HexagonPseudo.td 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
//===--- HexagonPseudo.td -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// The pat frags in the definitions below need to have a named register,
// otherwise i32 will be assumed regardless of the register class. The
// name of the register does not matter.
def I1  : PatLeaf<(i1 PredRegs:$R)>;
def I32 : PatLeaf<(i32 IntRegs:$R)>;
def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
def F32 : PatLeaf<(f32 IntRegs:$R)>;
def F64 : PatLeaf<(f64 DoubleRegs:$R)>;

let PrintMethod = "printGlobalOperand" in {
  def globaladdress : Operand<i32>;
  def globaladdressExt : Operand<i32>;
}

let isPseudo = 1 in {
let isCodeGenOnly = 0 in
def A2_iconst : Pseudo<(outs IntRegs:$Rd32),
    (ins s27_2Imm:$Ii), "${Rd32} = iconst(#${Ii})">;

def DUPLEX_Pseudo : InstHexagon<(outs),
    (ins s32_0Imm:$offset), "DUPLEX", [], "", DUPLEX, TypePSEUDO>;
}

let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
    isAsmParserOnly = 1 in
def TFRI64_V2_ext : InstHexagon<(outs DoubleRegs:$dst),
    (ins s32_0Imm:$src1, s8_0Imm:$src2),
    "$dst = combine(#$src1,#$src2)", [], "",
    A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;

// HI/LO Instructions
let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
    hasNewValue = 1, opNewValue = 0 in
class REG_IMMED<string RegHalf, bit Rs, bits<3> MajOp, bit MinOp,
                InstHexagon rootInst>
  : InstHexagon<(outs IntRegs:$dst),
                (ins u16_0Imm:$imm_value),
                "$dst"#RegHalf#" = #$imm_value", [], "",
                rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<5> dst;
    bits<32> imm_value;

    let Inst{27} = Rs;
    let Inst{26-24} = MajOp;
    let Inst{21} = MinOp;
    let Inst{20-16} = dst;
    let Inst{23-22} = imm_value{15-14};
    let Inst{13-0} = imm_value{13-0};
}

let isAsmParserOnly = 1 in {
  def LO : REG_IMMED<".l", 0b0, 0b001, 0b1, A2_tfril>;
  def HI : REG_IMMED<".h", 0b0, 0b010, 0b1, A2_tfrih>;
}

let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in {
  def CONST32 : CONSTLDInst<(outs IntRegs:$Rd), (ins i32imm:$v),
                "$Rd = CONST32(#$v)", []>;
  def CONST64 : CONSTLDInst<(outs DoubleRegs:$Rd), (ins i64imm:$v),
                "$Rd = CONST64(#$v)", []>;
}

let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
    isCodeGenOnly = 1 in
def PS_true : InstHexagon<(outs PredRegs:$dst), (ins), "",
              [(set I1:$dst, 1)], "", C2_orn.Itinerary, TypeCR>;

let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
    isCodeGenOnly = 1 in
def PS_false : InstHexagon<(outs PredRegs:$dst), (ins), "",
               [(set I1:$dst, 0)], "", C2_andn.Itinerary, TypeCR>;

let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              ".error \"should not emit\" ", []>;

let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                             ".error \"should not emit\" ", []>;


let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
    Defs = [PC, LC0], Uses = [SA0, LC0] in {
def ENDLOOP0 : Endloop<(outs), (ins b30_2Imm:$offset),
                       ":endloop0",
                       []>;
}

let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
    Defs = [PC, LC1], Uses = [SA1, LC1] in {
def ENDLOOP1 : Endloop<(outs), (ins b30_2Imm:$offset),
                       ":endloop1",
                       []>;
}

let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
    Defs = [PC, LC0, LC1], Uses = [SA0, SA1, LC0, LC1] in {
def ENDLOOP01 : Endloop<(outs), (ins b30_2Imm:$offset),
                        ":endloop01",
                        []>;
}

let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
    opExtendable = 0, hasSideEffects = 0 in
class LOOP_iBase<string mnemonic, InstHexagon rootInst>
         : InstHexagon <(outs), (ins b30_2Imm:$offset, u10_0Imm:$src2),
           mnemonic#"($offset,#$src2)",
           [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<9> offset;
    bits<10> src2;

    let IClass = 0b0110;

    let Inst{27-22} = 0b100100;
    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
    let Inst{20-16} = src2{9-5};
    let Inst{12-8} = offset{8-4};
    let Inst{7-5} = src2{4-2};
    let Inst{4-3} = offset{3-2};
    let Inst{1-0} = src2{1-0};
}

let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
    opExtendable = 0, hasSideEffects = 0 in
class LOOP_rBase<string mnemonic, InstHexagon rootInst>
         : InstHexagon<(outs), (ins b30_2Imm:$offset, IntRegs:$src2),
           mnemonic#"($offset,$src2)",
           [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<9> offset;
    bits<5> src2;

    let IClass = 0b0110;

    let Inst{27-22} = 0b000000;
    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
    let Inst{20-16} = src2;
    let Inst{12-8} = offset{8-4};
    let Inst{4-3} = offset{3-2};
  }

let Defs = [SA0, LC0, USR], isCodeGenOnly = 1, isExtended = 1,
    opExtendable = 0 in {
  def J2_loop0iext : LOOP_iBase<"loop0", J2_loop0i>;
  def J2_loop1iext : LOOP_iBase<"loop1", J2_loop1i>;
}

// Interestingly only loop0's appear to set usr.lpcfg
let Defs = [SA1, LC1], isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in {
  def J2_loop0rext : LOOP_rBase<"loop0", J2_loop0r>;
  def J2_loop1rext : LOOP_rBase<"loop1", J2_loop1r>;
}

let isCall = 1, hasSideEffects = 1, isPredicable = 0,
    isExtended = 0, isExtendable = 1, opExtendable = 0,
    isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2 in
class T_Call<string ExtStr>
  : InstHexagon<(outs), (ins a30_2Imm:$dst),
      "call " # ExtStr # "$dst", [], "", J2_call.Itinerary, TypeJ>,
    OpcodeHexagon {
  let BaseOpcode = "call";
  bits<24> dst;

  let IClass = 0b0101;
  let Inst{27-25} = 0b101;
  let Inst{24-16,13-1} = dst{23-2};
  let Inst{0} = 0b0;
}

let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1, Defs = [R16],
    isPredicable = 0 in
def CALLProfile :  T_Call<"">;

let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1,
    Defs = [PC, R31, R6, R7, P0] in
def PS_call_stk : T_Call<"">;

// Call, no return.
let isCall = 1, hasSideEffects = 1, cofMax1 = 1, isCodeGenOnly = 1 in
def PS_callr_nr: InstHexagon<(outs), (ins IntRegs:$Rs),
    "callr $Rs", [], "", J2_callr.Itinerary, TypeJ>, OpcodeHexagon {
    bits<5> Rs;
    bits<2> Pu;
    let isPredicatedFalse = 1;

    let IClass = 0b0101;
    let Inst{27-21} = 0b0000101;
    let Inst{20-16} = Rs;
  }

let isCall = 1, hasSideEffects = 1,
    isExtended = 0, isExtendable = 1, opExtendable = 0, isCodeGenOnly = 1,
    BaseOpcode = "PS_call_nr", isExtentSigned = 1, opExtentAlign = 2 in
class Call_nr<bits<5> nbits, bit isPred, bit isFalse, dag iops,
              InstrItinClass itin>
  : Pseudo<(outs), iops, "">, PredRel {
    bits<2> Pu;
    bits<17> dst;
    let opExtentBits = nbits;
    let isPredicable = 0;  // !if(isPred, 0, 1);
    let isPredicated = 0;  // isPred;
    let isPredicatedFalse = isFalse;
    let Itinerary = itin;
}

def PS_call_nr : Call_nr<24, 0, 0, (ins s32_0Imm:$Ii), J2_call.Itinerary>;
//def PS_call_nrt: Call_nr<17, 1, 0, (ins PredRegs:$Pu, s32_0Imm:$dst),
//                         J2_callt.Itinerary>;
//def PS_call_nrf: Call_nr<17, 1, 1, (ins PredRegs:$Pu, s32_0Imm:$dst),
//                         J2_callf.Itinerary>;

let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
    isPredicable = 1, hasSideEffects = 0, InputType = "reg",
    cofMax1 = 1 in
class T_JMPr <InstHexagon rootInst>
  :  InstHexagon<(outs), (ins IntRegs:$dst), "jumpr $dst", [],
                 "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<5> dst;

    let IClass = 0b0101;
    let Inst{27-21} = 0b0010100;
    let Inst{20-16} = dst;
}

// A return through builtin_eh_return.
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
    isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
def EH_RETURN_JMPR : T_JMPr<J2_jumpr>;

// Indirect tail-call.
let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
    isTerminator = 1, isCodeGenOnly = 1 in
def PS_tailcall_r : T_JMPr<J2_jumpr>;

//
// Direct tail-calls.
let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
    isTerminator = 1, isCodeGenOnly = 1 in
def PS_tailcall_i : Pseudo<(outs), (ins a30_2Imm:$dst), "", []>;

let isCodeGenOnly = 1, isPseudo = 1, Uses = [R30], hasSideEffects = 0 in
def PS_aligna : Pseudo<(outs IntRegs:$Rd), (ins u32_0Imm:$A), "", []>;

// Generate frameindex addresses. The main reason for the offset operand is
// that every instruction that is allowed to have frame index as an operand
// will then have that operand followed by an immediate operand (the offset).
// This simplifies the frame-index elimination code.
//
let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
    isPseudo = 1, isCodeGenOnly = 1, hasSideEffects = 0, isExtendable = 1,
    isExtentSigned = 1, opExtentBits = 16, opExtentAlign = 0 in {
  let opExtendable = 2 in
  def PS_fi  : Pseudo<(outs IntRegs:$Rd),
                      (ins IntRegs:$fi, s32_0Imm:$off), "">;
  let opExtendable = 3 in
  def PS_fia : Pseudo<(outs IntRegs:$Rd),
                      (ins IntRegs:$Rs, IntRegs:$fi, s32_0Imm:$off), "">;
}

class CondStr<string CReg, bit True, bit New> {
  string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
}
class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
  string S = Mnemonic # !if(Taken, ":t", ":nt");
}
let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
    hasSideEffects = 0, InputType = "reg", cofMax1 = 1 in
class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak, InstHexagon rootInst>
  :  InstHexagon<(outs), (ins PredRegs:$src, IntRegs:$dst),
                 CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
                 JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst",
                 [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {

    let isTaken = isTak;
    let isPredicatedFalse = PredNot;
    let isPredicatedNew = isPredNew;
    bits<2> src;
    bits<5> dst;

    let IClass = 0b0101;

    let Inst{27-22} = 0b001101;
    let Inst{21} = PredNot;
    let Inst{20-16} = dst;
    let Inst{12} = isTak;
    let Inst{11} = isPredNew;
    let Inst{9-8} = src;
}

let isTerminator = 1, hasSideEffects = 0, isReturn = 1, isCodeGenOnly = 1,
    isBarrier = 1, BaseOpcode = "JMPret" in {
  def PS_jmpret : T_JMPr<J2_jumpr>, PredNewRel;
  def PS_jmprett : T_JMPr_c<0, 0, 0, J2_jumprt>, PredNewRel;
  def PS_jmpretf : T_JMPr_c<1, 0, 0, J2_jumprf>, PredNewRel;
  def PS_jmprettnew : T_JMPr_c<0, 1, 0, J2_jumprtnew>, PredNewRel;
  def PS_jmpretfnew : T_JMPr_c<1, 1, 0, J2_jumprfnew>, PredNewRel;
  def PS_jmprettnewpt : T_JMPr_c<0, 1, 1, J2_jumprtnewpt>, PredNewRel;
  def PS_jmpretfnewpt : T_JMPr_c<1, 1, 1, J2_jumprfnewpt>, PredNewRel;
}

//defm V6_vtran2x2_map : HexagonMapping<(outs HvxVR:$Vy32, HvxVR:$Vx32), (ins HvxVR:$Vx32in, IntRegs:$Rt32), "vtrans2x2(${Vy32},${Vx32},${Rt32})", (V6_vshuff HvxVR:$Vy32, HvxVR:$Vx32, HvxVR:$Vx32in, IntRegs:$Rt32)>;

// The reason for the custom inserter is to record all ALLOCA instructions
// in MachineFunctionInfo.
let Defs = [R29], hasSideEffects = 1 in
def PS_alloca: Pseudo <(outs IntRegs:$Rd),
                       (ins IntRegs:$Rs, u32_0Imm:$A), "", []>;

// Load predicate.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def LDriw_pred : LDInst<(outs PredRegs:$dst),
                        (ins IntRegs:$addr, s32_0Imm:$off),
                        ".error \"should not emit\"", []>;

// Load modifier.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def LDriw_ctr : LDInst<(outs CtrRegs:$dst),
                        (ins IntRegs:$addr, s32_0Imm:$off),
                        ".error \"should not emit\"", []>;


let isCodeGenOnly = 1, isPseudo = 1 in
def PS_pselect: InstHexagon<(outs DoubleRegs:$Rd),
      (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
      ".error \"should not emit\" ", [], "", A2_tfrpt.Itinerary, TypeALU32_2op>;

let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
    isPredicable = 1,
    isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
    opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
class T_JMP: InstHexagon<(outs), (ins b30_2Imm:$dst),
      "jump $dst",
      [], "", J2_jump.Itinerary, TypeJ>, OpcodeHexagon {
    bits<24> dst;
    let IClass = 0b0101;

    let Inst{27-25} = 0b100;
    let Inst{24-16} = dst{23-15};
    let Inst{13-1} = dst{14-2};
}

// Restore registers and dealloc return function call.
let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in {
  def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP;

  let isExtended = 1, opExtendable = 0 in
  def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP;

  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
    def RESTORE_DEALLOC_RET_JMP_V4_PIC : T_JMP;

    let isExtended = 1, opExtendable = 0 in
    def RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC : T_JMP;
  }
}

// Restore registers and dealloc frame before a tail call.
let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in {
  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<"">, PredRel;

  let isExtended = 1, opExtendable = 0 in
  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : T_Call<"">, PredRel;

    let isExtended = 1, opExtendable = 0 in
    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC : T_Call<"">, PredRel;
  }
}

// Save registers function call.
let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in {
  def SAVE_REGISTERS_CALL_V4 : T_Call<"">, PredRel;

  let isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4_EXT : T_Call<"">, PredRel;

  let Defs = [P0] in
  def SAVE_REGISTERS_CALL_V4STK : T_Call<"">, PredRel;

  let Defs = [P0], isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4STK_EXT : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28] in
  def SAVE_REGISTERS_CALL_V4_PIC : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28], isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4_EXT_PIC : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28, P0] in
  def SAVE_REGISTERS_CALL_V4STK_PIC : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28, P0], isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4STK_EXT_PIC : T_Call<"">, PredRel;
}

// Vector store pseudos
let Predicates = [HasV60,UseHVX], isPseudo = 1, isCodeGenOnly = 1,
    mayStore = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
class STriv_template<RegisterClass RC, InstHexagon rootInst>
  : InstHexagon<(outs), (ins IntRegs:$addr, s32_0Imm:$off, RC:$src),
    "", [], "", rootInst.Itinerary, rootInst.Type>;

def PS_vstorerv_ai: STriv_template<HvxVR, V6_vS32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vstorerv_nt_ai: STriv_template<HvxVR, V6_vS32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vstorerw_ai: STriv_template<HvxWR, V6_vS32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vstorerw_nt_ai: STriv_template<HvxWR, V6_vS32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;

let isPseudo = 1, isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0 in
def PS_vstorerq_ai: Pseudo<(outs),
      (ins IntRegs:$Rs, s32_0Imm:$Off, HvxQR:$Qt), "", []>,
      Requires<[HasV60,UseHVX]>;

// Vector load pseudos
let Predicates = [HasV60, UseHVX], isPseudo = 1, isCodeGenOnly = 1,
    mayLoad = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
class LDriv_template<RegisterClass RC, InstHexagon rootInst>
  : InstHexagon<(outs RC:$dst), (ins IntRegs:$addr, s32_0Imm:$off),
    "", [], "", rootInst.Itinerary, rootInst.Type>;

def PS_vloadrv_ai: LDriv_template<HvxVR, V6_vL32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vloadrv_nt_ai: LDriv_template<HvxVR, V6_vL32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vloadrw_ai: LDriv_template<HvxWR, V6_vL32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vloadrw_nt_ai: LDriv_template<HvxWR, V6_vL32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;

let isPseudo = 1, isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0 in
def PS_vloadrq_ai: Pseudo<(outs HvxQR:$Qd),
      (ins IntRegs:$Rs, s32_0Imm:$Off), "", []>,
      Requires<[HasV60,UseHVX]>;


let isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
class VSELInst<dag outs, dag ins, InstHexagon rootInst>
  : InstHexagon<outs, ins, "", [], "", rootInst.Itinerary, rootInst.Type>;

def PS_vselect: VSELInst<(outs HvxVR:$dst),
      (ins PredRegs:$src1, HvxVR:$src2, HvxVR:$src3), V6_vcmov>,
      Requires<[HasV60,UseHVX]>;
def PS_wselect: VSELInst<(outs HvxWR:$dst),
      (ins PredRegs:$src1, HvxWR:$src2, HvxWR:$src3), V6_vccombine>,
      Requires<[HasV60,UseHVX]>;

let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
    isCodeGenOnly = 1 in {
  def PS_qtrue:  InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
                 V6_veqw.Itinerary, TypeCVI_VA>;
  def PS_qfalse: InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
                 V6_vgtw.Itinerary, TypeCVI_VA>;
  def PS_vdd0:   InstHexagon<(outs HvxWR:$Vd), (ins), "", [], "",
                 V6_vsubw_dv.Itinerary, TypeCVI_VA_DV>;
}

// Store predicate.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def STriw_pred : STInst<(outs),
      (ins IntRegs:$addr, s32_0Imm:$off, PredRegs:$src1),
      ".error \"should not emit\"", []>;
// Store modifier.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def STriw_ctr : STInst<(outs),
      (ins IntRegs:$addr, s32_0Imm:$off, CtrRegs:$src1),
      ".error \"should not emit\"", []>;

let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
    isAsmParserOnly = 1 in
def TFRI64_V4 : InstHexagon<(outs DoubleRegs:$dst),
    (ins u64_0Imm:$src1),
    "$dst = #$src1", [], "",
    A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;

// Hexagon doesn't have a vector multiply with C semantics.
// Instead, generate a pseudo instruction that gets expanded into two
// scalar MPYI instructions.
// This is expanded by ExpandPostRAPseudos.
let isPseudo = 1 in
def PS_vmulw : PseudoM<(outs DoubleRegs:$Rd),
      (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "", []>;

let isPseudo = 1 in
def PS_vmulw_acc : PseudoM<(outs DoubleRegs:$Rd),
      (ins DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt), "", [],
      "$Rd = $Rx">;

def DuplexIClass0:  InstDuplex < 0 >;
def DuplexIClass1:  InstDuplex < 1 >;
def DuplexIClass2:  InstDuplex < 2 >;
let isExtendable = 1 in {
  def DuplexIClass3:  InstDuplex < 3 >;
  def DuplexIClass4:  InstDuplex < 4 >;
  def DuplexIClass5:  InstDuplex < 5 >;
  def DuplexIClass6:  InstDuplex < 6 >;
  def DuplexIClass7:  InstDuplex < 7 >;
}
def DuplexIClass8:  InstDuplex < 8 >;
def DuplexIClass9:  InstDuplex < 9 >;
def DuplexIClassA:  InstDuplex < 0xA >;
def DuplexIClassB:  InstDuplex < 0xB >;
def DuplexIClassC:  InstDuplex < 0xC >;
def DuplexIClassD:  InstDuplex < 0xD >;
def DuplexIClassE:  InstDuplex < 0xE >;
def DuplexIClassF:  InstDuplex < 0xF >;

// Pseudos for circular buffer instructions. These are needed in order to
// allocate the correct pair of CSx and Mx registers.
multiclass NewCircularLoad<RegisterClass RC, MemAccessSize MS> {

let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
    addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
  // Use timing class of L2_loadrb_pci.
  def NAME#_pci : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_5ceb2f9e>;

  // Use timing class of L2_loadrb_pcr.
  def NAME#_pcr : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, ModRegs:$Mu2, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_075c8dd8>;
}
}

defm PS_loadrub : NewCircularLoad<IntRegs, ByteAccess>;
defm PS_loadrb : NewCircularLoad<IntRegs, ByteAccess>;
defm PS_loadruh : NewCircularLoad<IntRegs, HalfWordAccess>;
defm PS_loadrh : NewCircularLoad<IntRegs, HalfWordAccess>;
defm PS_loadri : NewCircularLoad<IntRegs, WordAccess>;
defm PS_loadrd : NewCircularLoad<DoubleRegs, DoubleWordAccess>;

multiclass NewCircularStore<RegisterClass RC, MemAccessSize MS> {

let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
    addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
  // Use timing class of S2_storerb_pci.
  def NAME#_pci : STInst<(outs IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_b4dc7630>;

  // Use timing class of S2_storerb_pcr.
  def NAME#_pcr : STInst<(outs IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_a2b365d2>;
}
}

defm PS_storerb : NewCircularStore<IntRegs, ByteAccess>;
defm PS_storerh : NewCircularStore<IntRegs, HalfWordAccess>;
defm PS_storerf : NewCircularStore<IntRegs, HalfWordAccess>;
defm PS_storeri : NewCircularStore<IntRegs, WordAccess>;
defm PS_storerd : NewCircularStore<DoubleRegs, WordAccess>;

// A pseudo that generates a runtime crash. This is used to implement
// __builtin_trap.
let hasSideEffects = 1, isPseudo = 1, isCodeGenOnly = 1, isSolo = 1 in
def PS_crash: InstHexagon<(outs), (ins), "", [], "", PSEUDO, TypePSEUDO>;