sdiv.ll 21.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -correlated-propagation -S | FileCheck %s

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"

define void @test0(i32 %n) {
; CHECK-LABEL: @test0(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br label [[FOR_COND:%.*]]
; CHECK:       for.cond:
; CHECK-NEXT:    [[J_0:%.*]] = phi i32 [ [[N:%.*]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[FOR_BODY:%.*]] ]
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[J_0]], 1
; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK:       for.body:
; CHECK-NEXT:    [[DIV1]] = udiv i32 [[J_0]], 2
; CHECK-NEXT:    br label [[FOR_COND]]
; CHECK:       for.end:
; CHECK-NEXT:    ret void
;
entry:
  br label %for.cond

for.cond:                                         ; preds = %for.body, %entry
  %j.0 = phi i32 [ %n, %entry ], [ %div, %for.body ]
  %cmp = icmp sgt i32 %j.0, 1
  br i1 %cmp, label %for.body, label %for.end

for.body:                                         ; preds = %for.cond
  %div = sdiv i32 %j.0, 2
  br label %for.cond

for.end:                                          ; preds = %for.cond
  ret void
}

define void @test1(i32 %n) {
; CHECK-LABEL: @test1(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br label [[FOR_COND:%.*]]
; CHECK:       for.cond:
; CHECK-NEXT:    [[J_0:%.*]] = phi i32 [ [[N:%.*]], [[ENTRY:%.*]] ], [ [[DIV:%.*]], [[FOR_BODY:%.*]] ]
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[J_0]], -2
; CHECK-NEXT:    br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK:       for.body:
; CHECK-NEXT:    [[DIV]] = sdiv i32 [[J_0]], 2
; CHECK-NEXT:    br label [[FOR_COND]]
; CHECK:       for.end:
; CHECK-NEXT:    ret void
;
entry:
  br label %for.cond

for.cond:                                         ; preds = %for.body, %entry
  %j.0 = phi i32 [ %n, %entry ], [ %div, %for.body ]
  %cmp = icmp sgt i32 %j.0, -2
  br i1 %cmp, label %for.body, label %for.end

for.body:                                         ; preds = %for.cond
  %div = sdiv i32 %j.0, 2
  br label %for.cond

for.end:                                          ; preds = %for.cond
  ret void
}

define void @test2(i32 %n) {
; CHECK-LABEL: @test2(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 1
; CHECK-NEXT:    br i1 [[CMP]], label [[BB:%.*]], label [[EXIT:%.*]]
; CHECK:       bb:
; CHECK-NEXT:    [[DIV1:%.*]] = udiv i32 [[N]], 2
; CHECK-NEXT:    br label [[EXIT]]
; CHECK:       exit:
; CHECK-NEXT:    ret void
;
entry:
  %cmp = icmp sgt i32 %n, 1
  br i1 %cmp, label %bb, label %exit

bb:
  %div = sdiv i32 %n, 2
  br label %exit

exit:
  ret void
}

; looping case where loop has exactly one block
; at the point of sdiv, we know that %a is always greater than 0,
; because of the guard before it, so we can transform it to udiv.
declare void @llvm.experimental.guard(i1,...)
define void @test4(i32 %n) {
; CHECK-LABEL: @test4(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]]
; CHECK:       loop:
; CHECK-NEXT:    [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[LOOP]] ]
; CHECK-NEXT:    [[COND:%.*]] = icmp sgt i32 [[A]], 4
; CHECK-NEXT:    call void (i1, ...) @llvm.experimental.guard(i1 [[COND]]) [ "deopt"() ]
; CHECK-NEXT:    [[DIV1]] = udiv i32 [[A]], 6
; CHECK-NEXT:    br i1 [[COND]], label [[LOOP]], label [[EXIT]]
; CHECK:       exit:
; CHECK-NEXT:    ret void
;
entry:
  %cmp = icmp sgt i32 %n, 0
  br i1 %cmp, label %loop, label %exit

loop:
  %a = phi i32 [ %n, %entry ], [ %div, %loop ]
  %cond = icmp sgt i32 %a, 4
  call void(i1,...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
  %div = sdiv i32 %a, 6
  br i1 %cond, label %loop, label %exit

exit:
  ret void
}

; same test as above with assume instead of guard.
declare void @llvm.assume(i1)
define void @test5(i32 %n) {
; CHECK-LABEL: @test5(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT:    br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]]
; CHECK:       loop:
; CHECK-NEXT:    [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[LOOP]] ]
; CHECK-NEXT:    [[COND:%.*]] = icmp sgt i32 [[A]], 4
; CHECK-NEXT:    call void @llvm.assume(i1 [[COND]])
; CHECK-NEXT:    [[DIV1]] = udiv i32 [[A]], 6
; CHECK-NEXT:    [[LOOPCOND:%.*]] = icmp sgt i32 [[DIV1]], 8
; CHECK-NEXT:    br i1 [[LOOPCOND]], label [[LOOP]], label [[EXIT]]
; CHECK:       exit:
; CHECK-NEXT:    ret void
;
entry:
  %cmp = icmp sgt i32 %n, 0
  br i1 %cmp, label %loop, label %exit

loop:
  %a = phi i32 [ %n, %entry ], [ %div, %loop ]
  %cond = icmp sgt i32 %a, 4
  call void @llvm.assume(i1 %cond)
  %div = sdiv i32 %a, 6
  %loopcond = icmp sgt i32 %div, 8
  br i1 %loopcond, label %loop, label %exit

exit:
  ret void
}

; Now, let's try various domain combinations for operands.

define i32 @test6_pos_pos(i32 %x, i32 %y) {
; CHECK-LABEL: @test6_pos_pos(
; CHECK-NEXT:    [[C0:%.*]] = icmp sge i32 [[X:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i32 [[Y:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[DIV1:%.*]] = udiv i32 [[X]], [[Y]]
; CHECK-NEXT:    ret i32 [[DIV1]]
;
  %c0 = icmp sge i32 %x, 0
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i32 %y, 0
  call void @llvm.assume(i1 %c1)

  %div = sdiv i32 %x, %y
  ret i32 %div
}
define i32 @test7_pos_neg(i32 %x, i32 %y) {
; CHECK-LABEL: @test7_pos_neg(
; CHECK-NEXT:    [[C0:%.*]] = icmp sge i32 [[X:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sle i32 [[Y:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[Y_NONNEG:%.*]] = sub i32 0, [[Y]]
; CHECK-NEXT:    [[DIV1:%.*]] = udiv i32 [[X]], [[Y_NONNEG]]
; CHECK-NEXT:    [[DIV1_NEG:%.*]] = sub i32 0, [[DIV1]]
; CHECK-NEXT:    ret i32 [[DIV1_NEG]]
;
  %c0 = icmp sge i32 %x, 0
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sle i32 %y, 0
  call void @llvm.assume(i1 %c1)

  %div = sdiv i32 %x, %y
  ret i32 %div
}
define i32 @test8_neg_pos(i32 %x, i32 %y) {
; CHECK-LABEL: @test8_neg_pos(
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i32 [[X:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i32 [[Y:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[X_NONNEG:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[DIV1:%.*]] = udiv i32 [[X_NONNEG]], [[Y]]
; CHECK-NEXT:    [[DIV1_NEG:%.*]] = sub i32 0, [[DIV1]]
; CHECK-NEXT:    ret i32 [[DIV1_NEG]]
;
  %c0 = icmp sle i32 %x, 0
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i32 %y, 0
  call void @llvm.assume(i1 %c1)

  %div = sdiv i32 %x, %y
  ret i32 %div
}
define i32 @test9_neg_neg(i32 %x, i32 %y) {
; CHECK-LABEL: @test9_neg_neg(
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i32 [[X:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sle i32 [[Y:%.*]], 0
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[X_NONNEG:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT:    [[Y_NONNEG:%.*]] = sub i32 0, [[Y]]
; CHECK-NEXT:    [[DIV1:%.*]] = udiv i32 [[X_NONNEG]], [[Y_NONNEG]]
; CHECK-NEXT:    ret i32 [[DIV1]]
;
  %c0 = icmp sle i32 %x, 0
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sle i32 %y, 0
  call void @llvm.assume(i1 %c1)

  %div = sdiv i32 %x, %y
  ret i32 %div
}

; After making division unsigned, can we narrow it?
define i32 @test10_narrow(i32 %x, i32 %y) {
; CHECK-LABEL: @test10_narrow(
; CHECK-NEXT:    [[C0:%.*]] = icmp ult i32 [[X:%.*]], 128
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp ult i32 [[Y:%.*]], 128
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[DIV1_LHS_TRUNC:%.*]] = trunc i32 [[X]] to i8
; CHECK-NEXT:    [[DIV1_RHS_TRUNC:%.*]] = trunc i32 [[Y]] to i8
; CHECK-NEXT:    [[DIV12:%.*]] = udiv i8 [[DIV1_LHS_TRUNC]], [[DIV1_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV1_ZEXT:%.*]] = zext i8 [[DIV12]] to i32
; CHECK-NEXT:    ret i32 [[DIV1_ZEXT]]
;
  %c0 = icmp ult i32 %x, 128
  call void @llvm.assume(i1 %c0)
  %c1 = icmp ult i32 %y, 128
  call void @llvm.assume(i1 %c1)

  %div = sdiv i32 %x, %y
  ret i32 %div
}

; Ok, but what about narrowing sdiv in general?

; If both operands are i15, it's uncontroversial - we can truncate to i16
define i64 @test11_i15_i15(i64 %x, i64 %y) {
; CHECK-LABEL: @test11_i15_i15(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 16383
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -16384
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 16383
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -16384
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; But if operands are i16, we can only truncate to i32, because we can't
; rule out UB of  i16 INT_MIN s/ i16 -1
define i64 @test12_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test12_i16_i16(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 32767
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -32768
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 32767
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -32768
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe.
define i64 @test13_i16_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test13_i16_u15(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 32767
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -32768
  call void @llvm.assume(i1 %c1)

  %c2 = icmp ule i64 %y, 32767
  call void @llvm.assume(i1 %c2)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; And likewise, if we know that if the divident is never i16 INT_MIN,
; we can truncate to i16.
define i64 @test14_i16safe_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test14_i16safe_i16(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 32767
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sgt i64 %x, -32768
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 32767
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -32768
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; Of course, both of the conditions can happen at once.
define i64 @test15_i16safe_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test15_i16safe_u15(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 32767
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sgt i64 %x, -32768
  call void @llvm.assume(i1 %c1)

  %c2 = icmp ule i64 %y, 32767
  call void @llvm.assume(i1 %c2)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; We at most truncate to i8
define i64 @test16_i4_i4(i64 %x, i64 %y) {
; CHECK-LABEL: @test16_i4_i4(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -4
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -4
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i8
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i8
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i8 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i8 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 3
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -4
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 3
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -4
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; And we round up to the powers of two
define i64 @test17_i9_i9(i64 %x, i64 %y) {
; CHECK-LABEL: @test17_i9_i9(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -256
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -256
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 255
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -256
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 255
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -256
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; Don't widen the operation to the next power of two if it wasn't a power of two.
define i9 @test18_i9_i9(i9 %x, i9 %y) {
; CHECK-LABEL: @test18_i9_i9(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i9 [[X]], -256
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i9 [[Y]], -256
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV:%.*]] = sdiv i9 [[X]], [[Y]]
; CHECK-NEXT:    ret i9 [[DIV]]
;
entry:
  %c0 = icmp sle i9 %x, 255
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i9 %x, -256
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i9 %y, 255
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i9 %y, -256
  call void @llvm.assume(i1 %c3)

  %div = sdiv i9 %x, %y
  ret i9 %div
}
define i10 @test19_i10_i10(i10 %x, i10 %y) {
; CHECK-LABEL: @test19_i10_i10(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i10 [[X]], -256
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i10 [[Y]], -256
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV:%.*]] = sdiv i10 [[X]], [[Y]]
; CHECK-NEXT:    ret i10 [[DIV]]
;
entry:
  %c0 = icmp sle i10 %x, 255
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i10 %x, -256
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i10 %y, 255
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i10 %y, -256
  call void @llvm.assume(i1 %c3)

  %div = sdiv i10 %x, %y
  ret i10 %div
}

; Note that we need to take the maximal bitwidth, in which both of the operands are representable!
define i64 @test20_i16_i18(i64 %x, i64 %y) {
; CHECK-LABEL: @test20_i16_i18(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -65536
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 16383
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -16384
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 65535
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -65536
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}
define i64 @test21_i18_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test21_i18_i16(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -65536
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 65535
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -65536
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 16383
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -16384
  call void @llvm.assume(i1 %c3)

  %div = sdiv i64 %x, %y
  ret i64 %div
}

; Ensure that we preserve exact-ness
define i64 @test22_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test22_i16_i16(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT:    [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT:    [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT:    call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT:    [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT:    call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT:    [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT:    [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT:    [[DIV1:%.*]] = sdiv exact i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT:    [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT:    ret i64 [[DIV_SEXT]]
;
entry:
  %c0 = icmp sle i64 %x, 32767
  call void @llvm.assume(i1 %c0)
  %c1 = icmp sge i64 %x, -32768
  call void @llvm.assume(i1 %c1)

  %c2 = icmp sle i64 %y, 32767
  call void @llvm.assume(i1 %c2)
  %c3 = icmp sge i64 %y, -32768
  call void @llvm.assume(i1 %c3)

  %div = sdiv exact i64 %x, %y
  ret i64 %div
}