TFUtilsTest.cpp
4.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
using namespace llvm;
extern const char *TestMainArgv0;
// NOTE! This test model is currently also used by test/Transforms/Inline/ML tests
//- relevant if updating this model.
static std::string getModelPath() {
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
return std::string(InputsDir);
}
// Test observable behavior when no model is provided.
TEST(TFUtilsTest, NoModel) {
TFModelEvaluator Evaluator("", {}, {});
EXPECT_FALSE(Evaluator.isValid());
}
// Test we can correctly load a savedmodel and evaluate it.
TEST(TFUtilsTest, LoadAndExecuteTest) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
const static int64_t KnownSize = 214;
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1", {1, KnownSize})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
EXPECT_TRUE(Evaluator.isValid());
int32_t *V = Evaluator.getInput<int32_t>(0);
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<size_t>(Ret), 80);
EXPECT_EQ(ER->getUntypedTensorValue(0),
reinterpret_cast<const void *>(ER->getTensorValue<float>(0)));
}
// The input vector should be unchanged
for (auto I = 0; I < KnownSize; ++I) {
EXPECT_EQ(V[I], 1);
}
// Zero-out the unused position '0' of the instruction histogram, which is
// after the first 9 calculated values. Should the the same result.
V[9] = 0;
{
auto ER = Evaluator.evaluate();
EXPECT_TRUE(ER.hasValue());
float Ret = *ER->getTensorValue<float>(0);
EXPECT_EQ(static_cast<size_t>(Ret), 80);
}
}
// Test incorrect input setup
TEST(TFUtilsTest, EvalError) {
// We use the ir2native model for test. We know it has one feature of
// dimension (1, 214)
const static int64_t KnownSize = 213;
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
"serving_default_input_1", {1, KnownSize})};
std::vector<TensorSpec> OutputSpecs{
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
EXPECT_TRUE(Evaluator.isValid());
int32_t *V = Evaluator.getInput<int32_t>(0);
// Fill it up with 1's, we know the output.
for (auto I = 0; I < KnownSize; ++I) {
V[I] = 1;
}
auto ER = Evaluator.evaluate();
EXPECT_FALSE(ER.hasValue());
EXPECT_FALSE(Evaluator.isValid());
}
TEST(TFUtilsTest, JSONParsing) {
auto Value = json::parse(
R"({"name": "tensor_name",
"port": 2,
"type": "int32_t",
"shape":[1,4]
})");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_TRUE(Spec.hasValue());
EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2));
}
TEST(TFUtilsTest, JSONParsingInvalidTensorType) {
auto Value = json::parse(
R"(
{"name": "tensor_name",
"port": 2,
"type": "no such type",
"shape":[1,4]
}
)");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
auto Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_FALSE(Spec.hasValue());
}
TEST(TFUtilsTest, TensorSpecSizesAndTypes) {
auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1});
auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1});
auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10});
auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10});
EXPECT_TRUE(Spec1D.isElementType<int16_t>());
EXPECT_FALSE(Spec3DLarge.isElementType<double>());
EXPECT_EQ(Spec1D.getElementCount(), 1);
EXPECT_EQ(Spec2D.getElementCount(), 1);
EXPECT_EQ(Spec1DLarge.getElementCount(), 10);
EXPECT_EQ(Spec3DLarge.getElementCount(), 80);
EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float));
EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
}