SIMachineScheduler.cpp 69.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
//===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// SI Machine Scheduler interface
//
//===----------------------------------------------------------------------===//

#include "SIMachineScheduler.h"
#include "AMDGPU.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <set>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

// This scheduler implements a different scheduling algorithm than
// GenericScheduler.
//
// There are several specific architecture behaviours that can't be modelled
// for GenericScheduler:
// . When accessing the result of an SGPR load instruction, you have to wait
// for all the SGPR load instructions before your current instruction to
// have finished.
// . When accessing the result of an VGPR load instruction, you have to wait
// for all the VGPR load instructions previous to the VGPR load instruction
// you are interested in to finish.
// . The less the register pressure, the best load latencies are hidden
//
// Moreover some specifities (like the fact a lot of instructions in the shader
// have few dependencies) makes the generic scheduler have some unpredictable
// behaviours. For example when register pressure becomes high, it can either
// manage to prevent register pressure from going too high, or it can
// increase register pressure even more than if it hadn't taken register
// pressure into account.
//
// Also some other bad behaviours are generated, like loading at the beginning
// of the shader a constant in VGPR you won't need until the end of the shader.
//
// The scheduling problem for SI can distinguish three main parts:
// . Hiding high latencies (texture sampling, etc)
// . Hiding low latencies (SGPR constant loading, etc)
// . Keeping register usage low for better latency hiding and general
//   performance
//
// Some other things can also affect performance, but are hard to predict
// (cache usage, the fact the HW can issue several instructions from different
// wavefronts if different types, etc)
//
// This scheduler tries to solve the scheduling problem by dividing it into
// simpler sub-problems. It divides the instructions into blocks, schedules
// locally inside the blocks where it takes care of low latencies, and then
// chooses the order of the blocks by taking care of high latencies.
// Dividing the instructions into blocks helps control keeping register
// usage low.
//
// First the instructions are put into blocks.
//   We want the blocks help control register usage and hide high latencies
//   later. To help control register usage, we typically want all local
//   computations, when for example you create a result that can be comsummed
//   right away, to be contained in a block. Block inputs and outputs would
//   typically be important results that are needed in several locations of
//   the shader. Since we do want blocks to help hide high latencies, we want
//   the instructions inside the block to have a minimal set of dependencies
//   on high latencies. It will make it easy to pick blocks to hide specific
//   high latencies.
//   The block creation algorithm is divided into several steps, and several
//   variants can be tried during the scheduling process.
//
// Second the order of the instructions inside the blocks is chosen.
//   At that step we do take into account only register usage and hiding
//   low latency instructions
//
// Third the block order is chosen, there we try to hide high latencies
// and keep register usage low.
//
// After the third step, a pass is done to improve the hiding of low
// latencies.
//
// Actually when talking about 'low latency' or 'high latency' it includes
// both the latency to get the cache (or global mem) data go to the register,
// and the bandwidth limitations.
// Increasing the number of active wavefronts helps hide the former, but it
// doesn't solve the latter, thus why even if wavefront count is high, we have
// to try have as many instructions hiding high latencies as possible.
// The OpenCL doc says for example latency of 400 cycles for a global mem access,
// which is hidden by 10 instructions if the wavefront count is 10.

// Some figures taken from AMD docs:
// Both texture and constant L1 caches are 4-way associative with 64 bytes
// lines.
// Constant cache is shared with 4 CUs.
// For texture sampling, the address generation unit receives 4 texture
// addresses per cycle, thus we could expect texture sampling latency to be
// equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
// instructions in a wavefront group are executed every 4 cycles),
// or 16 instructions if the other wavefronts associated to the 3 other VALUs
// of the CU do texture sampling too. (Don't take these figures too seriously,
// as I'm not 100% sure of the computation)
// Data exports should get similar latency.
// For constant loading, the cache is shader with 4 CUs.
// The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
// I guess if the other CU don't read the cache, it can go up to 64B/cycle.
// It means a simple s_buffer_load should take one instruction to hide, as
// well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
// cache line.
//
// As of today the driver doesn't preload the constants in cache, thus the
// first loads get extra latency. The doc says global memory access can be
// 300-600 cycles. We do not specially take that into account when scheduling
// As we expect the driver to be able to preload the constants soon.

// common code //

#ifndef NDEBUG

static const char *getReasonStr(SIScheduleCandReason Reason) {
  switch (Reason) {
  case NoCand:         return "NOCAND";
  case RegUsage:       return "REGUSAGE";
  case Latency:        return "LATENCY";
  case Successor:      return "SUCCESSOR";
  case Depth:          return "DEPTH";
  case NodeOrder:      return "ORDER";
  }
  llvm_unreachable("Unknown reason!");
}

#endif

namespace llvm {
namespace SISched {
static bool tryLess(int TryVal, int CandVal,
                    SISchedulerCandidate &TryCand,
                    SISchedulerCandidate &Cand,
                    SIScheduleCandReason Reason) {
  if (TryVal < CandVal) {
    TryCand.Reason = Reason;
    return true;
  }
  if (TryVal > CandVal) {
    if (Cand.Reason > Reason)
      Cand.Reason = Reason;
    return true;
  }
  Cand.setRepeat(Reason);
  return false;
}

static bool tryGreater(int TryVal, int CandVal,
                       SISchedulerCandidate &TryCand,
                       SISchedulerCandidate &Cand,
                       SIScheduleCandReason Reason) {
  if (TryVal > CandVal) {
    TryCand.Reason = Reason;
    return true;
  }
  if (TryVal < CandVal) {
    if (Cand.Reason > Reason)
      Cand.Reason = Reason;
    return true;
  }
  Cand.setRepeat(Reason);
  return false;
}
} // end namespace SISched
} // end namespace llvm

// SIScheduleBlock //

void SIScheduleBlock::addUnit(SUnit *SU) {
  NodeNum2Index[SU->NodeNum] = SUnits.size();
  SUnits.push_back(SU);
}

#ifndef NDEBUG
void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {

  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
  dbgs() << '\n';
}
#endif

void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
                                          SISchedCandidate &TryCand) {
  // Initialize the candidate if needed.
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return;
  }

  if (Cand.SGPRUsage > 60 &&
      SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
                       TryCand, Cand, RegUsage))
    return;

  // Schedule low latency instructions as top as possible.
  // Order of priority is:
  // . Low latency instructions which do not depend on other low latency
  //   instructions we haven't waited for
  // . Other instructions which do not depend on low latency instructions
  //   we haven't waited for
  // . Low latencies
  // . All other instructions
  // Goal is to get: low latency instructions - independent instructions
  //     - (eventually some more low latency instructions)
  //     - instructions that depend on the first low latency instructions.
  // If in the block there is a lot of constant loads, the SGPR usage
  // could go quite high, thus above the arbitrary limit of 60 will encourage
  // use the already loaded constants (in order to release some SGPRs) before
  // loading more.
  if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
                       Cand.HasLowLatencyNonWaitedParent,
                       TryCand, Cand, SIScheduleCandReason::Depth))
    return;

  if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
                          TryCand, Cand, SIScheduleCandReason::Depth))
    return;

  if (TryCand.IsLowLatency &&
      SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
                       TryCand, Cand, SIScheduleCandReason::Depth))
    return;

  if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
                       TryCand, Cand, RegUsage))
    return;

  // Fall through to original instruction order.
  if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
    TryCand.Reason = NodeOrder;
  }
}

SUnit* SIScheduleBlock::pickNode() {
  SISchedCandidate TopCand;

  for (SUnit* SU : TopReadySUs) {
    SISchedCandidate TryCand;
    std::vector<unsigned> pressure;
    std::vector<unsigned> MaxPressure;
    // Predict register usage after this instruction.
    TryCand.SU = SU;
    TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
    TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
    TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
    TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
    TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
    TryCand.HasLowLatencyNonWaitedParent =
      HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
    tryCandidateTopDown(TopCand, TryCand);
    if (TryCand.Reason != NoCand)
      TopCand.setBest(TryCand);
  }

  return TopCand.SU;
}


// Schedule something valid.
void SIScheduleBlock::fastSchedule() {
  TopReadySUs.clear();
  if (Scheduled)
    undoSchedule();

  for (SUnit* SU : SUnits) {
    if (!SU->NumPredsLeft)
      TopReadySUs.push_back(SU);
  }

  while (!TopReadySUs.empty()) {
    SUnit *SU = TopReadySUs[0];
    ScheduledSUnits.push_back(SU);
    nodeScheduled(SU);
  }

  Scheduled = true;
}

// Returns if the register was set between first and last.
static bool isDefBetween(unsigned Reg,
                           SlotIndex First, SlotIndex Last,
                           const MachineRegisterInfo *MRI,
                           const LiveIntervals *LIS) {
  for (MachineRegisterInfo::def_instr_iterator
       UI = MRI->def_instr_begin(Reg),
       UE = MRI->def_instr_end(); UI != UE; ++UI) {
    const MachineInstr* MI = &*UI;
    if (MI->isDebugValue())
      continue;
    SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
    if (InstSlot >= First && InstSlot <= Last)
      return true;
  }
  return false;
}

void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
                                      MachineBasicBlock::iterator EndBlock) {
  IntervalPressure Pressure, BotPressure;
  RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
  LiveIntervals *LIS = DAG->getLIS();
  MachineRegisterInfo *MRI = DAG->getMRI();
  DAG->initRPTracker(TopRPTracker);
  DAG->initRPTracker(BotRPTracker);
  DAG->initRPTracker(RPTracker);

  // Goes though all SU. RPTracker captures what had to be alive for the SUs
  // to execute, and what is still alive at the end.
  for (SUnit* SU : ScheduledSUnits) {
    RPTracker.setPos(SU->getInstr());
    RPTracker.advance();
  }

  // Close the RPTracker to finalize live ins/outs.
  RPTracker.closeRegion();

  // Initialize the live ins and live outs.
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);

  // Do not Track Physical Registers, because it messes up.
  for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
    if (Register::isVirtualRegister(RegMaskPair.RegUnit))
      LiveInRegs.insert(RegMaskPair.RegUnit);
  }
  LiveOutRegs.clear();
  // There is several possibilities to distinguish:
  // 1) Reg is not input to any instruction in the block, but is output of one
  // 2) 1) + read in the block and not needed after it
  // 3) 1) + read in the block but needed in another block
  // 4) Reg is input of an instruction but another block will read it too
  // 5) Reg is input of an instruction and then rewritten in the block.
  //    result is not read in the block (implies used in another block)
  // 6) Reg is input of an instruction and then rewritten in the block.
  //    result is read in the block and not needed in another block
  // 7) Reg is input of an instruction and then rewritten in the block.
  //    result is read in the block but also needed in another block
  // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
  // We want LiveOutRegs to contain only Regs whose content will be read after
  // in another block, and whose content was written in the current block,
  // that is we want it to get 1, 3, 5, 7
  // Since we made the MIs of a block to be packed all together before
  // scheduling, then the LiveIntervals were correct, and the RPTracker was
  // able to correctly handle 5 vs 6, 2 vs 3.
  // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
  // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
  // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
  // The use of findDefBetween removes the case 4.
  for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
    Register Reg = RegMaskPair.RegUnit;
    if (Reg.isVirtual() &&
        isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
                     LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
                     LIS)) {
      LiveOutRegs.insert(Reg);
    }
  }

  // Pressure = sum_alive_registers register size
  // Internally llvm will represent some registers as big 128 bits registers
  // for example, but they actually correspond to 4 actual 32 bits registers.
  // Thus Pressure is not equal to num_alive_registers * constant.
  LiveInPressure = TopPressure.MaxSetPressure;
  LiveOutPressure = BotPressure.MaxSetPressure;

  // Prepares TopRPTracker for top down scheduling.
  TopRPTracker.closeTop();
}

void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
                               MachineBasicBlock::iterator EndBlock) {
  if (!Scheduled)
    fastSchedule();

  // PreScheduling phase to set LiveIn and LiveOut.
  initRegPressure(BeginBlock, EndBlock);
  undoSchedule();

  // Schedule for real now.

  TopReadySUs.clear();

  for (SUnit* SU : SUnits) {
    if (!SU->NumPredsLeft)
      TopReadySUs.push_back(SU);
  }

  while (!TopReadySUs.empty()) {
    SUnit *SU = pickNode();
    ScheduledSUnits.push_back(SU);
    TopRPTracker.setPos(SU->getInstr());
    TopRPTracker.advance();
    nodeScheduled(SU);
  }

  // TODO: compute InternalAdditionnalPressure.
  InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());

  // Check everything is right.
#ifndef NDEBUG
  assert(SUnits.size() == ScheduledSUnits.size() &&
            TopReadySUs.empty());
  for (SUnit* SU : SUnits) {
    assert(SU->isScheduled &&
              SU->NumPredsLeft == 0);
  }
#endif

  Scheduled = true;
}

void SIScheduleBlock::undoSchedule() {
  for (SUnit* SU : SUnits) {
    SU->isScheduled = false;
    for (SDep& Succ : SU->Succs) {
      if (BC->isSUInBlock(Succ.getSUnit(), ID))
        undoReleaseSucc(SU, &Succ);
    }
  }
  HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
  ScheduledSUnits.clear();
  Scheduled = false;
}

void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

  if (SuccEdge->isWeak()) {
    ++SuccSU->WeakPredsLeft;
    return;
  }
  ++SuccSU->NumPredsLeft;
}

void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

  if (SuccEdge->isWeak()) {
    --SuccSU->WeakPredsLeft;
    return;
  }
#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    DAG->dumpNode(*SuccSU);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(nullptr);
  }
#endif

  --SuccSU->NumPredsLeft;
}

/// Release Successors of the SU that are in the block or not.
void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
  for (SDep& Succ : SU->Succs) {
    SUnit *SuccSU = Succ.getSUnit();

    if (SuccSU->NodeNum >= DAG->SUnits.size())
        continue;

    if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
      continue;

    releaseSucc(SU, &Succ);
    if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
      TopReadySUs.push_back(SuccSU);
  }
}

void SIScheduleBlock::nodeScheduled(SUnit *SU) {
  // Is in TopReadySUs
  assert (!SU->NumPredsLeft);
  std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
  if (I == TopReadySUs.end()) {
    dbgs() << "Data Structure Bug in SI Scheduler\n";
    llvm_unreachable(nullptr);
  }
  TopReadySUs.erase(I);

  releaseSuccessors(SU, true);
  // Scheduling this node will trigger a wait,
  // thus propagate to other instructions that they do not need to wait either.
  if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
    HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);

  if (DAG->IsLowLatencySU[SU->NodeNum]) {
     for (SDep& Succ : SU->Succs) {
      std::map<unsigned, unsigned>::iterator I =
        NodeNum2Index.find(Succ.getSUnit()->NodeNum);
      if (I != NodeNum2Index.end())
        HasLowLatencyNonWaitedParent[I->second] = 1;
    }
  }
  SU->isScheduled = true;
}

void SIScheduleBlock::finalizeUnits() {
  // We remove links from outside blocks to enable scheduling inside the block.
  for (SUnit* SU : SUnits) {
    releaseSuccessors(SU, false);
    if (DAG->IsHighLatencySU[SU->NodeNum])
      HighLatencyBlock = true;
  }
  HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
}

// we maintain ascending order of IDs
void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
  unsigned PredID = Pred->getID();

  // Check if not already predecessor.
  for (SIScheduleBlock* P : Preds) {
    if (PredID == P->getID())
      return;
  }
  Preds.push_back(Pred);

  assert(none_of(Succs,
                 [=](std::pair<SIScheduleBlock*,
                     SIScheduleBlockLinkKind> S) {
                   return PredID == S.first->getID();
                    }) &&
         "Loop in the Block Graph!");
}

void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
                              SIScheduleBlockLinkKind Kind) {
  unsigned SuccID = Succ->getID();

  // Check if not already predecessor.
  for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
    if (SuccID == S.first->getID()) {
      if (S.second == SIScheduleBlockLinkKind::NoData &&
          Kind == SIScheduleBlockLinkKind::Data)
        S.second = Kind;
      return;
    }
  }
  if (Succ->isHighLatencyBlock())
    ++NumHighLatencySuccessors;
  Succs.push_back(std::make_pair(Succ, Kind));

  assert(none_of(Preds,
                 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
         "Loop in the Block Graph!");
}

#ifndef NDEBUG
void SIScheduleBlock::printDebug(bool full) {
  dbgs() << "Block (" << ID << ")\n";
  if (!full)
    return;

  dbgs() << "\nContains High Latency Instruction: "
         << HighLatencyBlock << '\n';
  dbgs() << "\nDepends On:\n";
  for (SIScheduleBlock* P : Preds) {
    P->printDebug(false);
  }

  dbgs() << "\nSuccessors:\n";
  for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
    if (S.second == SIScheduleBlockLinkKind::Data)
      dbgs() << "(Data Dep) ";
    S.first->printDebug(false);
  }

  if (Scheduled) {
    dbgs() << "LiveInPressure "
           << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
           << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
    dbgs() << "LiveOutPressure "
           << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
           << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
    dbgs() << "LiveIns:\n";
    for (unsigned Reg : LiveInRegs)
      dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';

    dbgs() << "\nLiveOuts:\n";
    for (unsigned Reg : LiveOutRegs)
      dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
  }

  dbgs() << "\nInstructions:\n";
  for (const SUnit* SU : SUnits)
      DAG->dumpNode(*SU);

  dbgs() << "///////////////////////\n";
}
#endif

// SIScheduleBlockCreator //

SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
    : DAG(DAG) {}

SIScheduleBlocks
SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
  std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
    Blocks.find(BlockVariant);
  if (B == Blocks.end()) {
    SIScheduleBlocks Res;
    createBlocksForVariant(BlockVariant);
    topologicalSort();
    scheduleInsideBlocks();
    fillStats();
    Res.Blocks = CurrentBlocks;
    Res.TopDownIndex2Block = TopDownIndex2Block;
    Res.TopDownBlock2Index = TopDownBlock2Index;
    Blocks[BlockVariant] = Res;
    return Res;
  } else {
    return B->second;
  }
}

bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
  if (SU->NodeNum >= DAG->SUnits.size())
    return false;
  return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
}

void SIScheduleBlockCreator::colorHighLatenciesAlone() {
  unsigned DAGSize = DAG->SUnits.size();

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SUnit *SU = &DAG->SUnits[i];
    if (DAG->IsHighLatencySU[SU->NodeNum]) {
      CurrentColoring[SU->NodeNum] = NextReservedID++;
    }
  }
}

static bool
hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
  for (const auto &PredDep : SU.Preds) {
    if (PredDep.getSUnit() == &FromSU &&
        PredDep.getKind() == llvm::SDep::Data)
      return true;
  }
  return false;
}

void SIScheduleBlockCreator::colorHighLatenciesGroups() {
  unsigned DAGSize = DAG->SUnits.size();
  unsigned NumHighLatencies = 0;
  unsigned GroupSize;
  int Color = NextReservedID;
  unsigned Count = 0;
  std::set<unsigned> FormingGroup;

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SUnit *SU = &DAG->SUnits[i];
    if (DAG->IsHighLatencySU[SU->NodeNum])
      ++NumHighLatencies;
  }

  if (NumHighLatencies == 0)
    return;

  if (NumHighLatencies <= 6)
    GroupSize = 2;
  else if (NumHighLatencies <= 12)
    GroupSize = 3;
  else
    GroupSize = 4;

  for (unsigned SUNum : DAG->TopDownIndex2SU) {
    const SUnit &SU = DAG->SUnits[SUNum];
    if (DAG->IsHighLatencySU[SU.NodeNum]) {
      unsigned CompatibleGroup = true;
      int ProposedColor = Color;
      std::vector<int> AdditionalElements;

      // We don't want to put in the same block
      // two high latency instructions that depend
      // on each other.
      // One way would be to check canAddEdge
      // in both directions, but that currently is not
      // enough because there the high latency order is
      // enforced (via links).
      // Instead, look at the dependencies between the
      // high latency instructions and deduce if it is
      // a data dependency or not.
      for (unsigned j : FormingGroup) {
        bool HasSubGraph;
        std::vector<int> SubGraph;
        // By construction (topological order), if SU and
        // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
        // in the parent graph of SU.
#ifndef NDEBUG
        SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
                                               HasSubGraph);
        assert(!HasSubGraph);
#endif
        SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
                                               HasSubGraph);
        if (!HasSubGraph)
          continue; // No dependencies between each other
        else if (SubGraph.size() > 5) {
          // Too many elements would be required to be added to the block.
          CompatibleGroup = false;
          break;
        }
        else {
          // Check the type of dependency
          for (unsigned k : SubGraph) {
            // If in the path to join the two instructions,
            // there is another high latency instruction,
            // or instructions colored for another block
            // abort the merge.
            if (DAG->IsHighLatencySU[k] ||
                (CurrentColoring[k] != ProposedColor &&
                 CurrentColoring[k] != 0)) {
              CompatibleGroup = false;
              break;
            }
            // If one of the SU in the subgraph depends on the result of SU j,
            // there'll be a data dependency.
            if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
              CompatibleGroup = false;
              break;
            }
          }
          if (!CompatibleGroup)
            break;
          // Same check for the SU
          if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
            CompatibleGroup = false;
            break;
          }
          // Add all the required instructions to the block
          // These cannot live in another block (because they
          // depend (order dependency) on one of the
          // instruction in the block, and are required for the
          // high latency instruction we add.
          AdditionalElements.insert(AdditionalElements.end(),
                                    SubGraph.begin(), SubGraph.end());
        }
      }
      if (CompatibleGroup) {
        FormingGroup.insert(SU.NodeNum);
        for (unsigned j : AdditionalElements)
          CurrentColoring[j] = ProposedColor;
        CurrentColoring[SU.NodeNum] = ProposedColor;
        ++Count;
      }
      // Found one incompatible instruction,
      // or has filled a big enough group.
      // -> start a new one.
      if (!CompatibleGroup) {
        FormingGroup.clear();
        Color = ++NextReservedID;
        ProposedColor = Color;
        FormingGroup.insert(SU.NodeNum);
        CurrentColoring[SU.NodeNum] = ProposedColor;
        Count = 0;
      } else if (Count == GroupSize) {
        FormingGroup.clear();
        Color = ++NextReservedID;
        ProposedColor = Color;
        Count = 0;
      }
    }
  }
}

void SIScheduleBlockCreator::colorComputeReservedDependencies() {
  unsigned DAGSize = DAG->SUnits.size();
  std::map<std::set<unsigned>, unsigned> ColorCombinations;

  CurrentTopDownReservedDependencyColoring.clear();
  CurrentBottomUpReservedDependencyColoring.clear();

  CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
  CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);

  // Traverse TopDown, and give different colors to SUs depending
  // on which combination of High Latencies they depend on.

  for (unsigned SUNum : DAG->TopDownIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    std::set<unsigned> SUColors;

    // Already given.
    if (CurrentColoring[SU->NodeNum]) {
      CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
        CurrentColoring[SU->NodeNum];
      continue;
    }

   for (SDep& PredDep : SU->Preds) {
      SUnit *Pred = PredDep.getSUnit();
      if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
        continue;
      if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
        SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
    }
    // Color 0 by default.
    if (SUColors.empty())
      continue;
    // Same color than parents.
    if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
      CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
        *SUColors.begin();
    else {
      std::map<std::set<unsigned>, unsigned>::iterator Pos =
        ColorCombinations.find(SUColors);
      if (Pos != ColorCombinations.end()) {
          CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
      } else {
        CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
          NextNonReservedID;
        ColorCombinations[SUColors] = NextNonReservedID++;
      }
    }
  }

  ColorCombinations.clear();

  // Same as before, but BottomUp.

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    std::set<unsigned> SUColors;

    // Already given.
    if (CurrentColoring[SU->NodeNum]) {
      CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
        CurrentColoring[SU->NodeNum];
      continue;
    }

    for (SDep& SuccDep : SU->Succs) {
      SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
        SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
    }
    // Keep color 0.
    if (SUColors.empty())
      continue;
    // Same color than parents.
    if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
      CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
        *SUColors.begin();
    else {
      std::map<std::set<unsigned>, unsigned>::iterator Pos =
        ColorCombinations.find(SUColors);
      if (Pos != ColorCombinations.end()) {
        CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
      } else {
        CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
          NextNonReservedID;
        ColorCombinations[SUColors] = NextNonReservedID++;
      }
    }
  }
}

void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
  unsigned DAGSize = DAG->SUnits.size();
  std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;

  // Every combination of colors given by the top down
  // and bottom up Reserved node dependency

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SUnit *SU = &DAG->SUnits[i];
    std::pair<unsigned, unsigned> SUColors;

    // High latency instructions: already given.
    if (CurrentColoring[SU->NodeNum])
      continue;

    SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
    SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];

    std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
      ColorCombinations.find(SUColors);
    if (Pos != ColorCombinations.end()) {
      CurrentColoring[SU->NodeNum] = Pos->second;
    } else {
      CurrentColoring[SU->NodeNum] = NextNonReservedID;
      ColorCombinations[SUColors] = NextNonReservedID++;
    }
  }
}

void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
  unsigned DAGSize = DAG->SUnits.size();
  std::vector<int> PendingColoring = CurrentColoring;

  assert(DAGSize >= 1 &&
         CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
         CurrentTopDownReservedDependencyColoring.size() == DAGSize);
  // If there is no reserved block at all, do nothing. We don't want
  // everything in one block.
  if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
                        CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
      *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
                        CurrentTopDownReservedDependencyColoring.end()) == 0)
    return;

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    std::set<unsigned> SUColors;
    std::set<unsigned> SUColorsPending;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
        CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
      continue;

    for (SDep& SuccDep : SU->Succs) {
      SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
          CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
        SUColors.insert(CurrentColoring[Succ->NodeNum]);
      SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
    }
    // If there is only one child/parent block, and that block
    // is not among the ones we are removing in this path, then
    // merge the instruction to that block
    if (SUColors.size() == 1 && SUColorsPending.size() == 1)
      PendingColoring[SU->NodeNum] = *SUColors.begin();
    else // TODO: Attribute new colors depending on color
         // combination of children.
      PendingColoring[SU->NodeNum] = NextNonReservedID++;
  }
  CurrentColoring = PendingColoring;
}


void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
  unsigned DAGSize = DAG->SUnits.size();
  unsigned PreviousColor;
  std::set<unsigned> SeenColors;

  if (DAGSize <= 1)
    return;

  PreviousColor = CurrentColoring[0];

  for (unsigned i = 1, e = DAGSize; i != e; ++i) {
    SUnit *SU = &DAG->SUnits[i];
    unsigned CurrentColor = CurrentColoring[i];
    unsigned PreviousColorSave = PreviousColor;
    assert(i == SU->NodeNum);

    if (CurrentColor != PreviousColor)
      SeenColors.insert(PreviousColor);
    PreviousColor = CurrentColor;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    if (SeenColors.find(CurrentColor) == SeenColors.end())
      continue;

    if (PreviousColorSave != CurrentColor)
      CurrentColoring[i] = NextNonReservedID++;
    else
      CurrentColoring[i] = CurrentColoring[i-1];
  }
}

void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
  unsigned DAGSize = DAG->SUnits.size();

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    std::set<unsigned> SUColors;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    // No predecessor: Vgpr constant loading.
    // Low latency instructions usually have a predecessor (the address)
    if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
      continue;

    for (SDep& SuccDep : SU->Succs) {
      SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
    }
    if (SUColors.size() == 1)
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
  }
}

void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
  unsigned DAGSize = DAG->SUnits.size();

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    std::set<unsigned> SUColors;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    for (SDep& SuccDep : SU->Succs) {
       SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
    }
    if (SUColors.size() == 1)
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
  }
}

void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
  unsigned DAGSize = DAG->SUnits.size();

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    std::set<unsigned> SUColors;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    for (SDep& SuccDep : SU->Succs) {
       SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
    }
    if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
  }
}

void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
  unsigned DAGSize = DAG->SUnits.size();
  std::map<unsigned, unsigned> ColorCount;

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    unsigned color = CurrentColoring[SU->NodeNum];
     ++ColorCount[color];
  }

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    unsigned color = CurrentColoring[SU->NodeNum];
    std::set<unsigned> SUColors;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    if (ColorCount[color] > 1)
      continue;

    for (SDep& SuccDep : SU->Succs) {
       SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
    }
    if (SUColors.size() == 1 && *SUColors.begin() != color) {
      --ColorCount[color];
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
      ++ColorCount[*SUColors.begin()];
    }
  }
}

void SIScheduleBlockCreator::cutHugeBlocks() {
  // TODO
}

void SIScheduleBlockCreator::regroupNoUserInstructions() {
  unsigned DAGSize = DAG->SUnits.size();
  int GroupID = NextNonReservedID++;

  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
    SUnit *SU = &DAG->SUnits[SUNum];
    bool hasSuccessor = false;

    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
      continue;

    for (SDep& SuccDep : SU->Succs) {
       SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      hasSuccessor = true;
    }
    if (!hasSuccessor)
      CurrentColoring[SU->NodeNum] = GroupID;
  }
}

void SIScheduleBlockCreator::colorExports() {
  unsigned ExportColor = NextNonReservedID++;
  SmallVector<unsigned, 8> ExpGroup;

  // Put all exports together in a block.
  // The block will naturally end up being scheduled last,
  // thus putting exports at the end of the schedule, which
  // is better for performance.
  // However we must ensure, for safety, the exports can be put
  // together in the same block without any other instruction.
  // This could happen, for example, when scheduling after regalloc
  // if reloading a spilled register from memory using the same
  // register than used in a previous export.
  // If that happens, do not regroup the exports.
  for (unsigned SUNum : DAG->TopDownIndex2SU) {
    const SUnit &SU = DAG->SUnits[SUNum];
    if (SIInstrInfo::isEXP(*SU.getInstr())) {
      // Check the EXP can be added to the group safely,
      // ie without needing any other instruction.
      // The EXP is allowed to depend on other EXP
      // (they will be in the same group).
      for (unsigned j : ExpGroup) {
        bool HasSubGraph;
        std::vector<int> SubGraph;
        // By construction (topological order), if SU and
        // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
        // in the parent graph of SU.
#ifndef NDEBUG
        SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
                                               HasSubGraph);
        assert(!HasSubGraph);
#endif
        SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
                                               HasSubGraph);
        if (!HasSubGraph)
          continue; // No dependencies between each other

        // SubGraph contains all the instructions required
        // between EXP SUnits[j] and EXP SU.
        for (unsigned k : SubGraph) {
          if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
            // Other instructions than EXP would be required in the group.
            // Abort the groupping.
            return;
        }
      }

      ExpGroup.push_back(SUNum);
    }
  }

  // The group can be formed. Give the color.
  for (unsigned j : ExpGroup)
    CurrentColoring[j] = ExportColor;
}

void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
  unsigned DAGSize = DAG->SUnits.size();
  std::map<unsigned,unsigned> RealID;

  CurrentBlocks.clear();
  CurrentColoring.clear();
  CurrentColoring.resize(DAGSize, 0);
  Node2CurrentBlock.clear();

  // Restore links previous scheduling variant has overridden.
  DAG->restoreSULinksLeft();

  NextReservedID = 1;
  NextNonReservedID = DAGSize + 1;

  LLVM_DEBUG(dbgs() << "Coloring the graph\n");

  if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
    colorHighLatenciesGroups();
  else
    colorHighLatenciesAlone();
  colorComputeReservedDependencies();
  colorAccordingToReservedDependencies();
  colorEndsAccordingToDependencies();
  if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
    colorForceConsecutiveOrderInGroup();
  regroupNoUserInstructions();
  colorMergeConstantLoadsNextGroup();
  colorMergeIfPossibleNextGroupOnlyForReserved();
  colorExports();

  // Put SUs of same color into same block
  Node2CurrentBlock.resize(DAGSize, -1);
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SUnit *SU = &DAG->SUnits[i];
    unsigned Color = CurrentColoring[SU->NodeNum];
    if (RealID.find(Color) == RealID.end()) {
      int ID = CurrentBlocks.size();
      BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
      CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
      RealID[Color] = ID;
    }
    CurrentBlocks[RealID[Color]]->addUnit(SU);
    Node2CurrentBlock[SU->NodeNum] = RealID[Color];
  }

  // Build dependencies between blocks.
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SUnit *SU = &DAG->SUnits[i];
    int SUID = Node2CurrentBlock[i];
     for (SDep& SuccDep : SU->Succs) {
       SUnit *Succ = SuccDep.getSUnit();
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
        continue;
      if (Node2CurrentBlock[Succ->NodeNum] != SUID)
        CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
                                     SuccDep.isCtrl() ? NoData : Data);
    }
    for (SDep& PredDep : SU->Preds) {
      SUnit *Pred = PredDep.getSUnit();
      if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
        continue;
      if (Node2CurrentBlock[Pred->NodeNum] != SUID)
        CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
    }
  }

  // Free root and leafs of all blocks to enable scheduling inside them.
  for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = CurrentBlocks[i];
    Block->finalizeUnits();
  }
  LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
             for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
               SIScheduleBlock *Block = CurrentBlocks[i];
               Block->printDebug(true);
             });
}

// Two functions taken from Codegen/MachineScheduler.cpp

/// Non-const version.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,
            MachineBasicBlock::const_iterator End) {
  for (; I != End; ++I) {
    if (!I->isDebugInstr())
      break;
  }
  return I;
}

void SIScheduleBlockCreator::topologicalSort() {
  unsigned DAGSize = CurrentBlocks.size();
  std::vector<int> WorkList;

  LLVM_DEBUG(dbgs() << "Topological Sort\n");

  WorkList.reserve(DAGSize);
  TopDownIndex2Block.resize(DAGSize);
  TopDownBlock2Index.resize(DAGSize);
  BottomUpIndex2Block.resize(DAGSize);

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SIScheduleBlock *Block = CurrentBlocks[i];
    unsigned Degree = Block->getSuccs().size();
    TopDownBlock2Index[i] = Degree;
    if (Degree == 0) {
      WorkList.push_back(i);
    }
  }

  int Id = DAGSize;
  while (!WorkList.empty()) {
    int i = WorkList.back();
    SIScheduleBlock *Block = CurrentBlocks[i];
    WorkList.pop_back();
    TopDownBlock2Index[i] = --Id;
    TopDownIndex2Block[Id] = i;
    for (SIScheduleBlock* Pred : Block->getPreds()) {
      if (!--TopDownBlock2Index[Pred->getID()])
        WorkList.push_back(Pred->getID());
    }
  }

#ifndef NDEBUG
  // Check correctness of the ordering.
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SIScheduleBlock *Block = CurrentBlocks[i];
    for (SIScheduleBlock* Pred : Block->getPreds()) {
      assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
      "Wrong Top Down topological sorting");
    }
  }
#endif

  BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
                                         TopDownIndex2Block.rend());
}

void SIScheduleBlockCreator::scheduleInsideBlocks() {
  unsigned DAGSize = CurrentBlocks.size();

  LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");

  // We do schedule a valid scheduling such that a Block corresponds
  // to a range of instructions.
  LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SIScheduleBlock *Block = CurrentBlocks[i];
    Block->fastSchedule();
  }

  // Note: the following code, and the part restoring previous position
  // is by far the most expensive operation of the Scheduler.

  // Do not update CurrentTop.
  MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
  std::vector<MachineBasicBlock::iterator> PosOld;
  std::vector<MachineBasicBlock::iterator> PosNew;
  PosOld.reserve(DAG->SUnits.size());
  PosNew.reserve(DAG->SUnits.size());

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    int BlockIndice = TopDownIndex2Block[i];
    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
    std::vector<SUnit*> SUs = Block->getScheduledUnits();

    for (SUnit* SU : SUs) {
      MachineInstr *MI = SU->getInstr();
      MachineBasicBlock::iterator Pos = MI;
      PosOld.push_back(Pos);
      if (&*CurrentTopFastSched == MI) {
        PosNew.push_back(Pos);
        CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
                                          DAG->getCurrentBottom());
      } else {
        // Update the instruction stream.
        DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);

        // Update LiveIntervals.
        // Note: Moving all instructions and calling handleMove every time
        // is the most cpu intensive operation of the scheduler.
        // It would gain a lot if there was a way to recompute the
        // LiveIntervals for the entire scheduling region.
        DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
        PosNew.push_back(CurrentTopFastSched);
      }
    }
  }

  // Now we have Block of SUs == Block of MI.
  // We do the final schedule for the instructions inside the block.
  // The property that all the SUs of the Block are grouped together as MI
  // is used for correct reg usage tracking.
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    SIScheduleBlock *Block = CurrentBlocks[i];
    std::vector<SUnit*> SUs = Block->getScheduledUnits();
    Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
  }

  LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
  // Restore old ordering (which prevents a LIS->handleMove bug).
  for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
    MachineBasicBlock::iterator POld = PosOld[i-1];
    MachineBasicBlock::iterator PNew = PosNew[i-1];
    if (PNew != POld) {
      // Update the instruction stream.
      DAG->getBB()->splice(POld, DAG->getBB(), PNew);

      // Update LiveIntervals.
      DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
    }
  }

  LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = CurrentBlocks[i];
    Block->printDebug(true);
  });
}

void SIScheduleBlockCreator::fillStats() {
  unsigned DAGSize = CurrentBlocks.size();

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    int BlockIndice = TopDownIndex2Block[i];
    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
    if (Block->getPreds().empty())
      Block->Depth = 0;
    else {
      unsigned Depth = 0;
      for (SIScheduleBlock *Pred : Block->getPreds()) {
        if (Depth < Pred->Depth + Pred->getCost())
          Depth = Pred->Depth + Pred->getCost();
      }
      Block->Depth = Depth;
    }
  }

  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
    int BlockIndice = BottomUpIndex2Block[i];
    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
    if (Block->getSuccs().empty())
      Block->Height = 0;
    else {
      unsigned Height = 0;
      for (const auto &Succ : Block->getSuccs())
        Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
      Block->Height = Height;
    }
  }
}

// SIScheduleBlockScheduler //

SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
                                                   SISchedulerBlockSchedulerVariant Variant,
                                                   SIScheduleBlocks  BlocksStruct) :
  DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
  LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
  SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {

  // Fill the usage of every output
  // Warning: while by construction we always have a link between two blocks
  // when one needs a result from the other, the number of users of an output
  // is not the sum of child blocks having as input the same virtual register.
  // Here is an example. A produces x and y. B eats x and produces x'.
  // C eats x' and y. The register coalescer may have attributed the same
  // virtual register to x and x'.
  // To count accurately, we do a topological sort. In case the register is
  // found for several parents, we increment the usage of the one with the
  // highest topological index.
  LiveOutRegsNumUsages.resize(Blocks.size());
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = Blocks[i];
    for (unsigned Reg : Block->getInRegs()) {
      bool Found = false;
      int topoInd = -1;
      for (SIScheduleBlock* Pred: Block->getPreds()) {
        std::set<unsigned> PredOutRegs = Pred->getOutRegs();
        std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);

        if (RegPos != PredOutRegs.end()) {
          Found = true;
          if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
            topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
          }
        }
      }

      if (!Found)
        continue;

      int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
      ++LiveOutRegsNumUsages[PredID][Reg];
    }
  }

  LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
  BlockNumPredsLeft.resize(Blocks.size());
  BlockNumSuccsLeft.resize(Blocks.size());

  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = Blocks[i];
    BlockNumPredsLeft[i] = Block->getPreds().size();
    BlockNumSuccsLeft[i] = Block->getSuccs().size();
  }

#ifndef NDEBUG
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = Blocks[i];
    assert(Block->getID() == i);
  }
#endif

  std::set<unsigned> InRegs = DAG->getInRegs();
  addLiveRegs(InRegs);

  // Increase LiveOutRegsNumUsages for blocks
  // producing registers consumed in another
  // scheduling region.
  for (unsigned Reg : DAG->getOutRegs()) {
    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
      // Do reverse traversal
      int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
      SIScheduleBlock *Block = Blocks[ID];
      const std::set<unsigned> &OutRegs = Block->getOutRegs();

      if (OutRegs.find(Reg) == OutRegs.end())
        continue;

      ++LiveOutRegsNumUsages[ID][Reg];
      break;
    }
  }

  // Fill LiveRegsConsumers for regs that were already
  // defined before scheduling.
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = Blocks[i];
    for (unsigned Reg : Block->getInRegs()) {
      bool Found = false;
      for (SIScheduleBlock* Pred: Block->getPreds()) {
        std::set<unsigned> PredOutRegs = Pred->getOutRegs();
        std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);

        if (RegPos != PredOutRegs.end()) {
          Found = true;
          break;
        }
      }

      if (!Found)
        ++LiveRegsConsumers[Reg];
    }
  }

  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
    SIScheduleBlock *Block = Blocks[i];
    if (BlockNumPredsLeft[i] == 0) {
      ReadyBlocks.push_back(Block);
    }
  }

  while (SIScheduleBlock *Block = pickBlock()) {
    BlocksScheduled.push_back(Block);
    blockScheduled(Block);
  }

  LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
                                            : BlocksScheduled) {
    dbgs() << ' ' << Block->getID();
  } dbgs() << '\n';);
}

bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
                                                   SIBlockSchedCandidate &TryCand) {
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return true;
  }

  // Try to hide high latencies.
  if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
                 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
    return true;
  // Schedule high latencies early so you can hide them better.
  if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
                          TryCand, Cand, Latency))
    return true;
  if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
                                                   TryCand, Cand, Depth))
    return true;
  if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
                          Cand.NumHighLatencySuccessors,
                          TryCand, Cand, Successor))
    return true;
  return false;
}

bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
                                                    SIBlockSchedCandidate &TryCand) {
  if (!Cand.isValid()) {
    TryCand.Reason = NodeOrder;
    return true;
  }

  if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
                       TryCand, Cand, RegUsage))
    return true;
  if (SISched::tryGreater(TryCand.NumSuccessors > 0,
                          Cand.NumSuccessors > 0,
                          TryCand, Cand, Successor))
    return true;
  if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
    return true;
  if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
                       TryCand, Cand, RegUsage))
    return true;
  return false;
}

SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
  SIBlockSchedCandidate Cand;
  std::vector<SIScheduleBlock*>::iterator Best;
  SIScheduleBlock *Block;
  if (ReadyBlocks.empty())
    return nullptr;

  DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
                        VregCurrentUsage, SregCurrentUsage);
  if (VregCurrentUsage > maxVregUsage)
    maxVregUsage = VregCurrentUsage;
  if (SregCurrentUsage > maxSregUsage)
    maxSregUsage = SregCurrentUsage;
  LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
             for (SIScheduleBlock *Block
                  : ReadyBlocks) dbgs()
             << Block->getID() << ' ';
             dbgs() << "\nCurrent Live:\n";
             for (unsigned Reg
                  : LiveRegs) dbgs()
             << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
             dbgs() << '\n';
             dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
             dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);

  Cand.Block = nullptr;
  for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
       E = ReadyBlocks.end(); I != E; ++I) {
    SIBlockSchedCandidate TryCand;
    TryCand.Block = *I;
    TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
    TryCand.VGPRUsageDiff =
      checkRegUsageImpact(TryCand.Block->getInRegs(),
          TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
    TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
    TryCand.NumHighLatencySuccessors =
      TryCand.Block->getNumHighLatencySuccessors();
    TryCand.LastPosHighLatParentScheduled =
      (unsigned int) std::max<int> (0,
         LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
           LastPosWaitedHighLatency);
    TryCand.Height = TryCand.Block->Height;
    // Try not to increase VGPR usage too much, else we may spill.
    if (VregCurrentUsage > 120 ||
        Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
      if (!tryCandidateRegUsage(Cand, TryCand) &&
          Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
        tryCandidateLatency(Cand, TryCand);
    } else {
      if (!tryCandidateLatency(Cand, TryCand))
        tryCandidateRegUsage(Cand, TryCand);
    }
    if (TryCand.Reason != NoCand) {
      Cand.setBest(TryCand);
      Best = I;
      LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
                        << getReasonStr(Cand.Reason) << '\n');
    }
  }

  LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
             dbgs() << "Is a block with high latency instruction: "
                    << (Cand.IsHighLatency ? "yes\n" : "no\n");
             dbgs() << "Position of last high latency dependency: "
                    << Cand.LastPosHighLatParentScheduled << '\n';
             dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
             dbgs() << '\n';);

  Block = Cand.Block;
  ReadyBlocks.erase(Best);
  return Block;
}

// Tracking of currently alive registers to determine VGPR Usage.

void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
  for (Register Reg : Regs) {
    // For now only track virtual registers.
    if (!Reg.isVirtual())
      continue;
    // If not already in the live set, then add it.
    (void) LiveRegs.insert(Reg);
  }
}

void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
                                       std::set<unsigned> &Regs) {
  for (unsigned Reg : Regs) {
    // For now only track virtual registers.
    std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
    assert (Pos != LiveRegs.end() && // Reg must be live.
               LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
               LiveRegsConsumers[Reg] >= 1);
    --LiveRegsConsumers[Reg];
    if (LiveRegsConsumers[Reg] == 0)
      LiveRegs.erase(Pos);
  }
}

void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
  for (const auto &Block : Parent->getSuccs()) {
    if (--BlockNumPredsLeft[Block.first->getID()] == 0)
      ReadyBlocks.push_back(Block.first);

    if (Parent->isHighLatencyBlock() &&
        Block.second == SIScheduleBlockLinkKind::Data)
      LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
  }
}

void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
  decreaseLiveRegs(Block, Block->getInRegs());
  addLiveRegs(Block->getOutRegs());
  releaseBlockSuccs(Block);
  for (std::map<unsigned, unsigned>::iterator RegI =
       LiveOutRegsNumUsages[Block->getID()].begin(),
       E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
    std::pair<unsigned, unsigned> RegP = *RegI;
    // We produce this register, thus it must not be previously alive.
    assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
           LiveRegsConsumers[RegP.first] == 0);
    LiveRegsConsumers[RegP.first] += RegP.second;
  }
  if (LastPosHighLatencyParentScheduled[Block->getID()] >
        (unsigned)LastPosWaitedHighLatency)
    LastPosWaitedHighLatency =
      LastPosHighLatencyParentScheduled[Block->getID()];
  ++NumBlockScheduled;
}

std::vector<int>
SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
                                     std::set<unsigned> &OutRegs) {
  std::vector<int> DiffSetPressure;
  DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);

  for (Register Reg : InRegs) {
    // For now only track virtual registers.
    if (!Reg.isVirtual())
      continue;
    if (LiveRegsConsumers[Reg] > 1)
      continue;
    PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
    for (; PSetI.isValid(); ++PSetI) {
      DiffSetPressure[*PSetI] -= PSetI.getWeight();
    }
  }

  for (Register Reg : OutRegs) {
    // For now only track virtual registers.
    if (!Reg.isVirtual())
      continue;
    PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
    for (; PSetI.isValid(); ++PSetI) {
      DiffSetPressure[*PSetI] += PSetI.getWeight();
    }
  }

  return DiffSetPressure;
}

// SIScheduler //

struct SIScheduleBlockResult
SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
                             SISchedulerBlockSchedulerVariant ScheduleVariant) {
  SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
  SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
  std::vector<SIScheduleBlock*> ScheduledBlocks;
  struct SIScheduleBlockResult Res;

  ScheduledBlocks = Scheduler.getBlocks();

  for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
    SIScheduleBlock *Block = ScheduledBlocks[b];
    std::vector<SUnit*> SUs = Block->getScheduledUnits();

    for (SUnit* SU : SUs)
      Res.SUs.push_back(SU->NodeNum);
  }

  Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
  Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
  return Res;
}

// SIScheduleDAGMI //

SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
  ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
  SITII = static_cast<const SIInstrInfo*>(TII);
  SITRI = static_cast<const SIRegisterInfo*>(TRI);
}

SIScheduleDAGMI::~SIScheduleDAGMI() = default;

// Code adapted from scheduleDAG.cpp
// Does a topological sort over the SUs.
// Both TopDown and BottomUp
void SIScheduleDAGMI::topologicalSort() {
  Topo.InitDAGTopologicalSorting();

  TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
  BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
}

// Move low latencies further from their user without
// increasing SGPR usage (in general)
// This is to be replaced by a better pass that would
// take into account SGPR usage (based on VGPR Usage
// and the corresponding wavefront count), that would
// try to merge groups of loads if it make sense, etc
void SIScheduleDAGMI::moveLowLatencies() {
   unsigned DAGSize = SUnits.size();
   int LastLowLatencyUser = -1;
   int LastLowLatencyPos = -1;

   for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
    SUnit *SU = &SUnits[ScheduledSUnits[i]];
    bool IsLowLatencyUser = false;
    unsigned MinPos = 0;

    for (SDep& PredDep : SU->Preds) {
      SUnit *Pred = PredDep.getSUnit();
      if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
        IsLowLatencyUser = true;
      }
      if (Pred->NodeNum >= DAGSize)
        continue;
      unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
      if (PredPos >= MinPos)
        MinPos = PredPos + 1;
    }

    if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
      unsigned BestPos = LastLowLatencyUser + 1;
      if ((int)BestPos <= LastLowLatencyPos)
        BestPos = LastLowLatencyPos + 1;
      if (BestPos < MinPos)
        BestPos = MinPos;
      if (BestPos < i) {
        for (unsigned u = i; u > BestPos; --u) {
          ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
          ScheduledSUnits[u] = ScheduledSUnits[u-1];
        }
        ScheduledSUnits[BestPos] = SU->NodeNum;
        ScheduledSUnitsInv[SU->NodeNum] = BestPos;
      }
      LastLowLatencyPos = BestPos;
      if (IsLowLatencyUser)
        LastLowLatencyUser = BestPos;
    } else if (IsLowLatencyUser) {
      LastLowLatencyUser = i;
    // Moves COPY instructions on which depends
    // the low latency instructions too.
    } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
      bool CopyForLowLat = false;
      for (SDep& SuccDep : SU->Succs) {
        SUnit *Succ = SuccDep.getSUnit();
        if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
          continue;
        if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
          CopyForLowLat = true;
        }
      }
      if (!CopyForLowLat)
        continue;
      if (MinPos < i) {
        for (unsigned u = i; u > MinPos; --u) {
          ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
          ScheduledSUnits[u] = ScheduledSUnits[u-1];
        }
        ScheduledSUnits[MinPos] = SU->NodeNum;
        ScheduledSUnitsInv[SU->NodeNum] = MinPos;
      }
    }
  }
}

void SIScheduleDAGMI::restoreSULinksLeft() {
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    SUnits[i].isScheduled = false;
    SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
    SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
    SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
    SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
  }
}

// Return the Vgpr and Sgpr usage corresponding to some virtual registers.
template<typename _Iterator> void
SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
                                  unsigned &VgprUsage, unsigned &SgprUsage) {
  VgprUsage = 0;
  SgprUsage = 0;
  for (_Iterator RegI = First; RegI != End; ++RegI) {
    Register Reg = *RegI;
    // For now only track virtual registers
    if (!Reg.isVirtual())
      continue;
    PSetIterator PSetI = MRI.getPressureSets(Reg);
    for (; PSetI.isValid(); ++PSetI) {
      if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
        VgprUsage += PSetI.getWeight();
      else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
        SgprUsage += PSetI.getWeight();
    }
  }
}

void SIScheduleDAGMI::schedule()
{
  SmallVector<SUnit*, 8> TopRoots, BotRoots;
  SIScheduleBlockResult Best, Temp;
  LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");

  buildDAGWithRegPressure();
  LLVM_DEBUG(dump());

  topologicalSort();
  findRootsAndBiasEdges(TopRoots, BotRoots);
  // We reuse several ScheduleDAGMI and ScheduleDAGMILive
  // functions, but to make them happy we must initialize
  // the default Scheduler implementation (even if we do not
  // run it)
  SchedImpl->initialize(this);
  initQueues(TopRoots, BotRoots);

  // Fill some stats to help scheduling.

  SUnitsLinksBackup = SUnits;
  IsLowLatencySU.clear();
  LowLatencyOffset.clear();
  IsHighLatencySU.clear();

  IsLowLatencySU.resize(SUnits.size(), 0);
  LowLatencyOffset.resize(SUnits.size(), 0);
  IsHighLatencySU.resize(SUnits.size(), 0);

  for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
    SUnit *SU = &SUnits[i];
    const MachineOperand *BaseLatOp;
    int64_t OffLatReg;
    if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
      IsLowLatencySU[i] = 1;
      bool OffsetIsScalable;
      if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
                                         OffsetIsScalable, TRI))
        LowLatencyOffset[i] = OffLatReg;
    } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
      IsHighLatencySU[i] = 1;
  }

  SIScheduler Scheduler(this);
  Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
                                   SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);

  // if VGPR usage is extremely high, try other good performing variants
  // which could lead to lower VGPR usage
  if (Best.MaxVGPRUsage > 180) {
    static const std::pair<SISchedulerBlockCreatorVariant,
                           SISchedulerBlockSchedulerVariant>
        Variants[] = {
      { LatenciesAlone, BlockRegUsageLatency },
//      { LatenciesAlone, BlockRegUsage },
      { LatenciesGrouped, BlockLatencyRegUsage },
//      { LatenciesGrouped, BlockRegUsageLatency },
//      { LatenciesGrouped, BlockRegUsage },
      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
//      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
//      { LatenciesAlonePlusConsecutive, BlockRegUsage }
    };
    for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
      Temp = Scheduler.scheduleVariant(v.first, v.second);
      if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
        Best = Temp;
    }
  }
  // if VGPR usage is still extremely high, we may spill. Try other variants
  // which are less performing, but that could lead to lower VGPR usage.
  if (Best.MaxVGPRUsage > 200) {
    static const std::pair<SISchedulerBlockCreatorVariant,
                           SISchedulerBlockSchedulerVariant>
        Variants[] = {
//      { LatenciesAlone, BlockRegUsageLatency },
      { LatenciesAlone, BlockRegUsage },
//      { LatenciesGrouped, BlockLatencyRegUsage },
      { LatenciesGrouped, BlockRegUsageLatency },
      { LatenciesGrouped, BlockRegUsage },
//      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
      { LatenciesAlonePlusConsecutive, BlockRegUsage }
    };
    for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
      Temp = Scheduler.scheduleVariant(v.first, v.second);
      if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
        Best = Temp;
    }
  }

  ScheduledSUnits = Best.SUs;
  ScheduledSUnitsInv.resize(SUnits.size());

  for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
    ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
  }

  moveLowLatencies();

  // Tell the outside world about the result of the scheduling.

  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
  TopRPTracker.setPos(CurrentTop);

  for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
       E = ScheduledSUnits.end(); I != E; ++I) {
    SUnit *SU = &SUnits[*I];

    scheduleMI(SU, true);

    LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
                      << *SU->getInstr());
  }

  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();

  LLVM_DEBUG({
    dbgs() << "*** Final schedule for "
           << printMBBReference(*begin()->getParent()) << " ***\n";
    dumpSchedule();
    dbgs() << '\n';
  });
}