sdiv.ll
21.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -correlated-propagation -S | FileCheck %s
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
define void @test0(i32 %n) {
; CHECK-LABEL: @test0(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_COND:%.*]]
; CHECK: for.cond:
; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ [[N:%.*]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[FOR_BODY:%.*]] ]
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[J_0]], 1
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[DIV1]] = udiv i32 [[J_0]], 2
; CHECK-NEXT: br label [[FOR_COND]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
entry:
br label %for.cond
for.cond: ; preds = %for.body, %entry
%j.0 = phi i32 [ %n, %entry ], [ %div, %for.body ]
%cmp = icmp sgt i32 %j.0, 1
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%div = sdiv i32 %j.0, 2
br label %for.cond
for.end: ; preds = %for.cond
ret void
}
define void @test1(i32 %n) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_COND:%.*]]
; CHECK: for.cond:
; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ [[N:%.*]], [[ENTRY:%.*]] ], [ [[DIV:%.*]], [[FOR_BODY:%.*]] ]
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[J_0]], -2
; CHECK-NEXT: br i1 [[CMP]], label [[FOR_BODY]], label [[FOR_END:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[DIV]] = sdiv i32 [[J_0]], 2
; CHECK-NEXT: br label [[FOR_COND]]
; CHECK: for.end:
; CHECK-NEXT: ret void
;
entry:
br label %for.cond
for.cond: ; preds = %for.body, %entry
%j.0 = phi i32 [ %n, %entry ], [ %div, %for.body ]
%cmp = icmp sgt i32 %j.0, -2
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
%div = sdiv i32 %j.0, 2
br label %for.cond
for.end: ; preds = %for.cond
ret void
}
define void @test2(i32 %n) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 1
; CHECK-NEXT: br i1 [[CMP]], label [[BB:%.*]], label [[EXIT:%.*]]
; CHECK: bb:
; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[N]], 2
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
%cmp = icmp sgt i32 %n, 1
br i1 %cmp, label %bb, label %exit
bb:
%div = sdiv i32 %n, 2
br label %exit
exit:
ret void
}
; looping case where loop has exactly one block
; at the point of sdiv, we know that %a is always greater than 0,
; because of the guard before it, so we can transform it to udiv.
declare void @llvm.experimental.guard(i1,...)
define void @test4(i32 %n) {
; CHECK-LABEL: @test4(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[COND:%.*]] = icmp sgt i32 [[A]], 4
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND]]) [ "deopt"() ]
; CHECK-NEXT: [[DIV1]] = udiv i32 [[A]], 6
; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
%cmp = icmp sgt i32 %n, 0
br i1 %cmp, label %loop, label %exit
loop:
%a = phi i32 [ %n, %entry ], [ %div, %loop ]
%cond = icmp sgt i32 %a, 4
call void(i1,...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
%div = sdiv i32 %a, 6
br i1 %cond, label %loop, label %exit
exit:
ret void
}
; same test as above with assume instead of guard.
declare void @llvm.assume(i1)
define void @test5(i32 %n) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP]], label [[LOOP:%.*]], label [[EXIT:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[A:%.*]] = phi i32 [ [[N]], [[ENTRY:%.*]] ], [ [[DIV1:%.*]], [[LOOP]] ]
; CHECK-NEXT: [[COND:%.*]] = icmp sgt i32 [[A]], 4
; CHECK-NEXT: call void @llvm.assume(i1 [[COND]])
; CHECK-NEXT: [[DIV1]] = udiv i32 [[A]], 6
; CHECK-NEXT: [[LOOPCOND:%.*]] = icmp sgt i32 [[DIV1]], 8
; CHECK-NEXT: br i1 [[LOOPCOND]], label [[LOOP]], label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: ret void
;
entry:
%cmp = icmp sgt i32 %n, 0
br i1 %cmp, label %loop, label %exit
loop:
%a = phi i32 [ %n, %entry ], [ %div, %loop ]
%cond = icmp sgt i32 %a, 4
call void @llvm.assume(i1 %cond)
%div = sdiv i32 %a, 6
%loopcond = icmp sgt i32 %div, 8
br i1 %loopcond, label %loop, label %exit
exit:
ret void
}
; Now, let's try various domain combinations for operands.
define i32 @test6_pos_pos(i32 %x, i32 %y) {
; CHECK-LABEL: @test6_pos_pos(
; CHECK-NEXT: [[C0:%.*]] = icmp sge i32 [[X:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i32 [[Y:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X]], [[Y]]
; CHECK-NEXT: ret i32 [[DIV1]]
;
%c0 = icmp sge i32 %x, 0
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i32 %y, 0
call void @llvm.assume(i1 %c1)
%div = sdiv i32 %x, %y
ret i32 %div
}
define i32 @test7_pos_neg(i32 %x, i32 %y) {
; CHECK-LABEL: @test7_pos_neg(
; CHECK-NEXT: [[C0:%.*]] = icmp sge i32 [[X:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sle i32 [[Y:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[Y_NONNEG:%.*]] = sub i32 0, [[Y]]
; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X]], [[Y_NONNEG]]
; CHECK-NEXT: [[DIV1_NEG:%.*]] = sub i32 0, [[DIV1]]
; CHECK-NEXT: ret i32 [[DIV1_NEG]]
;
%c0 = icmp sge i32 %x, 0
call void @llvm.assume(i1 %c0)
%c1 = icmp sle i32 %y, 0
call void @llvm.assume(i1 %c1)
%div = sdiv i32 %x, %y
ret i32 %div
}
define i32 @test8_neg_pos(i32 %x, i32 %y) {
; CHECK-LABEL: @test8_neg_pos(
; CHECK-NEXT: [[C0:%.*]] = icmp sle i32 [[X:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i32 [[Y:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[X_NONNEG:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X_NONNEG]], [[Y]]
; CHECK-NEXT: [[DIV1_NEG:%.*]] = sub i32 0, [[DIV1]]
; CHECK-NEXT: ret i32 [[DIV1_NEG]]
;
%c0 = icmp sle i32 %x, 0
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i32 %y, 0
call void @llvm.assume(i1 %c1)
%div = sdiv i32 %x, %y
ret i32 %div
}
define i32 @test9_neg_neg(i32 %x, i32 %y) {
; CHECK-LABEL: @test9_neg_neg(
; CHECK-NEXT: [[C0:%.*]] = icmp sle i32 [[X:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sle i32 [[Y:%.*]], 0
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[X_NONNEG:%.*]] = sub i32 0, [[X]]
; CHECK-NEXT: [[Y_NONNEG:%.*]] = sub i32 0, [[Y]]
; CHECK-NEXT: [[DIV1:%.*]] = udiv i32 [[X_NONNEG]], [[Y_NONNEG]]
; CHECK-NEXT: ret i32 [[DIV1]]
;
%c0 = icmp sle i32 %x, 0
call void @llvm.assume(i1 %c0)
%c1 = icmp sle i32 %y, 0
call void @llvm.assume(i1 %c1)
%div = sdiv i32 %x, %y
ret i32 %div
}
; After making division unsigned, can we narrow it?
define i32 @test10_narrow(i32 %x, i32 %y) {
; CHECK-LABEL: @test10_narrow(
; CHECK-NEXT: [[C0:%.*]] = icmp ult i32 [[X:%.*]], 128
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp ult i32 [[Y:%.*]], 128
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[DIV1_LHS_TRUNC:%.*]] = trunc i32 [[X]] to i8
; CHECK-NEXT: [[DIV1_RHS_TRUNC:%.*]] = trunc i32 [[Y]] to i8
; CHECK-NEXT: [[DIV12:%.*]] = udiv i8 [[DIV1_LHS_TRUNC]], [[DIV1_RHS_TRUNC]]
; CHECK-NEXT: [[DIV1_ZEXT:%.*]] = zext i8 [[DIV12]] to i32
; CHECK-NEXT: ret i32 [[DIV1_ZEXT]]
;
%c0 = icmp ult i32 %x, 128
call void @llvm.assume(i1 %c0)
%c1 = icmp ult i32 %y, 128
call void @llvm.assume(i1 %c1)
%div = sdiv i32 %x, %y
ret i32 %div
}
; Ok, but what about narrowing sdiv in general?
; If both operands are i15, it's uncontroversial - we can truncate to i16
define i64 @test11_i15_i15(i64 %x, i64 %y) {
; CHECK-LABEL: @test11_i15_i15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 16383
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -16384
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 16383
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -16384
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
; But if operands are i16, we can only truncate to i32, because we can't
; rule out UB of i16 INT_MIN s/ i16 -1
define i64 @test12_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test12_i16_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
; But if divident is i16, and divisor is u15, then we know that i16 is UB-safe.
define i64 @test13_i16_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test13_i16_u15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp ule i64 %y, 32767
call void @llvm.assume(i1 %c2)
%div = sdiv i64 %x, %y
ret i64 %div
}
; And likewise, if we know that if the divident is never i16 INT_MIN,
; we can truncate to i16.
define i64 @test14_i16safe_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test14_i16safe_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sgt i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
; Of course, both of the conditions can happen at once.
define i64 @test15_i16safe_u15(i64 %x, i64 %y) {
; CHECK-LABEL: @test15_i16safe_u15(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sgt i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp ule i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sgt i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp ule i64 %y, 32767
call void @llvm.assume(i1 %c2)
%div = sdiv i64 %x, %y
ret i64 %div
}
; We at most truncate to i8
define i64 @test16_i4_i4(i64 %x, i64 %y) {
; CHECK-LABEL: @test16_i4_i4(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 3
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -4
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 3
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -4
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i8
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i8
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i8 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i8 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 3
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -4
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 3
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -4
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
; And we round up to the powers of two
define i64 @test17_i9_i9(i64 %x, i64 %y) {
; CHECK-LABEL: @test17_i9_i9(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i16
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i16
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i16 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i16 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -256
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
; Don't widen the operation to the next power of two if it wasn't a power of two.
define i9 @test18_i9_i9(i9 %x, i9 %y) {
; CHECK-LABEL: @test18_i9_i9(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i9 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i9 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i9 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i9 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV:%.*]] = sdiv i9 [[X]], [[Y]]
; CHECK-NEXT: ret i9 [[DIV]]
;
entry:
%c0 = icmp sle i9 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i9 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i9 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i9 %y, -256
call void @llvm.assume(i1 %c3)
%div = sdiv i9 %x, %y
ret i9 %div
}
define i10 @test19_i10_i10(i10 %x, i10 %y) {
; CHECK-LABEL: @test19_i10_i10(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i10 [[X:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i10 [[X]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i10 [[Y:%.*]], 255
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i10 [[Y]], -256
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV:%.*]] = sdiv i10 [[X]], [[Y]]
; CHECK-NEXT: ret i10 [[DIV]]
;
entry:
%c0 = icmp sle i10 %x, 255
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i10 %x, -256
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i10 %y, 255
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i10 %y, -256
call void @llvm.assume(i1 %c3)
%div = sdiv i10 %x, %y
ret i10 %div
}
; Note that we need to take the maximal bitwidth, in which both of the operands are representable!
define i64 @test20_i16_i18(i64 %x, i64 %y) {
; CHECK-LABEL: @test20_i16_i18(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 65535
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -65536
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 16383
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -16384
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 65535
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -65536
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
define i64 @test21_i18_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test21_i18_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 65535
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -65536
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 16383
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -16384
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT: [[DIV1:%.*]] = sdiv i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 65535
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -65536
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 16383
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -16384
call void @llvm.assume(i1 %c3)
%div = sdiv i64 %x, %y
ret i64 %div
}
; Ensure that we preserve exact-ness
define i64 @test22_i16_i16(i64 %x, i64 %y) {
; CHECK-LABEL: @test22_i16_i16(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[C0:%.*]] = icmp sle i64 [[X:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C0]])
; CHECK-NEXT: [[C1:%.*]] = icmp sge i64 [[X]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C1]])
; CHECK-NEXT: [[C2:%.*]] = icmp sle i64 [[Y:%.*]], 32767
; CHECK-NEXT: call void @llvm.assume(i1 [[C2]])
; CHECK-NEXT: [[C3:%.*]] = icmp sge i64 [[Y]], -32768
; CHECK-NEXT: call void @llvm.assume(i1 [[C3]])
; CHECK-NEXT: [[DIV_LHS_TRUNC:%.*]] = trunc i64 [[X]] to i32
; CHECK-NEXT: [[DIV_RHS_TRUNC:%.*]] = trunc i64 [[Y]] to i32
; CHECK-NEXT: [[DIV1:%.*]] = sdiv exact i32 [[DIV_LHS_TRUNC]], [[DIV_RHS_TRUNC]]
; CHECK-NEXT: [[DIV_SEXT:%.*]] = sext i32 [[DIV1]] to i64
; CHECK-NEXT: ret i64 [[DIV_SEXT]]
;
entry:
%c0 = icmp sle i64 %x, 32767
call void @llvm.assume(i1 %c0)
%c1 = icmp sge i64 %x, -32768
call void @llvm.assume(i1 %c1)
%c2 = icmp sle i64 %y, 32767
call void @llvm.assume(i1 %c2)
%c3 = icmp sge i64 %y, -32768
call void @llvm.assume(i1 %c3)
%div = sdiv exact i64 %x, %y
ret i64 %div
}