT_ACTION(WidenScalar, 0, v2s16, LegalityQuery(G_XOR, {v2s8}));
  }

  // Test minScalar
  {
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_OR)
      .legalFor({s32})
      .minScalar(0, s32);
    LI.computeTables();

    // Only handle scalars, ignore vectors.
    EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_OR, {s16}));
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_OR, {v2s16}));
  }

  // Test maxScalar
  {
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_AND)
      .legalFor({s16})
      .maxScalar(0, s16);
    LI.computeTables();

    // Only handle scalars, ignore vectors.
    EXPECT_ACTION(NarrowScalar, 0, s16, LegalityQuery(G_AND, {s32}));
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_AND, {v2s32}));
  }

  // Test clampScalar
  {
    LegalizerInfo LI;

    LI.getActionDefinitionsBuilder(G_XOR)
      .legalFor({s16})
      .clampScalar(0, s16, s32);
    LI.computeTables();

    EXPECT_ACTION(NarrowScalar, 0, s32, LegalityQuery(G_XOR, {s64}));
    EXPECT_ACTION(WidenScalar, 0, s16, LegalityQuery(G_XOR, {s8}));

    // Only handle scalars, ignore vectors.
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_XOR, {v2s64}));
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_XOR, {v2s8}));
  }

  // Test widenScalarOrEltToNextPow2
  {
    LegalizerInfo LI;

    LI.getActionDefinitionsBuilder(G_AND)
      .legalFor({s32})
      .widenScalarOrEltToNextPow2(0, 32);
    LI.computeTables();

    // Handle scalars and vectors
    EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_AND, {s5}));
    EXPECT_ACTION(WidenScalar, 0, v2s32, LegalityQuery(G_AND, {v2s5}));
    EXPECT_ACTION(WidenScalar, 0, s64, LegalityQuery(G_AND, {s33}));
    EXPECT_ACTION(WidenScalar, 0, v2s64, LegalityQuery(G_AND, {v2s33}));
  }

  // Test widenScalarToNextPow2
  {
    LegalizerInfo LI;

    LI.getActionDefinitionsBuilder(G_AND)
      .legalFor({s32})
      .widenScalarToNextPow2(0, 32);
    LI.computeTables();

    EXPECT_ACTION(WidenScalar, 0, s32, LegalityQuery(G_AND, {s5}));
    EXPECT_ACTION(WidenScalar, 0, s64, LegalityQuery(G_AND, {s33}));

    // Do nothing for vectors.
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_AND, {v2s5}));
    EXPECT_ACTION(Unsupported, 0, LLT(), LegalityQuery(G_AND, {v2s33}));
  }
}

TEST(LegalizerInfoTest, MMOAlignment) {
  using namespace TargetOpcode;

  const LLT s32 = LLT::scalar(32);
  const LLT p0 = LLT::pointer(0, 64);

  {
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_LOAD)
      .legalForTypesWithMemDesc({{s32, p0, 32, 32}});

    LI.computeTables();

    EXPECT_ACTION(Legal, 0, LLT(),
                  LegalityQuery(G_LOAD, {s32, p0},
                                LegalityQuery::MemDesc{
                                  32, 32, AtomicOrdering::NotAtomic}));
    EXPECT_ACTION(Unsupported, 0, LLT(),
                  LegalityQuery(G_LOAD, {s32, p0},
                                LegalityQuery::MemDesc{
                                  32, 16, AtomicOrdering::NotAtomic }));
    EXPECT_ACTION(Unsupported, 0, LLT(),
                  LegalityQuery(G_LOAD, {s32, p0},
                                LegalityQuery::MemDesc{
                                  32, 8, AtomicOrdering::NotAtomic}));
  }

  // Test that the maximum supported alignment value isn't truncated
  {
    // Maximum IR defined alignment in bytes.
    const uint64_t MaxAlignment = UINT64_C(1) << 29;
    const uint64_t MaxAlignInBits = 8 * MaxAlignment;
    LegalizerInfo LI;
    LI.getActionDefinitionsBuilder(G_LOAD)
      .legalForTypesWithMemDesc({{s32, p0, 32, MaxAlignInBits}});

    LI.computeTables();

    EXPECT_ACTION(Legal, 0, LLT(),
                  LegalityQuery(G_LOAD, {s32, p0},
                                LegalityQuery::MemDesc{32,
                                    MaxAlignInBits, AtomicOrdering::NotAtomic}));
    EXPECT_ACTION(Unsupported, 0, LLT(),
                  LegalityQuery(G_LOAD, {s32, p0},
                                LegalityQuery::MemDesc{
                                  32, 8, AtomicOrdering::NotAtomic }));
  }
}

// This code sequence doesn't do anything, but it covers a previously uncovered
// codepath that used to crash in MSVC x86_32 debug mode.
TEST(LegalizerInfoTest, MSVCDebugMiscompile) {
  const LLT S1 = LLT::scalar(1);
  const LLT P0 = LLT::pointer(0, 32);
  LegalizerInfo LI;
  auto Builder = LI.getActionDefinitionsBuilder(TargetOpcode::G_PTRTOINT);
  (void)Builder.legalForCartesianProduct({S1}, {P0});
}