Attributor.cpp
91.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an interprocedural pass that deduces and/or propagates
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "attributor"
STATISTIC(NumFnDeleted, "Number of function deleted");
STATISTIC(NumFnWithExactDefinition,
"Number of functions with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
"Number of functions without exact definitions");
STATISTIC(NumFnShallowWrapperCreated, "Number of shallow wrappers created");
STATISTIC(NumAttributesTimedOut,
"Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
"Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
"Number of abstract attributes manifested in IR");
STATISTIC(NumAttributesFixedDueToRequiredDependences,
"Number of abstract attributes fixed due to required dependences");
// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
cl::desc("Maximal number of fixpoint iterations."),
cl::init(32));
static cl::opt<unsigned, true> MaxInitializationChainLengthX(
"attributor-max-initialization-chain-length", cl::Hidden,
cl::desc(
"Maximal number of chained initializations (to avoid stack overflows)"),
cl::location(MaxInitializationChainLength), cl::init(1024));
unsigned llvm::MaxInitializationChainLength;
static cl::opt<bool> VerifyMaxFixpointIterations(
"attributor-max-iterations-verify", cl::Hidden,
cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
cl::init(false));
static cl::opt<bool> AnnotateDeclarationCallSites(
"attributor-annotate-decl-cs", cl::Hidden,
cl::desc("Annotate call sites of function declarations."), cl::init(false));
static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
cl::init(true), cl::Hidden);
static cl::opt<bool>
AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
cl::desc("Allow the Attributor to create shallow "
"wrappers for non-exact definitions."),
cl::init(false));
static cl::opt<bool>
AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
cl::desc("Allow the Attributor to use IP information "
"derived from non-exact functions via cloning"),
cl::init(false));
// These options can only used for debug builds.
#ifndef NDEBUG
static cl::list<std::string>
SeedAllowList("attributor-seed-allow-list", cl::Hidden,
cl::desc("Comma seperated list of attribute names that are "
"allowed to be seeded."),
cl::ZeroOrMore, cl::CommaSeparated);
static cl::list<std::string> FunctionSeedAllowList(
"attributor-function-seed-allow-list", cl::Hidden,
cl::desc("Comma seperated list of function names that are "
"allowed to be seeded."),
cl::ZeroOrMore, cl::CommaSeparated);
#endif
static cl::opt<bool>
DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
cl::desc("Dump the dependency graph to dot files."),
cl::init(false));
static cl::opt<std::string> DepGraphDotFileNamePrefix(
"attributor-depgraph-dot-filename-prefix", cl::Hidden,
cl::desc("The prefix used for the CallGraph dot file names."));
static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
cl::desc("View the dependency graph."),
cl::init(false));
static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
cl::desc("Print attribute dependencies"),
cl::init(false));
/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
return L == ChangeStatus::CHANGED ? L : R;
}
ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
return L == ChangeStatus::UNCHANGED ? L : R;
}
///}
/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
if (!Old.isIntAttribute())
return true;
return Old.getValueAsInt() >= New.getValueAsInt();
}
/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p PK and \p AttrIdx.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
AttributeList &Attrs, int AttrIdx) {
if (Attr.isEnumAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isIntAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
llvm_unreachable("Expected enum or string attribute!");
}
Argument *IRPosition::getAssociatedArgument() const {
if (getPositionKind() == IRP_ARGUMENT)
return cast<Argument>(&getAnchorValue());
// Not an Argument and no argument number means this is not a call site
// argument, thus we cannot find a callback argument to return.
int ArgNo = getCallSiteArgNo();
if (ArgNo < 0)
return nullptr;
// Use abstract call sites to make the connection between the call site
// values and the ones in callbacks. If a callback was found that makes use
// of the underlying call site operand, we want the corresponding callback
// callee argument and not the direct callee argument.
Optional<Argument *> CBCandidateArg;
SmallVector<const Use *, 4> CallbackUses;
const auto &CB = cast<CallBase>(getAnchorValue());
AbstractCallSite::getCallbackUses(CB, CallbackUses);
for (const Use *U : CallbackUses) {
AbstractCallSite ACS(U);
assert(ACS && ACS.isCallbackCall());
if (!ACS.getCalledFunction())
continue;
for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
// Test if the underlying call site operand is argument number u of the
// callback callee.
if (ACS.getCallArgOperandNo(u) != ArgNo)
continue;
assert(ACS.getCalledFunction()->arg_size() > u &&
"ACS mapped into var-args arguments!");
if (CBCandidateArg.hasValue()) {
CBCandidateArg = nullptr;
break;
}
CBCandidateArg = ACS.getCalledFunction()->getArg(u);
}
}
// If we found a unique callback candidate argument, return it.
if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
return CBCandidateArg.getValue();
// If no callbacks were found, or none used the underlying call site operand
// exclusively, use the direct callee argument if available.
const Function *Callee = CB.getCalledFunction();
if (Callee && Callee->arg_size() > unsigned(ArgNo))
return Callee->getArg(ArgNo);
return nullptr;
}
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
return HasChanged;
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
HasChanged = updateImpl(A);
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
<< "\n");
return HasChanged;
}
ChangeStatus
IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
const ArrayRef<Attribute> &DeducedAttrs) {
Function *ScopeFn = IRP.getAnchorScope();
IRPosition::Kind PK = IRP.getPositionKind();
// In the following some generic code that will manifest attributes in
// DeducedAttrs if they improve the current IR. Due to the different
// annotation positions we use the underlying AttributeList interface.
AttributeList Attrs;
switch (PK) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
return ChangeStatus::UNCHANGED;
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
Attrs = ScopeFn->getAttributes();
break;
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
break;
}
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
LLVMContext &Ctx = IRP.getAnchorValue().getContext();
for (const Attribute &Attr : DeducedAttrs) {
if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
continue;
HasChanged = ChangeStatus::CHANGED;
}
if (HasChanged == ChangeStatus::UNCHANGED)
return HasChanged;
switch (PK) {
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
ScopeFn->setAttributes(Attrs);
break;
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
break;
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
break;
}
return HasChanged;
}
const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
const IRPosition
IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
IRPositions.emplace_back(IRP);
// Helper to determine if operand bundles on a call site are benin or
// potentially problematic. We handle only llvm.assume for now.
auto CanIgnoreOperandBundles = [](const CallBase &CB) {
return (isa<IntrinsicInst>(CB) &&
cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
};
const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
switch (IRP.getPositionKind()) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
case IRPosition::IRP_FUNCTION:
return;
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_RETURNED:
IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
return;
case IRPosition::IRP_CALL_SITE:
assert(CB && "Expected call site!");
// TODO: We need to look at the operand bundles similar to the redirection
// in CallBase.
if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
if (const Function *Callee = CB->getCalledFunction())
IRPositions.emplace_back(IRPosition::function(*Callee));
return;
case IRPosition::IRP_CALL_SITE_RETURNED:
assert(CB && "Expected call site!");
// TODO: We need to look at the operand bundles similar to the redirection
// in CallBase.
if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
if (const Function *Callee = CB->getCalledFunction()) {
IRPositions.emplace_back(IRPosition::returned(*Callee));
IRPositions.emplace_back(IRPosition::function(*Callee));
for (const Argument &Arg : Callee->args())
if (Arg.hasReturnedAttr()) {
IRPositions.emplace_back(
IRPosition::callsite_argument(*CB, Arg.getArgNo()));
IRPositions.emplace_back(
IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
IRPositions.emplace_back(IRPosition::argument(Arg));
}
}
}
IRPositions.emplace_back(IRPosition::callsite_function(*CB));
return;
case IRPosition::IRP_CALL_SITE_ARGUMENT: {
assert(CB && "Expected call site!");
// TODO: We need to look at the operand bundles similar to the redirection
// in CallBase.
if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
const Function *Callee = CB->getCalledFunction();
if (Callee) {
if (Argument *Arg = IRP.getAssociatedArgument())
IRPositions.emplace_back(IRPosition::argument(*Arg));
IRPositions.emplace_back(IRPosition::function(*Callee));
}
}
IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
return;
}
}
}
bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
bool IgnoreSubsumingPositions, Attributor *A) const {
SmallVector<Attribute, 4> Attrs;
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
for (Attribute::AttrKind AK : AKs)
if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
return true;
// The first position returned by the SubsumingPositionIterator is
// always the position itself. If we ignore subsuming positions we
// are done after the first iteration.
if (IgnoreSubsumingPositions)
break;
}
if (A)
for (Attribute::AttrKind AK : AKs)
if (getAttrsFromAssumes(AK, Attrs, *A))
return true;
return false;
}
void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
SmallVectorImpl<Attribute> &Attrs,
bool IgnoreSubsumingPositions, Attributor *A) const {
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
for (Attribute::AttrKind AK : AKs)
EquivIRP.getAttrsFromIRAttr(AK, Attrs);
// The first position returned by the SubsumingPositionIterator is
// always the position itself. If we ignore subsuming positions we
// are done after the first iteration.
if (IgnoreSubsumingPositions)
break;
}
if (A)
for (Attribute::AttrKind AK : AKs)
getAttrsFromAssumes(AK, Attrs, *A);
}
bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
SmallVectorImpl<Attribute> &Attrs) const {
if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
return false;
AttributeList AttrList;
if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
AttrList = CB->getAttributes();
else
AttrList = getAssociatedFunction()->getAttributes();
bool HasAttr = AttrList.hasAttribute(getAttrIdx(), AK);
if (HasAttr)
Attrs.push_back(AttrList.getAttribute(getAttrIdx(), AK));
return HasAttr;
}
bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
SmallVectorImpl<Attribute> &Attrs,
Attributor &A) const {
assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
Value &AssociatedValue = getAssociatedValue();
const Assume2KnowledgeMap &A2K =
A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
// Check if we found any potential assume use, if not we don't need to create
// explorer iterators.
if (A2K.empty())
return false;
LLVMContext &Ctx = AssociatedValue.getContext();
unsigned AttrsSize = Attrs.size();
MustBeExecutedContextExplorer &Explorer =
A.getInfoCache().getMustBeExecutedContextExplorer();
auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
for (auto &It : A2K)
if (Explorer.findInContextOf(It.first, EIt, EEnd))
Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
return AttrsSize != Attrs.size();
}
void IRPosition::verify() {
#ifdef EXPENSIVE_CHECKS
switch (getPositionKind()) {
case IRP_INVALID:
assert(!Enc.getOpaqueValue() &&
"Expected a nullptr for an invalid position!");
return;
case IRP_FLOAT:
assert((!isa<CallBase>(&getAssociatedValue()) &&
!isa<Argument>(&getAssociatedValue())) &&
"Expected specialized kind for call base and argument values!");
return;
case IRP_RETURNED:
assert(isa<Function>(getAsValuePtr()) &&
"Expected function for a 'returned' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_CALL_SITE_RETURNED:
assert((isa<CallBase>(getAsValuePtr())) &&
"Expected call base for 'call site returned' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_CALL_SITE:
assert((isa<CallBase>(getAsValuePtr())) &&
"Expected call base for 'call site function' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_FUNCTION:
assert(isa<Function>(getAsValuePtr()) &&
"Expected function for a 'function' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_ARGUMENT:
assert(isa<Argument>(getAsValuePtr()) &&
"Expected argument for a 'argument' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_CALL_SITE_ARGUMENT: {
Use *U = getAsUsePtr();
assert(U && "Expected use for a 'call site argument' position!");
assert(isa<CallBase>(U->getUser()) &&
"Expected call base user for a 'call site argument' position!");
assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
"Expected call base argument operand for a 'call site argument' "
"position");
assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
unsigned(getCallSiteArgNo()) &&
"Argument number mismatch!");
assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
return;
}
}
#endif
}
Optional<Constant *>
Attributor::getAssumedConstant(const Value &V, const AbstractAttribute &AA,
bool &UsedAssumedInformation) {
const auto &ValueSimplifyAA = getAAFor<AAValueSimplify>(
AA, IRPosition::value(V), /* TrackDependence */ false);
Optional<Value *> SimplifiedV =
ValueSimplifyAA.getAssumedSimplifiedValue(*this);
bool IsKnown = ValueSimplifyAA.isKnown();
UsedAssumedInformation |= !IsKnown;
if (!SimplifiedV.hasValue()) {
recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
return llvm::None;
}
if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
return llvm::None;
}
Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
if (CI && CI->getType() != V.getType()) {
// TODO: Check for a save conversion.
return nullptr;
}
if (CI)
recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
return CI;
}
Attributor::~Attributor() {
// The abstract attributes are allocated via the BumpPtrAllocator Allocator,
// thus we cannot delete them. We can, and want to, destruct them though.
for (auto &DepAA : DG.SyntheticRoot.Deps) {
AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
AA->~AbstractAttribute();
}
}
bool Attributor::isAssumedDead(const AbstractAttribute &AA,
const AAIsDead *FnLivenessAA,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
const IRPosition &IRP = AA.getIRPosition();
if (!Functions.count(IRP.getAnchorScope()))
return false;
return isAssumedDead(IRP, &AA, FnLivenessAA, CheckBBLivenessOnly, DepClass);
}
bool Attributor::isAssumedDead(const Use &U,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
Instruction *UserI = dyn_cast<Instruction>(U.getUser());
if (!UserI)
return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
CheckBBLivenessOnly, DepClass);
if (auto *CB = dyn_cast<CallBase>(UserI)) {
// For call site argument uses we can check if the argument is
// unused/dead.
if (CB->isArgOperand(&U)) {
const IRPosition &CSArgPos =
IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
CheckBBLivenessOnly, DepClass);
}
} else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
return isAssumedDead(RetPos, QueryingAA, FnLivenessAA, CheckBBLivenessOnly,
DepClass);
} else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
CheckBBLivenessOnly, DepClass);
}
return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
CheckBBLivenessOnly, DepClass);
}
bool Attributor::isAssumedDead(const Instruction &I,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
if (!FnLivenessAA)
FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction()),
QueryingAA,
/* TrackDependence */ false);
// If we have a context instruction and a liveness AA we use it.
if (FnLivenessAA &&
FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
FnLivenessAA->isAssumedDead(&I)) {
if (QueryingAA)
recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
return true;
}
if (CheckBBLivenessOnly)
return false;
const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
IRPosition::value(I), QueryingAA, /* TrackDependence */ false);
// Don't check liveness for AAIsDead.
if (QueryingAA == &IsDeadAA)
return false;
if (IsDeadAA.isAssumedDead()) {
if (QueryingAA)
recordDependence(IsDeadAA, *QueryingAA, DepClass);
return true;
}
return false;
}
bool Attributor::isAssumedDead(const IRPosition &IRP,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
Instruction *CtxI = IRP.getCtxI();
if (CtxI &&
isAssumedDead(*CtxI, QueryingAA, FnLivenessAA,
/* CheckBBLivenessOnly */ true,
CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
return true;
if (CheckBBLivenessOnly)
return false;
// If we haven't succeeded we query the specific liveness info for the IRP.
const AAIsDead *IsDeadAA;
if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
IsDeadAA = &getOrCreateAAFor<AAIsDead>(
IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
QueryingAA, /* TrackDependence */ false);
else
IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA,
/* TrackDependence */ false);
// Don't check liveness for AAIsDead.
if (QueryingAA == IsDeadAA)
return false;
if (IsDeadAA->isAssumedDead()) {
if (QueryingAA)
recordDependence(*IsDeadAA, *QueryingAA, DepClass);
return true;
}
return false;
}
bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
const AbstractAttribute &QueryingAA,
const Value &V, DepClassTy LivenessDepClass) {
// Check the trivial case first as it catches void values.
if (V.use_empty())
return true;
// If the value is replaced by another one, for now a constant, we do not have
// uses. Note that this requires users of `checkForAllUses` to not recurse but
// instead use the `follow` callback argument to look at transitive users,
// however, that should be clear from the presence of the argument.
bool UsedAssumedInformation = false;
Optional<Constant *> C =
getAssumedConstant(V, QueryingAA, UsedAssumedInformation);
if (C.hasValue() && C.getValue()) {
LLVM_DEBUG(dbgs() << "[Attributor] Value is simplified, uses skipped: " << V
<< " -> " << *C.getValue() << "\n");
return true;
}
const IRPosition &IRP = QueryingAA.getIRPosition();
SmallVector<const Use *, 16> Worklist;
SmallPtrSet<const Use *, 16> Visited;
for (const Use &U : V.uses())
Worklist.push_back(&U);
LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
<< " initial uses to check\n");
const Function *ScopeFn = IRP.getAnchorScope();
const auto *LivenessAA =
ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
/* TrackDependence */ false)
: nullptr;
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
if (!Visited.insert(U).second)
continue;
LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "
<< *U->getUser() << "\n");
if (isAssumedDead(*U, &QueryingAA, LivenessAA,
/* CheckBBLivenessOnly */ false, LivenessDepClass)) {
LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
continue;
}
if (U->getUser()->isDroppable()) {
LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
continue;
}
bool Follow = false;
if (!Pred(*U, Follow))
return false;
if (!Follow)
continue;
for (const Use &UU : U->getUser()->uses())
Worklist.push_back(&UU);
}
return true;
}
bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
const AbstractAttribute &QueryingAA,
bool RequireAllCallSites,
bool &AllCallSitesKnown) {
// We can try to determine information from
// the call sites. However, this is only possible all call sites are known,
// hence the function has internal linkage.
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction) {
LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
<< "\n");
AllCallSitesKnown = false;
return false;
}
return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
&QueryingAA, AllCallSitesKnown);
}
bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
const Function &Fn,
bool RequireAllCallSites,
const AbstractAttribute *QueryingAA,
bool &AllCallSitesKnown) {
if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
LLVM_DEBUG(
dbgs()
<< "[Attributor] Function " << Fn.getName()
<< " has no internal linkage, hence not all call sites are known\n");
AllCallSitesKnown = false;
return false;
}
// If we do not require all call sites we might not see all.
AllCallSitesKnown = RequireAllCallSites;
SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
for (unsigned u = 0; u < Uses.size(); ++u) {
const Use &U = *Uses[u];
LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "
<< *U.getUser() << "\n");
if (isAssumedDead(U, QueryingAA, nullptr, /* CheckBBLivenessOnly */ true)) {
LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
continue;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
if (CE->isCast() && CE->getType()->isPointerTy() &&
CE->getType()->getPointerElementType()->isFunctionTy()) {
for (const Use &CEU : CE->uses())
Uses.push_back(&CEU);
continue;
}
}
AbstractCallSite ACS(&U);
if (!ACS) {
LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
<< " has non call site use " << *U.get() << " in "
<< *U.getUser() << "\n");
// BlockAddress users are allowed.
if (isa<BlockAddress>(U.getUser()))
continue;
return false;
}
const Use *EffectiveUse =
ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
if (!ACS.isCallee(EffectiveUse)) {
if (!RequireAllCallSites)
continue;
LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()
<< " is an invalid use of " << Fn.getName() << "\n");
return false;
}
// Make sure the arguments that can be matched between the call site and the
// callee argee on their type. It is unlikely they do not and it doesn't
// make sense for all attributes to know/care about this.
assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
unsigned MinArgsParams =
std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
for (unsigned u = 0; u < MinArgsParams; ++u) {
Value *CSArgOp = ACS.getCallArgOperand(u);
if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
LLVM_DEBUG(
dbgs() << "[Attributor] Call site / callee argument type mismatch ["
<< u << "@" << Fn.getName() << ": "
<< *Fn.getArg(u)->getType() << " vs. "
<< *ACS.getCallArgOperand(u)->getType() << "\n");
return false;
}
}
if (Pred(ACS))
continue;
LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
<< *ACS.getInstruction() << "\n");
return false;
}
return true;
}
bool Attributor::checkForAllReturnedValuesAndReturnInsts(
function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
const AbstractAttribute &QueryingAA) {
const IRPosition &IRP = QueryingAA.getIRPosition();
// Since we need to provide return instructions we have to have an exact
// definition.
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction)
return false;
// If this is a call site query we use the call site specific return values
// and liveness information.
// TODO: use the function scope once we have call site AAReturnedValues.
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
if (!AARetVal.getState().isValidState())
return false;
return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
}
bool Attributor::checkForAllReturnedValues(
function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction)
return false;
// TODO: use the function scope once we have call site AAReturnedValues.
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
if (!AARetVal.getState().isValidState())
return false;
return AARetVal.checkForAllReturnedValuesAndReturnInsts(
[&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
return Pred(RV);
});
}
static bool checkForAllInstructionsImpl(
Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
bool CheckBBLivenessOnly = false) {
for (unsigned Opcode : Opcodes) {
// Check if we have instructions with this opcode at all first.
auto *Insts = OpcodeInstMap.lookup(Opcode);
if (!Insts)
continue;
for (Instruction *I : *Insts) {
// Skip dead instructions.
if (A && A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
CheckBBLivenessOnly))
continue;
if (!Pred(*I))
return false;
}
}
return true;
}
bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
const AbstractAttribute &QueryingAA,
const ArrayRef<unsigned> &Opcodes,
bool CheckBBLivenessOnly) {
const IRPosition &IRP = QueryingAA.getIRPosition();
// Since we need to provide instructions we have to have an exact definition.
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction)
return false;
// TODO: use the function scope once we have call site AAReturnedValues.
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
const auto *LivenessAA =
CheckBBLivenessOnly ? nullptr
: &(getAAFor<AAIsDead>(QueryingAA, QueryIRP,
/* TrackDependence */ false));
auto &OpcodeInstMap =
InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
LivenessAA, Opcodes, CheckBBLivenessOnly))
return false;
return true;
}
bool Attributor::checkForAllReadWriteInstructions(
function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA) {
const Function *AssociatedFunction =
QueryingAA.getIRPosition().getAssociatedFunction();
if (!AssociatedFunction)
return false;
// TODO: use the function scope once we have call site AAReturnedValues.
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
const auto &LivenessAA =
getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
for (Instruction *I :
InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
// Skip dead instructions.
if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA))
continue;
if (!Pred(*I))
return false;
}
return true;
}
void Attributor::runTillFixpoint() {
TimeTraceScope TimeScope("Attributor::runTillFixpoint");
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
<< DG.SyntheticRoot.Deps.size()
<< " abstract attributes.\n");
// Now that all abstract attributes are collected and initialized we start
// the abstract analysis.
unsigned IterationCounter = 1;
SmallVector<AbstractAttribute *, 32> ChangedAAs;
SetVector<AbstractAttribute *> Worklist, InvalidAAs;
Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
do {
// Remember the size to determine new attributes.
size_t NumAAs = DG.SyntheticRoot.Deps.size();
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
<< ", Worklist size: " << Worklist.size() << "\n");
// For invalid AAs we can fix dependent AAs that have a required dependence,
// thereby folding long dependence chains in a single step without the need
// to run updates.
for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
AbstractAttribute *InvalidAA = InvalidAAs[u];
// Check the dependences to fast track invalidation.
LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
<< InvalidAA->Deps.size()
<< " required & optional dependences\n");
while (!InvalidAA->Deps.empty()) {
const auto &Dep = InvalidAA->Deps.back();
InvalidAA->Deps.pop_back();
AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
Worklist.insert(DepAA);
continue;
}
DepAA->getState().indicatePessimisticFixpoint();
assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
if (!DepAA->getState().isValidState())
InvalidAAs.insert(DepAA);
else
ChangedAAs.push_back(DepAA);
}
}
// Add all abstract attributes that are potentially dependent on one that
// changed to the work list.
for (AbstractAttribute *ChangedAA : ChangedAAs)
while (!ChangedAA->Deps.empty()) {
Worklist.insert(
cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
ChangedAA->Deps.pop_back();
}
LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
<< ", Worklist+Dependent size: " << Worklist.size()
<< "\n");
// Reset the changed and invalid set.
ChangedAAs.clear();
InvalidAAs.clear();
// Update all abstract attribute in the work list and record the ones that
// changed.
for (AbstractAttribute *AA : Worklist) {
const auto &AAState = AA->getState();
if (!AAState.isAtFixpoint())
if (updateAA(*AA) == ChangeStatus::CHANGED)
ChangedAAs.push_back(AA);
// Use the InvalidAAs vector to propagate invalid states fast transitively
// without requiring updates.
if (!AAState.isValidState())
InvalidAAs.insert(AA);
}
// Add attributes to the changed set if they have been created in the last
// iteration.
ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
DG.SyntheticRoot.end());
// Reset the work list and repopulate with the changed abstract attributes.
// Note that dependent ones are added above.
Worklist.clear();
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
} while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
VerifyMaxFixpointIterations));
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxFixpointIterations
<< " iterations\n");
// Reset abstract arguments not settled in a sound fixpoint by now. This
// happens when we stopped the fixpoint iteration early. Note that only the
// ones marked as "changed" *and* the ones transitively depending on them
// need to be reverted to a pessimistic state. Others might not be in a
// fixpoint state but we can use the optimistic results for them anyway.
SmallPtrSet<AbstractAttribute *, 32> Visited;
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
AbstractAttribute *ChangedAA = ChangedAAs[u];
if (!Visited.insert(ChangedAA).second)
continue;
AbstractState &State = ChangedAA->getState();
if (!State.isAtFixpoint()) {
State.indicatePessimisticFixpoint();
NumAttributesTimedOut++;
}
while (!ChangedAA->Deps.empty()) {
ChangedAAs.push_back(
cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
ChangedAA->Deps.pop_back();
}
}
LLVM_DEBUG({
if (!Visited.empty())
dbgs() << "\n[Attributor] Finalized " << Visited.size()
<< " abstract attributes.\n";
});
if (VerifyMaxFixpointIterations &&
IterationCounter != MaxFixpointIterations) {
errs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxFixpointIterations
<< " iterations\n";
llvm_unreachable("The fixpoint was not reached with exactly the number of "
"specified iterations!");
}
}
ChangeStatus Attributor::manifestAttributes() {
TimeTraceScope TimeScope("Attributor::manifestAttributes");
size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
unsigned NumManifested = 0;
unsigned NumAtFixpoint = 0;
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
for (auto &DepAA : DG.SyntheticRoot.Deps) {
AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
AbstractState &State = AA->getState();
// If there is not already a fixpoint reached, we can now take the
// optimistic state. This is correct because we enforced a pessimistic one
// on abstract attributes that were transitively dependent on a changed one
// already above.
if (!State.isAtFixpoint())
State.indicateOptimisticFixpoint();
// If the state is invalid, we do not try to manifest it.
if (!State.isValidState())
continue;
// Skip dead code.
if (isAssumedDead(*AA, nullptr, /* CheckBBLivenessOnly */ true))
continue;
// Manifest the state and record if we changed the IR.
ChangeStatus LocalChange = AA->manifest(*this);
if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
AA->trackStatistics();
LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
<< "\n");
ManifestChange = ManifestChange | LocalChange;
NumAtFixpoint++;
NumManifested += (LocalChange == ChangeStatus::CHANGED);
}
(void)NumManifested;
(void)NumAtFixpoint;
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
<< " arguments while " << NumAtFixpoint
<< " were in a valid fixpoint state\n");
NumAttributesManifested += NumManifested;
NumAttributesValidFixpoint += NumAtFixpoint;
(void)NumFinalAAs;
if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
errs() << "Unexpected abstract attribute: "
<< cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
<< " :: "
<< cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
->getIRPosition()
.getAssociatedValue()
<< "\n";
llvm_unreachable("Expected the final number of abstract attributes to "
"remain unchanged!");
}
return ManifestChange;
}
ChangeStatus Attributor::cleanupIR() {
TimeTraceScope TimeScope("Attributor::cleanupIR");
// Delete stuff at the end to avoid invalid references and a nice order.
LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
<< ToBeDeletedFunctions.size() << " functions and "
<< ToBeDeletedBlocks.size() << " blocks and "
<< ToBeDeletedInsts.size() << " instructions and "
<< ToBeChangedUses.size() << " uses\n");
SmallVector<WeakTrackingVH, 32> DeadInsts;
SmallVector<Instruction *, 32> TerminatorsToFold;
for (auto &It : ToBeChangedUses) {
Use *U = It.first;
Value *NewV = It.second;
Value *OldV = U->get();
// Do not replace uses in returns if the value is a must-tail call we will
// not delete.
if (isa<ReturnInst>(U->getUser()))
if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
continue;
LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
<< " instead of " << *OldV << "\n");
U->set(NewV);
// Do not modify call instructions outside the SCC.
if (auto *CB = dyn_cast<CallBase>(OldV))
if (!Functions.count(CB->getCaller()))
continue;
if (Instruction *I = dyn_cast<Instruction>(OldV)) {
CGModifiedFunctions.insert(I->getFunction());
if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
isInstructionTriviallyDead(I))
DeadInsts.push_back(I);
}
if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
Instruction *UserI = cast<Instruction>(U->getUser());
if (isa<UndefValue>(NewV)) {
ToBeChangedToUnreachableInsts.insert(UserI);
} else {
TerminatorsToFold.push_back(UserI);
}
}
}
for (auto &V : InvokeWithDeadSuccessor)
if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
bool Invoke2CallAllowed =
!AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
assert((UnwindBBIsDead || NormalBBIsDead) &&
"Invoke does not have dead successors!");
BasicBlock *BB = II->getParent();
BasicBlock *NormalDestBB = II->getNormalDest();
if (UnwindBBIsDead) {
Instruction *NormalNextIP = &NormalDestBB->front();
if (Invoke2CallAllowed) {
changeToCall(II);
NormalNextIP = BB->getTerminator();
}
if (NormalBBIsDead)
ToBeChangedToUnreachableInsts.insert(NormalNextIP);
} else {
assert(NormalBBIsDead && "Broken invariant!");
if (!NormalDestBB->getUniquePredecessor())
NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
}
}
for (Instruction *I : TerminatorsToFold) {
CGModifiedFunctions.insert(I->getFunction());
ConstantFoldTerminator(I->getParent());
}
for (auto &V : ToBeChangedToUnreachableInsts)
if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
CGModifiedFunctions.insert(I->getFunction());
changeToUnreachable(I, /* UseLLVMTrap */ false);
}
for (auto &V : ToBeDeletedInsts) {
if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
I->dropDroppableUses();
CGModifiedFunctions.insert(I->getFunction());
if (!I->getType()->isVoidTy())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
DeadInsts.push_back(I);
else
I->eraseFromParent();
}
}
LLVM_DEBUG(dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size()
<< "\n");
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
ToBeDeletedBBs.reserve(NumDeadBlocks);
for (BasicBlock *BB : ToBeDeletedBlocks) {
CGModifiedFunctions.insert(BB->getParent());
ToBeDeletedBBs.push_back(BB);
}
// Actually we do not delete the blocks but squash them into a single
// unreachable but untangling branches that jump here is something we need
// to do in a more generic way.
DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
}
// Identify dead internal functions and delete them. This happens outside
// the other fixpoint analysis as we might treat potentially dead functions
// as live to lower the number of iterations. If they happen to be dead, the
// below fixpoint loop will identify and eliminate them.
SmallVector<Function *, 8> InternalFns;
for (Function *F : Functions)
if (F->hasLocalLinkage())
InternalFns.push_back(F);
bool FoundDeadFn = true;
while (FoundDeadFn) {
FoundDeadFn = false;
for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
Function *F = InternalFns[u];
if (!F)
continue;
bool AllCallSitesKnown;
if (!checkForAllCallSites(
[this](AbstractCallSite ACS) {
return ToBeDeletedFunctions.count(
ACS.getInstruction()->getFunction());
},
*F, true, nullptr, AllCallSitesKnown))
continue;
ToBeDeletedFunctions.insert(F);
InternalFns[u] = nullptr;
FoundDeadFn = true;
}
}
// Rewrite the functions as requested during manifest.
ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
for (Function *Fn : CGModifiedFunctions)
CGUpdater.reanalyzeFunction(*Fn);
for (Function *Fn : ToBeDeletedFunctions) {
if (!Functions.count(Fn))
continue;
CGUpdater.removeFunction(*Fn);
}
if (!ToBeChangedUses.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeChangedToUnreachableInsts.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeDeletedFunctions.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeDeletedBlocks.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeDeletedInsts.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!InvokeWithDeadSuccessor.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!DeadInsts.empty())
ManifestChange = ChangeStatus::CHANGED;
NumFnDeleted += ToBeDeletedFunctions.size();
LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << NumFnDeleted
<< " functions after manifest.\n");
#ifdef EXPENSIVE_CHECKS
for (Function *F : Functions) {
if (ToBeDeletedFunctions.count(F))
continue;
assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
}
#endif
return ManifestChange;
}
ChangeStatus Attributor::run() {
TimeTraceScope TimeScope("Attributor::run");
Phase = AttributorPhase::UPDATE;
runTillFixpoint();
// dump graphs on demand
if (DumpDepGraph)
DG.dumpGraph();
if (ViewDepGraph)
DG.viewGraph();
if (PrintDependencies)
DG.print();
Phase = AttributorPhase::MANIFEST;
ChangeStatus ManifestChange = manifestAttributes();
Phase = AttributorPhase::CLEANUP;
ChangeStatus CleanupChange = cleanupIR();
return ManifestChange | CleanupChange;
}
ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
TimeTraceScope TimeScope(AA.getName() + "::updateAA");
assert(Phase == AttributorPhase::UPDATE &&
"We can update AA only in the update stage!");
// Use a new dependence vector for this update.
DependenceVector DV;
DependenceStack.push_back(&DV);
auto &AAState = AA.getState();
ChangeStatus CS = ChangeStatus::UNCHANGED;
if (!isAssumedDead(AA, nullptr, /* CheckBBLivenessOnly */ true))
CS = AA.update(*this);
if (DV.empty()) {
// If the attribute did not query any non-fix information, the state
// will not change and we can indicate that right away.
AAState.indicateOptimisticFixpoint();
}
if (!AAState.isAtFixpoint())
rememberDependences();
// Verify the stack was used properly, that is we pop the dependence vector we
// put there earlier.
DependenceVector *PoppedDV = DependenceStack.pop_back_val();
(void)PoppedDV;
assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
return CS;
}
/// Create a shallow wrapper for \p F such that \p F has internal linkage
/// afterwards. It also sets the original \p F 's name to anonymous
///
/// A wrapper is a function with the same type (and attributes) as \p F
/// that will only call \p F and return the result, if any.
///
/// Assuming the declaration of looks like:
/// rty F(aty0 arg0, ..., atyN argN);
///
/// The wrapper will then look as follows:
/// rty wrapper(aty0 arg0, ..., atyN argN) {
/// return F(arg0, ..., argN);
/// }
///
static void createShallowWrapper(Function &F) {
assert(AllowShallowWrappers &&
"Cannot create a wrapper if it is not allowed!");
assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
Module &M = *F.getParent();
LLVMContext &Ctx = M.getContext();
FunctionType *FnTy = F.getFunctionType();
Function *Wrapper =
Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
F.setName(""); // set the inside function anonymous
M.getFunctionList().insert(F.getIterator(), Wrapper);
F.setLinkage(GlobalValue::InternalLinkage);
F.replaceAllUsesWith(Wrapper);
assert(F.use_empty() && "Uses remained after wrapper was created!");
// Move the COMDAT section to the wrapper.
// TODO: Check if we need to keep it for F as well.
Wrapper->setComdat(F.getComdat());
F.setComdat(nullptr);
// Copy all metadata and attributes but keep them on F as well.
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F.getAllMetadata(MDs);
for (auto MDIt : MDs)
Wrapper->addMetadata(MDIt.first, *MDIt.second);
Wrapper->setAttributes(F.getAttributes());
// Create the call in the wrapper.
BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
SmallVector<Value *, 8> Args;
Argument *FArgIt = F.arg_begin();
for (Argument &Arg : Wrapper->args()) {
Args.push_back(&Arg);
Arg.setName((FArgIt++)->getName());
}
CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
CI->setTailCall(true);
CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
NumFnShallowWrapperCreated++;
}
/// Make another copy of the function \p F such that the copied version has
/// internal linkage afterwards and can be analysed. Then we replace all uses
/// of the original function to the copied one
///
/// Only non-exactly defined functions that have `linkonce_odr` or `weak_odr`
/// linkage can be internalized because these linkages guarantee that other
/// definitions with the same name have the same semantics as this one
///
static Function *internalizeFunction(Function &F) {
assert(AllowDeepWrapper && "Cannot create a copy if not allowed.");
assert(!F.isDeclaration() && !F.hasExactDefinition() &&
!GlobalValue::isInterposableLinkage(F.getLinkage()) &&
"Trying to internalize function which cannot be internalized.");
Module &M = *F.getParent();
FunctionType *FnTy = F.getFunctionType();
// create a copy of the current function
Function *Copied = Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(),
F.getName() + ".internalized");
ValueToValueMapTy VMap;
auto *NewFArgIt = Copied->arg_begin();
for (auto &Arg : F.args()) {
auto ArgName = Arg.getName();
NewFArgIt->setName(ArgName);
VMap[&Arg] = &(*NewFArgIt++);
}
SmallVector<ReturnInst *, 8> Returns;
// Copy the body of the original function to the new one
CloneFunctionInto(Copied, &F, VMap, /* ModuleLevelChanges */ false, Returns);
// Set the linakage and visibility late as CloneFunctionInto has some implicit
// requirements.
Copied->setVisibility(GlobalValue::DefaultVisibility);
Copied->setLinkage(GlobalValue::PrivateLinkage);
// Copy metadata
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F.getAllMetadata(MDs);
for (auto MDIt : MDs)
Copied->addMetadata(MDIt.first, *MDIt.second);
M.getFunctionList().insert(F.getIterator(), Copied);
F.replaceAllUsesWith(Copied);
Copied->setDSOLocal(true);
return Copied;
}
bool Attributor::isValidFunctionSignatureRewrite(
Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
auto CallSiteCanBeChanged = [](AbstractCallSite ACS) {
// Forbid the call site to cast the function return type. If we need to
// rewrite these functions we need to re-create a cast for the new call site
// (if the old had uses).
if (!ACS.getCalledFunction() ||
ACS.getInstruction()->getType() !=
ACS.getCalledFunction()->getReturnType())
return false;
// Forbid must-tail calls for now.
return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
};
Function *Fn = Arg.getParent();
// Avoid var-arg functions for now.
if (Fn->isVarArg()) {
LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
return false;
}
// Avoid functions with complicated argument passing semantics.
AttributeList FnAttributeList = Fn->getAttributes();
if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
LLVM_DEBUG(
dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
return false;
}
// Avoid callbacks for now.
bool AllCallSitesKnown;
if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
AllCallSitesKnown)) {
LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
return false;
}
auto InstPred = [](Instruction &I) {
if (auto *CI = dyn_cast<CallInst>(&I))
return !CI->isMustTailCall();
return true;
};
// Forbid must-tail calls for now.
// TODO:
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
nullptr, {Instruction::Call})) {
LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
return false;
}
return true;
}
bool Attributor::registerFunctionSignatureRewrite(
Argument &Arg, ArrayRef<Type *> ReplacementTypes,
ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
<< Arg.getParent()->getName() << " with "
<< ReplacementTypes.size() << " replacements\n");
assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
"Cannot register an invalid rewrite");
Function *Fn = Arg.getParent();
SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
ArgumentReplacementMap[Fn];
if (ARIs.empty())
ARIs.resize(Fn->arg_size());
// If we have a replacement already with less than or equal new arguments,
// ignore this request.
std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
return false;
}
// If we have a replacement already but we like the new one better, delete
// the old.
ARI.reset();
LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
<< Arg.getParent()->getName() << " with "
<< ReplacementTypes.size() << " replacements\n");
// Remember the replacement.
ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
std::move(CalleeRepairCB),
std::move(ACSRepairCB)));
return true;
}
bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
bool Result = true;
#ifndef NDEBUG
if (SeedAllowList.size() != 0)
Result =
std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
Function *Fn = AA.getAnchorScope();
if (FunctionSeedAllowList.size() != 0 && Fn)
Result &= std::count(FunctionSeedAllowList.begin(),
FunctionSeedAllowList.end(), Fn->getName());
#endif
return Result;
}
ChangeStatus Attributor::rewriteFunctionSignatures(
SmallPtrSetImpl<Function *> &ModifiedFns) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
for (auto &It : ArgumentReplacementMap) {
Function *OldFn = It.getFirst();
// Deleted functions do not require rewrites.
if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
continue;
const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
It.getSecond();
assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
SmallVector<Type *, 16> NewArgumentTypes;
SmallVector<AttributeSet, 16> NewArgumentAttributes;
// Collect replacement argument types and copy over existing attributes.
AttributeList OldFnAttributeList = OldFn->getAttributes();
for (Argument &Arg : OldFn->args()) {
if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
ARIs[Arg.getArgNo()]) {
NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
ARI->ReplacementTypes.end());
NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
AttributeSet());
} else {
NewArgumentTypes.push_back(Arg.getType());
NewArgumentAttributes.push_back(
OldFnAttributeList.getParamAttributes(Arg.getArgNo()));
}
}
FunctionType *OldFnTy = OldFn->getFunctionType();
Type *RetTy = OldFnTy->getReturnType();
// Construct the new function type using the new arguments types.
FunctionType *NewFnTy =
FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
<< "' from " << *OldFn->getFunctionType() << " to "
<< *NewFnTy << "\n");
// Create the new function body and insert it into the module.
Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
OldFn->getAddressSpace(), "");
OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
NewFn->takeName(OldFn);
NewFn->copyAttributesFrom(OldFn);
// Patch the pointer to LLVM function in debug info descriptor.
NewFn->setSubprogram(OldFn->getSubprogram());
OldFn->setSubprogram(nullptr);
// Recompute the parameter attributes list based on the new arguments for
// the function.
LLVMContext &Ctx = OldFn->getContext();
NewFn->setAttributes(AttributeList::get(
Ctx, OldFnAttributeList.getFnAttributes(),
OldFnAttributeList.getRetAttributes(), NewArgumentAttributes));
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NewFn->getBasicBlockList().splice(NewFn->begin(),
OldFn->getBasicBlockList());
// Fixup block addresses to reference new function.
SmallVector<BlockAddress *, 8u> BlockAddresses;
for (User *U : OldFn->users())
if (auto *BA = dyn_cast<BlockAddress>(U))
BlockAddresses.push_back(BA);
for (auto *BA : BlockAddresses)
BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
// Set of all "call-like" instructions that invoke the old function mapped
// to their new replacements.
SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
// Callback to create a new "call-like" instruction for a given one.
auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
const AttributeList &OldCallAttributeList = OldCB->getAttributes();
// Collect the new argument operands for the replacement call site.
SmallVector<Value *, 16> NewArgOperands;
SmallVector<AttributeSet, 16> NewArgOperandAttributes;
for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
unsigned NewFirstArgNum = NewArgOperands.size();
(void)NewFirstArgNum; // only used inside assert.
if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
ARIs[OldArgNum]) {
if (ARI->ACSRepairCB)
ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
NewArgOperands.size() &&
"ACS repair callback did not provide as many operand as new "
"types were registered!");
// TODO: Exose the attribute set to the ACS repair callback
NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
AttributeSet());
} else {
NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
NewArgOperandAttributes.push_back(
OldCallAttributeList.getParamAttributes(OldArgNum));
}
}
assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
"Mismatch # argument operands vs. # argument operand attributes!");
assert(NewArgOperands.size() == NewFn->arg_size() &&
"Mismatch # argument operands vs. # function arguments!");
SmallVector<OperandBundleDef, 4> OperandBundleDefs;
OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
// Create a new call or invoke instruction to replace the old one.
CallBase *NewCB;
if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
NewCB =
InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
NewArgOperands, OperandBundleDefs, "", OldCB);
} else {
auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
"", OldCB);
NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
NewCB = NewCI;
}
// Copy over various properties and the new attributes.
NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
NewCB->setCallingConv(OldCB->getCallingConv());
NewCB->takeName(OldCB);
NewCB->setAttributes(AttributeList::get(
Ctx, OldCallAttributeList.getFnAttributes(),
OldCallAttributeList.getRetAttributes(), NewArgOperandAttributes));
CallSitePairs.push_back({OldCB, NewCB});
return true;
};
// Use the CallSiteReplacementCreator to create replacement call sites.
bool AllCallSitesKnown;
bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
true, nullptr, AllCallSitesKnown);
(void)Success;
assert(Success && "Assumed call site replacement to succeed!");
// Rewire the arguments.
Argument *OldFnArgIt = OldFn->arg_begin();
Argument *NewFnArgIt = NewFn->arg_begin();
for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
++OldArgNum, ++OldFnArgIt) {
if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
ARIs[OldArgNum]) {
if (ARI->CalleeRepairCB)
ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
NewFnArgIt += ARI->ReplacementTypes.size();
} else {
NewFnArgIt->takeName(&*OldFnArgIt);
OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
++NewFnArgIt;
}
}
// Eliminate the instructions *after* we visited all of them.
for (auto &CallSitePair : CallSitePairs) {
CallBase &OldCB = *CallSitePair.first;
CallBase &NewCB = *CallSitePair.second;
assert(OldCB.getType() == NewCB.getType() &&
"Cannot handle call sites with different types!");
ModifiedFns.insert(OldCB.getFunction());
CGUpdater.replaceCallSite(OldCB, NewCB);
OldCB.replaceAllUsesWith(&NewCB);
OldCB.eraseFromParent();
}
// Replace the function in the call graph (if any).
CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
// If the old function was modified and needed to be reanalyzed, the new one
// does now.
if (ModifiedFns.erase(OldFn))
ModifiedFns.insert(NewFn);
Changed = ChangeStatus::CHANGED;
}
return Changed;
}
void InformationCache::initializeInformationCache(const Function &CF,
FunctionInfo &FI) {
// As we do not modify the function here we can remove the const
// withouth breaking implicit assumptions. At the end of the day, we could
// initialize the cache eagerly which would look the same to the users.
Function &F = const_cast<Function &>(CF);
// Walk all instructions to find interesting instructions that might be
// queried by abstract attributes during their initialization or update.
// This has to happen before we create attributes.
for (Instruction &I : instructions(&F)) {
bool IsInterestingOpcode = false;
// To allow easy access to all instructions in a function with a given
// opcode we store them in the InfoCache. As not all opcodes are interesting
// to concrete attributes we only cache the ones that are as identified in
// the following switch.
// Note: There are no concrete attributes now so this is initially empty.
switch (I.getOpcode()) {
default:
assert(!isa<CallBase>(&I) &&
"New call base instruction type needs to be known in the "
"Attributor.");
break;
case Instruction::Call:
// Calls are interesting on their own, additionally:
// For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
// For `must-tail` calls we remember the caller and callee.
if (IntrinsicInst *Assume = dyn_cast<IntrinsicInst>(&I)) {
if (Assume->getIntrinsicID() == Intrinsic::assume)
fillMapFromAssume(*Assume, KnowledgeMap);
} else if (cast<CallInst>(I).isMustTailCall()) {
FI.ContainsMustTailCall = true;
if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
getFunctionInfo(*Callee).CalledViaMustTail = true;
}
LLVM_FALLTHROUGH;
case Instruction::CallBr:
case Instruction::Invoke:
case Instruction::CleanupRet:
case Instruction::CatchSwitch:
case Instruction::AtomicRMW:
case Instruction::AtomicCmpXchg:
case Instruction::Br:
case Instruction::Resume:
case Instruction::Ret:
case Instruction::Load:
// The alignment of a pointer is interesting for loads.
case Instruction::Store:
// The alignment of a pointer is interesting for stores.
IsInterestingOpcode = true;
}
if (IsInterestingOpcode) {
auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
if (!Insts)
Insts = new (Allocator) InstructionVectorTy();
Insts->push_back(&I);
}
if (I.mayReadOrWriteMemory())
FI.RWInsts.push_back(&I);
}
if (F.hasFnAttribute(Attribute::AlwaysInline) &&
isInlineViable(F).isSuccess())
InlineableFunctions.insert(&F);
}
InformationCache::FunctionInfo::~FunctionInfo() {
// The instruction vectors are allocated using a BumpPtrAllocator, we need to
// manually destroy them.
for (auto &It : OpcodeInstMap)
It.getSecond()->~InstructionVectorTy();
}
void Attributor::recordDependence(const AbstractAttribute &FromAA,
const AbstractAttribute &ToAA,
DepClassTy DepClass) {
// If we are outside of an update, thus before the actual fixpoint iteration
// started (= when we create AAs), we do not track dependences because we will
// put all AAs into the initial worklist anyway.
if (DependenceStack.empty())
return;
if (FromAA.getState().isAtFixpoint())
return;
DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
}
void Attributor::rememberDependences() {
assert(!DependenceStack.empty() && "No dependences to remember!");
for (DepInfo &DI : *DependenceStack.back()) {
auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
DepAAs.push_back(AbstractAttribute::DepTy(
const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
}
}
void Attributor::identifyDefaultAbstractAttributes(Function &F) {
if (!VisitedFunctions.insert(&F).second)
return;
if (F.isDeclaration())
return;
// In non-module runs we need to look at the call sites of a function to
// determine if it is part of a must-tail call edge. This will influence what
// attributes we can derive.
InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
if (!isModulePass() && !FI.CalledViaMustTail) {
for (const Use &U : F.uses())
if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
if (CB->isCallee(&U) && CB->isMustTailCall())
FI.CalledViaMustTail = true;
}
IRPosition FPos = IRPosition::function(F);
// Check for dead BasicBlocks in every function.
// We need dead instruction detection because we do not want to deal with
// broken IR in which SSA rules do not apply.
getOrCreateAAFor<AAIsDead>(FPos);
// Every function might be "will-return".
getOrCreateAAFor<AAWillReturn>(FPos);
// Every function might contain instructions that cause "undefined behavior".
getOrCreateAAFor<AAUndefinedBehavior>(FPos);
// Every function can be nounwind.
getOrCreateAAFor<AANoUnwind>(FPos);
// Every function might be marked "nosync"
getOrCreateAAFor<AANoSync>(FPos);
// Every function might be "no-free".
getOrCreateAAFor<AANoFree>(FPos);
// Every function might be "no-return".
getOrCreateAAFor<AANoReturn>(FPos);
// Every function might be "no-recurse".
getOrCreateAAFor<AANoRecurse>(FPos);
// Every function might be "readnone/readonly/writeonly/...".
getOrCreateAAFor<AAMemoryBehavior>(FPos);
// Every function can be "readnone/argmemonly/inaccessiblememonly/...".
getOrCreateAAFor<AAMemoryLocation>(FPos);
// Every function might be applicable for Heap-To-Stack conversion.
if (EnableHeapToStack)
getOrCreateAAFor<AAHeapToStack>(FPos);
// Return attributes are only appropriate if the return type is non void.
Type *ReturnType = F.getReturnType();
if (!ReturnType->isVoidTy()) {
// Argument attribute "returned" --- Create only one per function even
// though it is an argument attribute.
getOrCreateAAFor<AAReturnedValues>(FPos);
IRPosition RetPos = IRPosition::returned(F);
// Every returned value might be dead.
getOrCreateAAFor<AAIsDead>(RetPos);
// Every function might be simplified.
getOrCreateAAFor<AAValueSimplify>(RetPos);
// Every returned value might be marked noundef.
getOrCreateAAFor<AANoUndef>(RetPos);
if (ReturnType->isPointerTy()) {
// Every function with pointer return type might be marked align.
getOrCreateAAFor<AAAlign>(RetPos);
// Every function with pointer return type might be marked nonnull.
getOrCreateAAFor<AANonNull>(RetPos);
// Every function with pointer return type might be marked noalias.
getOrCreateAAFor<AANoAlias>(RetPos);
// Every function with pointer return type might be marked
// dereferenceable.
getOrCreateAAFor<AADereferenceable>(RetPos);
}
}
for (Argument &Arg : F.args()) {
IRPosition ArgPos = IRPosition::argument(Arg);
// Every argument might be simplified.
getOrCreateAAFor<AAValueSimplify>(ArgPos);
// Every argument might be dead.
getOrCreateAAFor<AAIsDead>(ArgPos);
// Every argument might be marked noundef.
getOrCreateAAFor<AANoUndef>(ArgPos);
if (Arg.getType()->isPointerTy()) {
// Every argument with pointer type might be marked nonnull.
getOrCreateAAFor<AANonNull>(ArgPos);
// Every argument with pointer type might be marked noalias.
getOrCreateAAFor<AANoAlias>(ArgPos);
// Every argument with pointer type might be marked dereferenceable.
getOrCreateAAFor<AADereferenceable>(ArgPos);
// Every argument with pointer type might be marked align.
getOrCreateAAFor<AAAlign>(ArgPos);
// Every argument with pointer type might be marked nocapture.
getOrCreateAAFor<AANoCapture>(ArgPos);
// Every argument with pointer type might be marked
// "readnone/readonly/writeonly/..."
getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
// Every argument with pointer type might be marked nofree.
getOrCreateAAFor<AANoFree>(ArgPos);
// Every argument with pointer type might be privatizable (or promotable)
getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
}
}
auto CallSitePred = [&](Instruction &I) -> bool {
auto &CB = cast<CallBase>(I);
IRPosition CBRetPos = IRPosition::callsite_returned(CB);
// Call sites might be dead if they do not have side effects and no live
// users. The return value might be dead if there are no live users.
getOrCreateAAFor<AAIsDead>(CBRetPos);
Function *Callee = CB.getCalledFunction();
// TODO: Even if the callee is not known now we might be able to simplify
// the call/callee.
if (!Callee)
return true;
// Skip declarations except if annotations on their call sites were
// explicitly requested.
if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
!Callee->hasMetadata(LLVMContext::MD_callback))
return true;
if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
IRPosition CBRetPos = IRPosition::callsite_returned(CB);
// Call site return integer values might be limited by a constant range.
if (Callee->getReturnType()->isIntegerTy())
getOrCreateAAFor<AAValueConstantRange>(CBRetPos);
}
for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
// Every call site argument might be dead.
getOrCreateAAFor<AAIsDead>(CBArgPos);
// Call site argument might be simplified.
getOrCreateAAFor<AAValueSimplify>(CBArgPos);
// Every call site argument might be marked "noundef".
getOrCreateAAFor<AANoUndef>(CBArgPos);
if (!CB.getArgOperand(I)->getType()->isPointerTy())
continue;
// Call site argument attribute "non-null".
getOrCreateAAFor<AANonNull>(CBArgPos);
// Call site argument attribute "nocapture".
getOrCreateAAFor<AANoCapture>(CBArgPos);
// Call site argument attribute "no-alias".
getOrCreateAAFor<AANoAlias>(CBArgPos);
// Call site argument attribute "dereferenceable".
getOrCreateAAFor<AADereferenceable>(CBArgPos);
// Call site argument attribute "align".
getOrCreateAAFor<AAAlign>(CBArgPos);
// Call site argument attribute
// "readnone/readonly/writeonly/..."
getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
// Call site argument attribute "nofree".
getOrCreateAAFor<AANoFree>(CBArgPos);
}
return true;
};
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
bool Success;
Success = checkForAllInstructionsImpl(
nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
{(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call});
(void)Success;
assert(Success && "Expected the check call to be successful!");
auto LoadStorePred = [&](Instruction &I) -> bool {
if (isa<LoadInst>(I))
getOrCreateAAFor<AAAlign>(
IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
else
getOrCreateAAFor<AAAlign>(
IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
return true;
};
Success = checkForAllInstructionsImpl(
nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
{(unsigned)Instruction::Load, (unsigned)Instruction::Store});
(void)Success;
assert(Success && "Expected the check call to be successful!");
}
/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
switch (AP) {
case IRPosition::IRP_INVALID:
return OS << "inv";
case IRPosition::IRP_FLOAT:
return OS << "flt";
case IRPosition::IRP_RETURNED:
return OS << "fn_ret";
case IRPosition::IRP_CALL_SITE_RETURNED:
return OS << "cs_ret";
case IRPosition::IRP_FUNCTION:
return OS << "fn";
case IRPosition::IRP_CALL_SITE:
return OS << "cs";
case IRPosition::IRP_ARGUMENT:
return OS << "arg";
case IRPosition::IRP_CALL_SITE_ARGUMENT:
return OS << "cs_arg";
}
llvm_unreachable("Unknown attribute position!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
const Value &AV = Pos.getAssociatedValue();
return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
<< Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo()
<< "]}";
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
OS << "range-state(" << S.getBitWidth() << ")<";
S.getKnown().print(OS);
OS << " / ";
S.getAssumed().print(OS);
OS << ">";
return OS << static_cast<const AbstractState &>(S);
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
AA.print(OS);
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
const PotentialConstantIntValuesState &S) {
OS << "set-state(< {";
if (!S.isValidState())
OS << "full-set";
else {
for (auto &it : S.getAssumedSet())
OS << it << ", ";
if (S.undefIsContained())
OS << "undef ";
}
OS << "} >)";
return OS;
}
void AbstractAttribute::print(raw_ostream &OS) const {
OS << "[";
OS << getName();
OS << "] for CtxI ";
if (auto *I = getCtxI()) {
OS << "'";
I->print(OS);
OS << "'";
} else
OS << "<<null inst>>";
OS << " at position " << getIRPosition() << " with state " << getAsStr()
<< '\n';
}
void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
print(OS);
for (const auto &DepAA : Deps) {
auto *AA = DepAA.getPointer();
OS << " updates ";
AA->print(OS);
}
OS << '\n';
}
///}
/// ----------------------------------------------------------------------------
/// Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------
static bool runAttributorOnFunctions(InformationCache &InfoCache,
SetVector<Function *> &Functions,
AnalysisGetter &AG,
CallGraphUpdater &CGUpdater) {
if (Functions.empty())
return false;
LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << Functions.size()
<< " functions.\n");
// Create an Attributor and initially empty information cache that is filled
// while we identify default attribute opportunities.
Attributor A(Functions, InfoCache, CGUpdater);
// Create shallow wrappers for all functions that are not IPO amendable
if (AllowShallowWrappers)
for (Function *F : Functions)
if (!A.isFunctionIPOAmendable(*F))
createShallowWrapper(*F);
// Internalize non-exact functions
// TODO: for now we eagerly internalize functions without calculating the
// cost, we need a cost interface to determine whether internalizing
// a function is "benefitial"
if (AllowDeepWrapper) {
unsigned FunSize = Functions.size();
for (unsigned u = 0; u < FunSize; u++) {
Function *F = Functions[u];
if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
!GlobalValue::isInterposableLinkage(F->getLinkage())) {
Function *NewF = internalizeFunction(*F);
Functions.insert(NewF);
// Update call graph
CGUpdater.replaceFunctionWith(*F, *NewF);
for (const Use &U : NewF->uses())
if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
auto *CallerF = CB->getCaller();
CGUpdater.reanalyzeFunction(*CallerF);
}
}
}
}
for (Function *F : Functions) {
if (F->hasExactDefinition())
NumFnWithExactDefinition++;
else
NumFnWithoutExactDefinition++;
// We look at internal functions only on-demand but if any use is not a
// direct call or outside the current set of analyzed functions, we have
// to do it eagerly.
if (F->hasLocalLinkage()) {
if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
const auto *CB = dyn_cast<CallBase>(U.getUser());
return CB && CB->isCallee(&U) &&
Functions.count(const_cast<Function *>(CB->getCaller()));
}))
continue;
}
// Populate the Attributor with abstract attribute opportunities in the
// function and the information cache with IR information.
A.identifyDefaultAbstractAttributes(*F);
}
ChangeStatus Changed = A.run();
LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
<< " functions, result: " << Changed << ".\n");
return Changed == ChangeStatus::CHANGED;
}
void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
void AADepGraph::dumpGraph() {
static std::atomic<int> CallTimes;
std::string Prefix;
if (!DepGraphDotFileNamePrefix.empty())
Prefix = DepGraphDotFileNamePrefix;
else
Prefix = "dep_graph";
std::string Filename =
Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
outs() << "Dependency graph dump to " << Filename << ".\n";
std::error_code EC;
raw_fd_ostream File(Filename, EC, sys::fs::OF_Text);
if (!EC)
llvm::WriteGraph(File, this);
CallTimes++;
}
void AADepGraph::print() {
for (auto DepAA : SyntheticRoot.Deps)
cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
}
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
AnalysisGetter AG(FAM);
SetVector<Function *> Functions;
for (Function &F : M)
Functions.insert(&F);
CallGraphUpdater CGUpdater;
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
// FIXME: Think about passes we will preserve and add them here.
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
AnalysisGetter AG(FAM);
SetVector<Function *> Functions;
for (LazyCallGraph::Node &N : C)
Functions.insert(&N.getFunction());
if (Functions.empty())
return PreservedAnalyses::all();
Module &M = *Functions.back()->getParent();
CallGraphUpdater CGUpdater;
CGUpdater.initialize(CG, C, AM, UR);
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater)) {
// FIXME: Think about passes we will preserve and add them here.
PreservedAnalyses PA;
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
return PA;
}
return PreservedAnalyses::all();
}
namespace llvm {
template <> struct GraphTraits<AADepGraphNode *> {
using NodeRef = AADepGraphNode *;
using DepTy = PointerIntPair<AADepGraphNode *, 1>;
using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
using ChildIteratorType =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
};
template <>
struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
using nodes_iterator =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
};
template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getNodeLabel(const AADepGraphNode *Node,
const AADepGraph *DG) {
std::string AAString = "";
raw_string_ostream O(AAString);
Node->print(O);
return AAString;
}
};
} // end namespace llvm
namespace {
struct AttributorLegacyPass : public ModulePass {
static char ID;
AttributorLegacyPass() : ModulePass(ID) {
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
AnalysisGetter AG;
SetVector<Function *> Functions;
for (Function &F : M)
Functions.insert(&F);
CallGraphUpdater CGUpdater;
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: Think about passes we will preserve and add them here.
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
CallGraphUpdater CGUpdater;
static char ID;
AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnSCC(CallGraphSCC &SCC) override {
if (skipSCC(SCC))
return false;
SetVector<Function *> Functions;
for (CallGraphNode *CGN : SCC)
if (Function *Fn = CGN->getFunction())
if (!Fn->isDeclaration())
Functions.insert(Fn);
if (Functions.empty())
return false;
AnalysisGetter AG;
CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
CGUpdater.initialize(CG, SCC);
Module &M = *Functions.back()->getParent();
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater);
}
bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: Think about passes we will preserve and add them here.
AU.addRequired<TargetLibraryInfoWrapperPass>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
Pass *llvm::createAttributorCGSCCLegacyPass() {
return new AttributorCGSCCLegacyPass();
}
char AttributorLegacyPass::ID = 0;
char AttributorCGSCCLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
"Deduce and propagate attributes (CGSCC pass)", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
"Deduce and propagate attributes (CGSCC pass)", false,
false)