LoopFlatten.cpp 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass flattens pairs nested loops into a single loop.
//
// The intention is to optimise loop nests like this, which together access an
// array linearly:
//   for (int i = 0; i < N; ++i)
//     for (int j = 0; j < M; ++j)
//       f(A[i*M+j]);
// into one loop:
//   for (int i = 0; i < (N*M); ++i)
//     f(A[i]);
//
// It can also flatten loops where the induction variables are not used in the
// loop. This is only worth doing if the induction variables are only used in an
// expression like i*M+j. If they had any other uses, we would have to insert a
// div/mod to reconstruct the original values, so this wouldn't be profitable.
//
// We also need to prove that N*M will not overflow.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopFlatten.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

#define DEBUG_TYPE "loop-flatten"

using namespace llvm;
using namespace llvm::PatternMatch;

static cl::opt<unsigned> RepeatedInstructionThreshold(
    "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
    cl::desc("Limit on the cost of instructions that can be repeated due to "
             "loop flattening"));

static cl::opt<bool>
    AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
                     cl::init(false),
                     cl::desc("Assume that the product of the two iteration "
                              "limits will never overflow"));

// Finds the induction variable, increment and limit for a simple loop that we
// can flatten.
static bool findLoopComponents(
    Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
    PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
    BranchInst *&BackBranch, ScalarEvolution *SE) {
  LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");

  if (!L->isLoopSimplifyForm()) {
    LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
    return false;
  }

  // There must be exactly one exiting block, and it must be the same at the
  // latch.
  BasicBlock *Latch = L->getLoopLatch();
  if (L->getExitingBlock() != Latch) {
    LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
    return false;
  }
  // Latch block must end in a conditional branch.
  BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!BackBranch || !BackBranch->isConditional()) {
    LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
    return false;
  }
  IterationInstructions.insert(BackBranch);
  LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
  bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));

  // Find the induction PHI. If there is no induction PHI, we can't do the
  // transformation. TODO: could other variables trigger this? Do we have to
  // search for the best one?
  InductionPHI = nullptr;
  for (PHINode &PHI : L->getHeader()->phis()) {
    InductionDescriptor ID;
    if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
      InductionPHI = &PHI;
      LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
      break;
    }
  }
  if (!InductionPHI) {
    LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
    return false;
  }

  auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
    if (ContinueOnTrue)
      return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
    else
      return Pred == CmpInst::ICMP_EQ;
  };

  // Find Compare and make sure it is valid
  ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
  if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
      Compare->hasNUsesOrMore(2)) {
    LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
    return false;
  }
  IterationInstructions.insert(Compare);
  LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());

  // Find increment and limit from the compare
  Increment = nullptr;
  if (match(Compare->getOperand(0),
            m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
    Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
    Limit = Compare->getOperand(1);
  } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
             match(Compare->getOperand(1),
                   m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
    Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
    Limit = Compare->getOperand(0);
  }
  if (!Increment || Increment->hasNUsesOrMore(3)) {
    LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
    return false;
  }
  IterationInstructions.insert(Increment);
  LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
  LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());

  assert(InductionPHI->getNumIncomingValues() == 2);
  assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment &&
         "PHI value is not increment inst");

  auto *CI = dyn_cast<ConstantInt>(
      InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
  if (!CI || !CI->isZero()) {
    LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
    return false;
  }

  LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
  return true;
}

static bool checkPHIs(Loop *OuterLoop, Loop *InnerLoop,
                      SmallPtrSetImpl<PHINode *> &InnerPHIsToTransform,
                      PHINode *InnerInductionPHI, PHINode *OuterInductionPHI,
                      TargetTransformInfo *TTI) {
  // All PHIs in the inner and outer headers must either be:
  // - The induction PHI, which we are going to rewrite as one induction in
  //   the new loop. This is already checked by findLoopComponents.
  // - An outer header PHI with all incoming values from outside the loop.
  //   LoopSimplify guarantees we have a pre-header, so we don't need to
  //   worry about that here.
  // - Pairs of PHIs in the inner and outer headers, which implement a
  //   loop-carried dependency that will still be valid in the new loop. To
  //   be valid, this variable must be modified only in the inner loop.

  // The set of PHI nodes in the outer loop header that we know will still be
  // valid after the transformation. These will not need to be modified (with
  // the exception of the induction variable), but we do need to check that
  // there are no unsafe PHI nodes.
  SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
  SafeOuterPHIs.insert(OuterInductionPHI);

  // Check that all PHI nodes in the inner loop header match one of the valid
  // patterns.
  for (PHINode &InnerPHI : InnerLoop->getHeader()->phis()) {
    // The induction PHIs break these rules, and that's OK because we treat
    // them specially when doing the transformation.
    if (&InnerPHI == InnerInductionPHI)
      continue;

    // Each inner loop PHI node must have two incoming values/blocks - one
    // from the pre-header, and one from the latch.
    assert(InnerPHI.getNumIncomingValues() == 2);
    Value *PreHeaderValue =
        InnerPHI.getIncomingValueForBlock(InnerLoop->getLoopPreheader());
    Value *LatchValue =
        InnerPHI.getIncomingValueForBlock(InnerLoop->getLoopLatch());

    // The incoming value from the outer loop must be the PHI node in the
    // outer loop header, with no modifications made in the top of the outer
    // loop.
    PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
    if (!OuterPHI || OuterPHI->getParent() != OuterLoop->getHeader()) {
      LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
      return false;
    }

    // The other incoming value must come from the inner loop, without any
    // modifications in the tail end of the outer loop. We are in LCSSA form,
    // so this will actually be a PHI in the inner loop's exit block, which
    // only uses values from inside the inner loop.
    PHINode *LCSSAPHI = dyn_cast<PHINode>(
        OuterPHI->getIncomingValueForBlock(OuterLoop->getLoopLatch()));
    if (!LCSSAPHI) {
      LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
      return false;
    }

    // The value used by the LCSSA PHI must be the same one that the inner
    // loop's PHI uses.
    if (LCSSAPHI->hasConstantValue() != LatchValue) {
      LLVM_DEBUG(
          dbgs() << "LCSSA PHI incoming value does not match latch value\n");
      return false;
    }

    LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
    LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
    LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
    SafeOuterPHIs.insert(OuterPHI);
    InnerPHIsToTransform.insert(&InnerPHI);
  }

  for (PHINode &OuterPHI : OuterLoop->getHeader()->phis()) {
    if (!SafeOuterPHIs.count(&OuterPHI)) {
      LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
      return false;
    }
  }

  return true;
}

static bool
checkOuterLoopInsts(Loop *OuterLoop, Loop *InnerLoop,
                    SmallPtrSetImpl<Instruction *> &IterationInstructions,
                    Value *InnerLimit, PHINode *OuterPHI,
                    TargetTransformInfo *TTI) {
  // Check for instructions in the outer but not inner loop. If any of these
  // have side-effects then this transformation is not legal, and if there is
  // a significant amount of code here which can't be optimised out that it's
  // not profitable (as these instructions would get executed for each
  // iteration of the inner loop).
  unsigned RepeatedInstrCost = 0;
  for (auto *B : OuterLoop->getBlocks()) {
    if (InnerLoop->contains(B))
      continue;

    for (auto &I : *B) {
      if (!isa<PHINode>(&I) && !I.isTerminator() &&
          !isSafeToSpeculativelyExecute(&I)) {
        LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
                             "side effects: ";
                   I.dump());
        return false;
      }
      // The execution count of the outer loop's iteration instructions
      // (increment, compare and branch) will be increased, but the
      // equivalent instructions will be removed from the inner loop, so
      // they make a net difference of zero.
      if (IterationInstructions.count(&I))
        continue;
      // The uncoditional branch to the inner loop's header will turn into
      // a fall-through, so adds no cost.
      BranchInst *Br = dyn_cast<BranchInst>(&I);
      if (Br && Br->isUnconditional() &&
          Br->getSuccessor(0) == InnerLoop->getHeader())
        continue;
      // Multiplies of the outer iteration variable and inner iteration
      // count will be optimised out.
      if (match(&I, m_c_Mul(m_Specific(OuterPHI), m_Specific(InnerLimit))))
        continue;
      int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
      LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
      RepeatedInstrCost += Cost;
    }
  }

  LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
                    << RepeatedInstrCost << "\n");
  // Bail out if flattening the loops would cause instructions in the outer
  // loop but not in the inner loop to be executed extra times.
  if (RepeatedInstrCost > RepeatedInstructionThreshold)
    return false;

  return true;
}

static bool checkIVUsers(PHINode *InnerPHI, PHINode *OuterPHI,
                         BinaryOperator *InnerIncrement,
                         BinaryOperator *OuterIncrement, Value *InnerLimit,
                         SmallPtrSetImpl<Value *> &LinearIVUses) {
  // We require all uses of both induction variables to match this pattern:
  //
  //   (OuterPHI * InnerLimit) + InnerPHI
  //
  // Any uses of the induction variables not matching that pattern would
  // require a div/mod to reconstruct in the flattened loop, so the
  // transformation wouldn't be profitable.

  // Check that all uses of the inner loop's induction variable match the
  // expected pattern, recording the uses of the outer IV.
  SmallPtrSet<Value *, 4> ValidOuterPHIUses;
  for (User *U : InnerPHI->users()) {
    if (U == InnerIncrement)
      continue;

    LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());

    Value *MatchedMul, *MatchedItCount;
    if (match(U, m_c_Add(m_Specific(InnerPHI), m_Value(MatchedMul))) &&
        match(MatchedMul,
              m_c_Mul(m_Specific(OuterPHI), m_Value(MatchedItCount))) &&
        MatchedItCount == InnerLimit) {
      LLVM_DEBUG(dbgs() << "Use is optimisable\n");
      ValidOuterPHIUses.insert(MatchedMul);
      LinearIVUses.insert(U);
    } else {
      LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
      return false;
    }
  }

  // Check that there are no uses of the outer IV other than the ones found
  // as part of the pattern above.
  for (User *U : OuterPHI->users()) {
    if (U == OuterIncrement)
      continue;

    LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());

    if (!ValidOuterPHIUses.count(U)) {
      LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
      return false;
    } else {
      LLVM_DEBUG(dbgs() << "Use is optimisable\n");
    }
  }

  LLVM_DEBUG(dbgs() << "Found " << LinearIVUses.size()
                    << " value(s) that can be replaced:\n";
             for (Value *V : LinearIVUses) {
               dbgs() << "  ";
               V->dump();
             });

  return true;
}

// Return an OverflowResult dependant on if overflow of the multiplication of
// InnerLimit and OuterLimit can be assumed not to happen.
static OverflowResult checkOverflow(Loop *OuterLoop, Value *InnerLimit,
                                    Value *OuterLimit,
                                    SmallPtrSetImpl<Value *> &LinearIVUses,
                                    DominatorTree *DT, AssumptionCache *AC) {
  Function *F = OuterLoop->getHeader()->getParent();
  const DataLayout &DL = F->getParent()->getDataLayout();

  // For debugging/testing.
  if (AssumeNoOverflow)
    return OverflowResult::NeverOverflows;

  // Check if the multiply could not overflow due to known ranges of the
  // input values.
  OverflowResult OR = computeOverflowForUnsignedMul(
      InnerLimit, OuterLimit, DL, AC,
      OuterLoop->getLoopPreheader()->getTerminator(), DT);
  if (OR != OverflowResult::MayOverflow)
    return OR;

  for (Value *V : LinearIVUses) {
    for (Value *U : V->users()) {
      if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
        // The IV is used as the operand of a GEP, and the IV is at least as
        // wide as the address space of the GEP. In this case, the GEP would
        // wrap around the address space before the IV increment wraps, which
        // would be UB.
        if (GEP->isInBounds() &&
            V->getType()->getIntegerBitWidth() >=
                DL.getPointerTypeSizeInBits(GEP->getType())) {
          LLVM_DEBUG(
              dbgs() << "use of linear IV would be UB if overflow occurred: ";
              GEP->dump());
          return OverflowResult::NeverOverflows;
        }
      }
    }
  }

  return OverflowResult::MayOverflow;
}

static bool FlattenLoopPair(Loop *OuterLoop, Loop *InnerLoop, DominatorTree *DT,
                            LoopInfo *LI, ScalarEvolution *SE,
                            AssumptionCache *AC, TargetTransformInfo *TTI,
                            std::function<void(Loop *)> markLoopAsDeleted) {
  Function *F = OuterLoop->getHeader()->getParent();

  LLVM_DEBUG(dbgs() << "Loop flattening running on outer loop "
                    << OuterLoop->getHeader()->getName() << " and inner loop "
                    << InnerLoop->getHeader()->getName() << " in "
                    << F->getName() << "\n");

  SmallPtrSet<Instruction *, 8> IterationInstructions;

  PHINode *InnerInductionPHI, *OuterInductionPHI;
  Value *InnerLimit, *OuterLimit;
  BinaryOperator *InnerIncrement, *OuterIncrement;
  BranchInst *InnerBranch, *OuterBranch;

  if (!findLoopComponents(InnerLoop, IterationInstructions, InnerInductionPHI,
                          InnerLimit, InnerIncrement, InnerBranch, SE))
    return false;
  if (!findLoopComponents(OuterLoop, IterationInstructions, OuterInductionPHI,
                          OuterLimit, OuterIncrement, OuterBranch, SE))
    return false;

  // Both of the loop limit values must be invariant in the outer loop
  // (non-instructions are all inherently invariant).
  if (!OuterLoop->isLoopInvariant(InnerLimit)) {
    LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
    return false;
  }
  if (!OuterLoop->isLoopInvariant(OuterLimit)) {
    LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
    return false;
  }

  SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
  if (!checkPHIs(OuterLoop, InnerLoop, InnerPHIsToTransform, InnerInductionPHI,
                 OuterInductionPHI, TTI))
    return false;

  // FIXME: it should be possible to handle different types correctly.
  if (InnerInductionPHI->getType() != OuterInductionPHI->getType())
    return false;

  if (!checkOuterLoopInsts(OuterLoop, InnerLoop, IterationInstructions,
                           InnerLimit, OuterInductionPHI, TTI))
    return false;

  // Find the values in the loop that can be replaced with the linearized
  // induction variable, and check that there are no other uses of the inner
  // or outer induction variable. If there were, we could still do this
  // transformation, but we'd have to insert a div/mod to calculate the
  // original IVs, so it wouldn't be profitable.
  SmallPtrSet<Value *, 4> LinearIVUses;
  if (!checkIVUsers(InnerInductionPHI, OuterInductionPHI, InnerIncrement,
                    OuterIncrement, InnerLimit, LinearIVUses))
    return false;

  // Check if the new iteration variable might overflow. In this case, we
  // need to version the loop, and select the original version at runtime if
  // the iteration space is too large.
  // TODO: We currently don't version the loop.
  // TODO: it might be worth using a wider iteration variable rather than
  // versioning the loop, if a wide enough type is legal.
  bool MustVersionLoop = true;
  OverflowResult OR =
      checkOverflow(OuterLoop, InnerLimit, OuterLimit, LinearIVUses, DT, AC);
  if (OR == OverflowResult::AlwaysOverflowsHigh ||
      OR == OverflowResult::AlwaysOverflowsLow) {
    LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
    return false;
  } else if (OR == OverflowResult::MayOverflow) {
    LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
  } else {
    LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
    MustVersionLoop = false;
  }

  // We cannot safely flatten the loop. Exit now.
  if (MustVersionLoop)
    return false;

  // Do the actual transformation.
  LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");

  {
    using namespace ore;
    OptimizationRemark Remark(DEBUG_TYPE, "Flattened", InnerLoop->getStartLoc(),
                              InnerLoop->getHeader());
    OptimizationRemarkEmitter ORE(F);
    Remark << "Flattened into outer loop";
    ORE.emit(Remark);
  }

  Value *NewTripCount =
      BinaryOperator::CreateMul(InnerLimit, OuterLimit, "flatten.tripcount",
                                OuterLoop->getLoopPreheader()->getTerminator());
  LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
             NewTripCount->dump());

  // Fix up PHI nodes that take values from the inner loop back-edge, which
  // we are about to remove.
  InnerInductionPHI->removeIncomingValue(InnerLoop->getLoopLatch());
  for (PHINode *PHI : InnerPHIsToTransform)
    PHI->removeIncomingValue(InnerLoop->getLoopLatch());

  // Modify the trip count of the outer loop to be the product of the two
  // trip counts.
  cast<User>(OuterBranch->getCondition())->setOperand(1, NewTripCount);

  // Replace the inner loop backedge with an unconditional branch to the exit.
  BasicBlock *InnerExitBlock = InnerLoop->getExitBlock();
  BasicBlock *InnerExitingBlock = InnerLoop->getExitingBlock();
  InnerExitingBlock->getTerminator()->eraseFromParent();
  BranchInst::Create(InnerExitBlock, InnerExitingBlock);
  DT->deleteEdge(InnerExitingBlock, InnerLoop->getHeader());

  // Replace all uses of the polynomial calculated from the two induction
  // variables with the one new one.
  for (Value *V : LinearIVUses)
    V->replaceAllUsesWith(OuterInductionPHI);

  // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
  // deleted, and any information that have about the outer loop invalidated.
  markLoopAsDeleted(InnerLoop);
  SE->forgetLoop(OuterLoop);
  SE->forgetLoop(InnerLoop);
  LI->erase(InnerLoop);

  return true;
}

PreservedAnalyses LoopFlattenPass::run(Loop &L, LoopAnalysisManager &AM,
                                       LoopStandardAnalysisResults &AR,
                                       LPMUpdater &Updater) {
  if (L.getSubLoops().size() != 1)
    return PreservedAnalyses::all();

  Loop *InnerLoop = *L.begin();
  std::string LoopName(InnerLoop->getName());
  if (!FlattenLoopPair(
          &L, InnerLoop, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI,
          [&](Loop *L) { Updater.markLoopAsDeleted(*L, LoopName); }))
    return PreservedAnalyses::all();
  return getLoopPassPreservedAnalyses();
}

namespace {
class LoopFlattenLegacyPass : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopFlattenLegacyPass() : LoopPass(ID) {
    initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  // Possibly flatten loop L into its child.
  bool runOnLoop(Loop *L, LPPassManager &) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    getLoopAnalysisUsage(AU);
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addPreserved<TargetTransformInfoWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addPreserved<AssumptionCacheTracker>();
  }
};
} // namespace

char LoopFlattenLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
                    false, false)

Pass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }

bool LoopFlattenLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;

  if (L->getSubLoops().size() != 1)
    return false;

  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
  TargetTransformInfo *TTI = &TTIP.getTTI(*L->getHeader()->getParent());
  AssumptionCache *AC =
      &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
          *L->getHeader()->getParent());

  Loop *InnerLoop = *L->begin();
  return FlattenLoopPair(L, InnerLoop, DT, LI, SE, AC, TTI,
                         [&](Loop *L) { LPM.markLoopAsDeleted(*L); });
}