MachineSink.cpp
53.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <map>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "machine-sink"
static cl::opt<bool>
SplitEdges("machine-sink-split",
cl::desc("Split critical edges during machine sinking"),
cl::init(true), cl::Hidden);
static cl::opt<bool>
UseBlockFreqInfo("machine-sink-bfi",
cl::desc("Use block frequency info to find successors to sink"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
"machine-sink-split-probability-threshold",
cl::desc(
"Percentage threshold for splitting single-instruction critical edge. "
"If the branch threshold is higher than this threshold, we allow "
"speculative execution of up to 1 instruction to avoid branching to "
"splitted critical edge"),
cl::init(40), cl::Hidden);
STATISTIC(NumSunk, "Number of machine instructions sunk");
STATISTIC(NumSplit, "Number of critical edges split");
STATISTIC(NumCoalesces, "Number of copies coalesced");
STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
namespace {
class MachineSinking : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *MRI; // Machine register information
MachineDominatorTree *DT; // Machine dominator tree
MachinePostDominatorTree *PDT; // Machine post dominator tree
MachineLoopInfo *LI;
MachineBlockFrequencyInfo *MBFI;
const MachineBranchProbabilityInfo *MBPI;
AliasAnalysis *AA;
// Remember which edges have been considered for breaking.
SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
CEBCandidates;
// Remember which edges we are about to split.
// This is different from CEBCandidates since those edges
// will be split.
SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
SparseBitVector<> RegsToClearKillFlags;
using AllSuccsCache =
std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
/// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
/// post-dominated by another DBG_VALUE of the same variable location.
/// This is necessary to detect sequences such as:
/// %0 = someinst
/// DBG_VALUE %0, !123, !DIExpression()
/// %1 = anotherinst
/// DBG_VALUE %1, !123, !DIExpression()
/// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
/// would re-order assignments.
using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
/// Record of DBG_VALUE uses of vregs in a block, so that we can identify
/// debug instructions to sink.
SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
/// Record of debug variables that have had their locations set in the
/// current block.
DenseSet<DebugVariable> SeenDbgVars;
public:
static char ID; // Pass identification
MachineSinking() : MachineFunctionPass(ID) {
initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addPreserved<MachineLoopInfo>();
if (UseBlockFreqInfo)
AU.addRequired<MachineBlockFrequencyInfo>();
}
void releaseMemory() override {
CEBCandidates.clear();
}
private:
bool ProcessBlock(MachineBasicBlock &MBB);
void ProcessDbgInst(MachineInstr &MI);
bool isWorthBreakingCriticalEdge(MachineInstr &MI,
MachineBasicBlock *From,
MachineBasicBlock *To);
/// Postpone the splitting of the given critical
/// edge (\p From, \p To).
///
/// We do not split the edges on the fly. Indeed, this invalidates
/// the dominance information and thus triggers a lot of updates
/// of that information underneath.
/// Instead, we postpone all the splits after each iteration of
/// the main loop. That way, the information is at least valid
/// for the lifetime of an iteration.
///
/// \return True if the edge is marked as toSplit, false otherwise.
/// False can be returned if, for instance, this is not profitable.
bool PostponeSplitCriticalEdge(MachineInstr &MI,
MachineBasicBlock *From,
MachineBasicBlock *To,
bool BreakPHIEdge);
bool SinkInstruction(MachineInstr &MI, bool &SawStore,
AllSuccsCache &AllSuccessors);
/// If we sink a COPY inst, some debug users of it's destination may no
/// longer be dominated by the COPY, and will eventually be dropped.
/// This is easily rectified by forwarding the non-dominated debug uses
/// to the copy source.
void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
MachineBasicBlock *TargetBlock);
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
bool &BreakPHIEdge, bool &LocalUse) const;
MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *SuccToSinkTo,
AllSuccsCache &AllSuccessors);
bool PerformTrivialForwardCoalescing(MachineInstr &MI,
MachineBasicBlock *MBB);
SmallVector<MachineBasicBlock *, 4> &
GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
AllSuccsCache &AllSuccessors) const;
};
} // end anonymous namespace
char MachineSinking::ID = 0;
char &llvm::MachineSinkingID = MachineSinking::ID;
INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
"Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
"Machine code sinking", false, false)
bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
MachineBasicBlock *MBB) {
if (!MI.isCopy())
return false;
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
if (!Register::isVirtualRegister(SrcReg) ||
!Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
return false;
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
if (SRC != DRC)
return false;
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->isCopyLike())
return false;
LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
LLVM_DEBUG(dbgs() << "*** to: " << MI);
MRI->replaceRegWith(DstReg, SrcReg);
MI.eraseFromParent();
// Conservatively, clear any kill flags, since it's possible that they are no
// longer correct.
MRI->clearKillFlags(SrcReg);
++NumCoalesces;
return true;
}
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block. If any use is in the
/// definition block, then return false since it is never legal to move def
/// after uses.
bool
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB,
MachineBasicBlock *DefMBB,
bool &BreakPHIEdge,
bool &LocalUse) const {
assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
// Ignore debug uses because debug info doesn't affect the code.
if (MRI->use_nodbg_empty(Reg))
return true;
// BreakPHIEdge is true if all the uses are in the successor MBB being sunken
// into and they are all PHI nodes. In this case, machine-sink must break
// the critical edge first. e.g.
//
// %bb.1:
// Predecessors according to CFG: %bb.0
// ...
// %def = DEC64_32r %x, implicit-def dead %eflags
// ...
// JE_4 <%bb.37>, implicit %eflags
// Successors according to CFG: %bb.37 %bb.2
//
// %bb.2:
// %p = PHI %y, %bb.0, %def, %bb.1
if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
MachineInstr *UseInst = MO.getParent();
unsigned OpNo = UseInst->getOperandNo(&MO);
MachineBasicBlock *UseBlock = UseInst->getParent();
return UseBlock == MBB && UseInst->isPHI() &&
UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
})) {
BreakPHIEdge = true;
return true;
}
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
// Determine the block of the use.
MachineInstr *UseInst = MO.getParent();
unsigned OpNo = &MO - &UseInst->getOperand(0);
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseInst->isPHI()) {
// PHI nodes use the operand in the predecessor block, not the block with
// the PHI.
UseBlock = UseInst->getOperand(OpNo+1).getMBB();
} else if (UseBlock == DefMBB) {
LocalUse = true;
return false;
}
// Check that it dominates.
if (!DT->dominates(MBB, UseBlock))
return false;
}
return true;
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
TII = MF.getSubtarget().getInstrInfo();
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
PDT = &getAnalysis<MachinePostDominatorTree>();
LI = &getAnalysis<MachineLoopInfo>();
MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
bool EverMadeChange = false;
while (true) {
bool MadeChange = false;
// Process all basic blocks.
CEBCandidates.clear();
ToSplit.clear();
for (auto &MBB: MF)
MadeChange |= ProcessBlock(MBB);
// If we have anything we marked as toSplit, split it now.
for (auto &Pair : ToSplit) {
auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
if (NewSucc != nullptr) {
LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
<< printMBBReference(*Pair.first) << " -- "
<< printMBBReference(*NewSucc) << " -- "
<< printMBBReference(*Pair.second) << '\n');
if (MBFI)
MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
MadeChange = true;
++NumSplit;
} else
LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
}
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
}
// Now clear any kill flags for recorded registers.
for (auto I : RegsToClearKillFlags)
MRI->clearKillFlags(I);
RegsToClearKillFlags.clear();
return EverMadeChange;
}
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
// Can't sink anything out of a block that has less than two successors.
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
// Don't bother sinking code out of unreachable blocks. In addition to being
// unprofitable, it can also lead to infinite looping, because in an
// unreachable loop there may be nowhere to stop.
if (!DT->isReachableFromEntry(&MBB)) return false;
bool MadeChange = false;
// Cache all successors, sorted by frequency info and loop depth.
AllSuccsCache AllSuccessors;
// Walk the basic block bottom-up. Remember if we saw a store.
MachineBasicBlock::iterator I = MBB.end();
--I;
bool ProcessedBegin, SawStore = false;
do {
MachineInstr &MI = *I; // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by
// sinking.
ProcessedBegin = I == MBB.begin();
if (!ProcessedBegin)
--I;
if (MI.isDebugInstr()) {
if (MI.isDebugValue())
ProcessDbgInst(MI);
continue;
}
bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
if (Joined) {
MadeChange = true;
continue;
}
if (SinkInstruction(MI, SawStore, AllSuccessors)) {
++NumSunk;
MadeChange = true;
}
// If we just processed the first instruction in the block, we're done.
} while (!ProcessedBegin);
SeenDbgUsers.clear();
SeenDbgVars.clear();
return MadeChange;
}
void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
// When we see DBG_VALUEs for registers, record any vreg it reads, so that
// we know what to sink if the vreg def sinks.
assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
bool SeenBefore = SeenDbgVars.count(Var) != 0;
MachineOperand &MO = MI.getDebugOperand(0);
if (MO.isReg() && MO.getReg().isVirtual())
SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
// Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
SeenDbgVars.insert(Var);
}
bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
MachineBasicBlock *From,
MachineBasicBlock *To) {
// FIXME: Need much better heuristics.
// If the pass has already considered breaking this edge (during this pass
// through the function), then let's go ahead and break it. This means
// sinking multiple "cheap" instructions into the same block.
if (!CEBCandidates.insert(std::make_pair(From, To)).second)
return true;
if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
return true;
if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
BranchProbability(SplitEdgeProbabilityThreshold, 100))
return true;
// MI is cheap, we probably don't want to break the critical edge for it.
// However, if this would allow some definitions of its source operands
// to be sunk then it's probably worth it.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
Register Reg = MO.getReg();
if (Reg == 0)
continue;
// We don't move live definitions of physical registers,
// so sinking their uses won't enable any opportunities.
if (Register::isPhysicalRegister(Reg))
continue;
// If this instruction is the only user of a virtual register,
// check if breaking the edge will enable sinking
// both this instruction and the defining instruction.
if (MRI->hasOneNonDBGUse(Reg)) {
// If the definition resides in same MBB,
// claim it's likely we can sink these together.
// If definition resides elsewhere, we aren't
// blocking it from being sunk so don't break the edge.
MachineInstr *DefMI = MRI->getVRegDef(Reg);
if (DefMI->getParent() == MI.getParent())
return true;
}
}
return false;
}
bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
MachineBasicBlock *FromBB,
MachineBasicBlock *ToBB,
bool BreakPHIEdge) {
if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
return false;
// Avoid breaking back edge. From == To means backedge for single BB loop.
if (!SplitEdges || FromBB == ToBB)
return false;
// Check for backedges of more "complex" loops.
if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
LI->isLoopHeader(ToBB))
return false;
// It's not always legal to break critical edges and sink the computation
// to the edge.
//
// %bb.1:
// v1024
// Beq %bb.3
// <fallthrough>
// %bb.2:
// ... no uses of v1024
// <fallthrough>
// %bb.3:
// ...
// = v1024
//
// If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
//
// %bb.1:
// ...
// Bne %bb.2
// %bb.4:
// v1024 =
// B %bb.3
// %bb.2:
// ... no uses of v1024
// <fallthrough>
// %bb.3:
// ...
// = v1024
//
// This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
// flow. We need to ensure the new basic block where the computation is
// sunk to dominates all the uses.
// It's only legal to break critical edge and sink the computation to the
// new block if all the predecessors of "To", except for "From", are
// not dominated by "From". Given SSA property, this means these
// predecessors are dominated by "To".
//
// There is no need to do this check if all the uses are PHI nodes. PHI
// sources are only defined on the specific predecessor edges.
if (!BreakPHIEdge) {
for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
E = ToBB->pred_end(); PI != E; ++PI) {
if (*PI == FromBB)
continue;
if (!DT->dominates(ToBB, *PI))
return false;
}
}
ToSplit.insert(std::make_pair(FromBB, ToBB));
return true;
}
/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *SuccToSinkTo,
AllSuccsCache &AllSuccessors) {
assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
if (MBB == SuccToSinkTo)
return false;
// It is profitable if SuccToSinkTo does not post dominate current block.
if (!PDT->dominates(SuccToSinkTo, MBB))
return true;
// It is profitable to sink an instruction from a deeper loop to a shallower
// loop, even if the latter post-dominates the former (PR21115).
if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
return true;
// Check if only use in post dominated block is PHI instruction.
bool NonPHIUse = false;
for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
MachineBasicBlock *UseBlock = UseInst.getParent();
if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
NonPHIUse = true;
}
if (!NonPHIUse)
return true;
// If SuccToSinkTo post dominates then also it may be profitable if MI
// can further profitably sinked into another block in next round.
bool BreakPHIEdge = false;
// FIXME - If finding successor is compile time expensive then cache results.
if (MachineBasicBlock *MBB2 =
FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
MachineLoop *ML = LI->getLoopFor(MBB);
// If the instruction is not inside a loop, it is not profitable to sink MI to
// a post dominate block SuccToSinkTo.
if (!ML)
return false;
// If this instruction is inside a loop and sinking this instruction can make
// more registers live range shorten, it is still prifitable.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
// Ignore non-register operands.
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg == 0)
continue;
// Don't handle physical register.
if (Register::isPhysicalRegister(Reg))
return false;
// Users for the defs are all dominated by SuccToSinkTo.
if (MO.isDef()) {
// This def register's live range is shortened after sinking.
bool LocalUse = false;
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
LocalUse))
return false;
} else {
MachineInstr *DefMI = MRI->getVRegDef(Reg);
// DefMI is defined outside of loop. There should be no live range
// impact for this operand. Defination outside of loop means:
// 1: defination is outside of loop.
// 2: defination is in this loop, but it is a PHI in the loop header.
if (LI->getLoopFor(DefMI->getParent()) != ML ||
(DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
continue;
// DefMI is inside the loop. Mark it as not profitable as sinking MI will
// enlarge DefMI live range.
// FIXME: check the register pressure in block SuccToSinkTo, if it is
// smaller than the limit after sinking, it is still profitable to sink.
return false;
}
}
// If MI is in loop and all its operands are alive across the whole loop, it
// is profitable to sink MI.
return true;
}
/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
/// computing it if it was not already cached.
SmallVector<MachineBasicBlock *, 4> &
MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
AllSuccsCache &AllSuccessors) const {
// Do we have the sorted successors in cache ?
auto Succs = AllSuccessors.find(MBB);
if (Succs != AllSuccessors.end())
return Succs->second;
SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
MBB->succ_end());
// Handle cases where sinking can happen but where the sink point isn't a
// successor. For example:
//
// x = computation
// if () {} else {}
// use x
//
for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
// DomTree children of MBB that have MBB as immediate dominator are added.
if (DTChild->getIDom()->getBlock() == MI.getParent() &&
// Skip MBBs already added to the AllSuccs vector above.
!MBB->isSuccessor(DTChild->getBlock()))
AllSuccs.push_back(DTChild->getBlock());
}
// Sort Successors according to their loop depth or block frequency info.
llvm::stable_sort(
AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
return HasBlockFreq ? LHSFreq < RHSFreq
: LI->getLoopDepth(L) < LI->getLoopDepth(R);
});
auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
return it.first->second;
}
/// FindSuccToSinkTo - Find a successor to sink this instruction to.
MachineBasicBlock *
MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
bool &BreakPHIEdge,
AllSuccsCache &AllSuccessors) {
assert (MBB && "Invalid MachineBasicBlock!");
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
MachineBasicBlock *SuccToSinkTo = nullptr;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg()) continue; // Ignore non-register operands.
Register Reg = MO.getReg();
if (Reg == 0) continue;
if (Register::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!MRI->isConstantPhysReg(Reg))
return nullptr;
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return nullptr;
}
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
// If it's not safe to move defs of the register class, then abort.
if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
return nullptr;
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
// If a previous operand picked a block to sink to, then this operand
// must be sinkable to the same block.
bool LocalUse = false;
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
BreakPHIEdge, LocalUse))
return nullptr;
continue;
}
// Otherwise, we should look at all the successors and decide which one
// we should sink to. If we have reliable block frequency information
// (frequency != 0) available, give successors with smaller frequencies
// higher priority, otherwise prioritize smaller loop depths.
for (MachineBasicBlock *SuccBlock :
GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
bool LocalUse = false;
if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
BreakPHIEdge, LocalUse)) {
SuccToSinkTo = SuccBlock;
break;
}
if (LocalUse)
// Def is used locally, it's never safe to move this def.
return nullptr;
}
// If we couldn't find a block to sink to, ignore this instruction.
if (!SuccToSinkTo)
return nullptr;
if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
return nullptr;
}
}
// It is not possible to sink an instruction into its own block. This can
// happen with loops.
if (MBB == SuccToSinkTo)
return nullptr;
// It's not safe to sink instructions to EH landing pad. Control flow into
// landing pad is implicitly defined.
if (SuccToSinkTo && SuccToSinkTo->isEHPad())
return nullptr;
// It ought to be okay to sink instructions into an INLINEASM_BR target, but
// only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
// the source block (which this code does not yet do). So for now, forbid
// doing so.
if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
return nullptr;
return SuccToSinkTo;
}
/// Return true if MI is likely to be usable as a memory operation by the
/// implicit null check optimization.
///
/// This is a "best effort" heuristic, and should not be relied upon for
/// correctness. This returning true does not guarantee that the implicit null
/// check optimization is legal over MI, and this returning false does not
/// guarantee MI cannot possibly be used to do a null check.
static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) {
using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
auto *MBB = MI.getParent();
if (MBB->pred_size() != 1)
return false;
auto *PredMBB = *MBB->pred_begin();
auto *PredBB = PredMBB->getBasicBlock();
// Frontends that don't use implicit null checks have no reason to emit
// branches with make.implicit metadata, and this function should always
// return false for them.
if (!PredBB ||
!PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
return false;
const MachineOperand *BaseOp;
int64_t Offset;
bool OffsetIsScalable;
if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
return false;
if (!BaseOp->isReg())
return false;
if (!(MI.mayLoad() && !MI.isPredicable()))
return false;
MachineBranchPredicate MBP;
if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
return false;
return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
MBP.LHS.getReg() == BaseOp->getReg();
}
/// If the sunk instruction is a copy, try to forward the copy instead of
/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
/// there's any subregister weirdness involved. Returns true if copy
/// propagation occurred.
static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
// Copy DBG_VALUE operand and set the original to undef. We then check to
// see whether this is something that can be copy-forwarded. If it isn't,
// continue around the loop.
MachineOperand &DbgMO = DbgMI.getDebugOperand(0);
const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
auto CopyOperands = TII.isCopyInstr(SinkInst);
if (!CopyOperands)
return false;
SrcMO = CopyOperands->Source;
DstMO = CopyOperands->Destination;
// Check validity of forwarding this copy.
bool PostRA = MRI.getNumVirtRegs() == 0;
// Trying to forward between physical and virtual registers is too hard.
if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
return false;
// Only try virtual register copy-forwarding before regalloc, and physical
// register copy-forwarding after regalloc.
bool arePhysRegs = !DbgMO.getReg().isVirtual();
if (arePhysRegs != PostRA)
return false;
// Pre-regalloc, only forward if all subregisters agree (or there are no
// subregs at all). More analysis might recover some forwardable copies.
if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
DbgMO.getSubReg() != DstMO->getSubReg()))
return false;
// Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
// of this copy. Only forward the copy if the DBG_VALUE operand exactly
// matches the copy destination.
if (PostRA && DbgMO.getReg() != DstMO->getReg())
return false;
DbgMO.setReg(SrcMO->getReg());
DbgMO.setSubReg(SrcMO->getSubReg());
return true;
}
/// Sink an instruction and its associated debug instructions.
static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
MachineBasicBlock::iterator InsertPos,
SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
// If we cannot find a location to use (merge with), then we erase the debug
// location to prevent debug-info driven tools from potentially reporting
// wrong location information.
if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
InsertPos->getDebugLoc()));
else
MI.setDebugLoc(DebugLoc());
// Move the instruction.
MachineBasicBlock *ParentBlock = MI.getParent();
SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
++MachineBasicBlock::iterator(MI));
// Sink a copy of debug users to the insert position. Mark the original
// DBG_VALUE location as 'undef', indicating that any earlier variable
// location should be terminated as we've optimised away the value at this
// point.
for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
DBE = DbgValuesToSink.end();
DBI != DBE; ++DBI) {
MachineInstr *DbgMI = *DBI;
MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
SuccToSinkTo.insert(InsertPos, NewDbgMI);
if (!attemptDebugCopyProp(MI, *DbgMI))
DbgMI->setDebugValueUndef();
}
}
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
AllSuccsCache &AllSuccessors) {
// Don't sink instructions that the target prefers not to sink.
if (!TII->shouldSink(MI))
return false;
// Check if it's safe to move the instruction.
if (!MI.isSafeToMove(AA, SawStore))
return false;
// Convergent operations may not be made control-dependent on additional
// values.
if (MI.isConvergent())
return false;
// Don't break implicit null checks. This is a performance heuristic, and not
// required for correctness.
if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
return false;
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
// instructions sunk into the top of a large block, but it would be better to
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
// and z and only shrink the live range of x.
bool BreakPHIEdge = false;
MachineBasicBlock *ParentBlock = MI.getParent();
MachineBasicBlock *SuccToSinkTo =
FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
// If there are no outputs, it must have side-effects.
if (!SuccToSinkTo)
return false;
// If the instruction to move defines a dead physical register which is live
// when leaving the basic block, don't move it because it could turn into a
// "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
const MachineOperand &MO = MI.getOperand(I);
if (!MO.isReg()) continue;
Register Reg = MO.getReg();
if (Reg == 0 || !Register::isPhysicalRegister(Reg))
continue;
if (SuccToSinkTo->isLiveIn(Reg))
return false;
}
LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
// If the block has multiple predecessors, this is a critical edge.
// Decide if we can sink along it or need to break the edge.
if (SuccToSinkTo->pred_size() > 1) {
// We cannot sink a load across a critical edge - there may be stores in
// other code paths.
bool TryBreak = false;
bool store = true;
if (!MI.isSafeToMove(AA, store)) {
LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
TryBreak = true;
}
// We don't want to sink across a critical edge if we don't dominate the
// successor. We could be introducing calculations to new code paths.
if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
TryBreak = true;
}
// Don't sink instructions into a loop.
if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
TryBreak = true;
}
// Otherwise we are OK with sinking along a critical edge.
if (!TryBreak)
LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
else {
// Mark this edge as to be split.
// If the edge can actually be split, the next iteration of the main loop
// will sink MI in the newly created block.
bool Status =
PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
if (!Status)
LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
// The instruction will not be sunk this time.
return false;
}
}
if (BreakPHIEdge) {
// BreakPHIEdge is true if all the uses are in the successor MBB being
// sunken into and they are all PHI nodes. In this case, machine-sink must
// break the critical edge first.
bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
SuccToSinkTo, BreakPHIEdge);
if (!Status)
LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
"break critical edge\n");
// The instruction will not be sunk this time.
return false;
}
// Determine where to insert into. Skip phi nodes.
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
++InsertPos;
// Collect debug users of any vreg that this inst defines.
SmallVector<MachineInstr *, 4> DbgUsersToSink;
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
continue;
if (!SeenDbgUsers.count(MO.getReg()))
continue;
// Sink any users that don't pass any other DBG_VALUEs for this variable.
auto &Users = SeenDbgUsers[MO.getReg()];
for (auto &User : Users) {
MachineInstr *DbgMI = User.getPointer();
if (User.getInt()) {
// This DBG_VALUE would re-order assignments. If we can't copy-propagate
// it, it can't be recovered. Set it undef.
if (!attemptDebugCopyProp(MI, *DbgMI))
DbgMI->setDebugValueUndef();
} else {
DbgUsersToSink.push_back(DbgMI);
}
}
}
// After sinking, some debug users may not be dominated any more. If possible,
// copy-propagate their operands. As it's expensive, don't do this if there's
// no debuginfo in the program.
if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
// Conservatively, clear any kill flags, since it's possible that they are no
// longer correct.
// Note that we have to clear the kill flags for any register this instruction
// uses as we may sink over another instruction which currently kills the
// used registers.
for (MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.isUse())
RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
}
return true;
}
void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
MachineInstr &MI, MachineBasicBlock *TargetBlock) {
assert(MI.isCopy());
assert(MI.getOperand(1).isReg());
// Enumerate all users of vreg operands that are def'd. Skip those that will
// be sunk. For the rest, if they are not dominated by the block we will sink
// MI into, propagate the copy source to them.
SmallVector<MachineInstr *, 4> DbgDefUsers;
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
for (auto &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
continue;
for (auto &User : MRI.use_instructions(MO.getReg())) {
if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
continue;
// If is in same block, will either sink or be use-before-def.
if (User.getParent() == MI.getParent())
continue;
assert(User.getDebugOperand(0).isReg() &&
"DBG_VALUE user of vreg, but non reg operand?");
DbgDefUsers.push_back(&User);
}
}
// Point the users of this copy that are no longer dominated, at the source
// of the copy.
for (auto *User : DbgDefUsers) {
User->getDebugOperand(0).setReg(MI.getOperand(1).getReg());
User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg());
}
}
//===----------------------------------------------------------------------===//
// This pass is not intended to be a replacement or a complete alternative
// for the pre-ra machine sink pass. It is only designed to sink COPY
// instructions which should be handled after RA.
//
// This pass sinks COPY instructions into a successor block, if the COPY is not
// used in the current block and the COPY is live-in to a single successor
// (i.e., doesn't require the COPY to be duplicated). This avoids executing the
// copy on paths where their results aren't needed. This also exposes
// additional opportunites for dead copy elimination and shrink wrapping.
//
// These copies were either not handled by or are inserted after the MachineSink
// pass. As an example of the former case, the MachineSink pass cannot sink
// COPY instructions with allocatable source registers; for AArch64 these type
// of copy instructions are frequently used to move function parameters (PhyReg)
// into virtual registers in the entry block.
//
// For the machine IR below, this pass will sink %w19 in the entry into its
// successor (%bb.1) because %w19 is only live-in in %bb.1.
// %bb.0:
// %wzr = SUBSWri %w1, 1
// %w19 = COPY %w0
// Bcc 11, %bb.2
// %bb.1:
// Live Ins: %w19
// BL @fun
// %w0 = ADDWrr %w0, %w19
// RET %w0
// %bb.2:
// %w0 = COPY %wzr
// RET %w0
// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
// able to see %bb.0 as a candidate.
//===----------------------------------------------------------------------===//
namespace {
class PostRAMachineSinking : public MachineFunctionPass {
public:
bool runOnMachineFunction(MachineFunction &MF) override;
static char ID;
PostRAMachineSinking() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "PostRA Machine Sink"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
/// Track which register units have been modified and used.
LiveRegUnits ModifiedRegUnits, UsedRegUnits;
/// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
/// entry in this map for each unit it touches.
DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
/// Sink Copy instructions unused in the same block close to their uses in
/// successors.
bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
};
} // namespace
char PostRAMachineSinking::ID = 0;
char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
"PostRA Machine Sink", false, false)
static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
const TargetRegisterInfo *TRI) {
LiveRegUnits LiveInRegUnits(*TRI);
LiveInRegUnits.addLiveIns(MBB);
return !LiveInRegUnits.available(Reg);
}
static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
unsigned Reg, const TargetRegisterInfo *TRI) {
// Try to find a single sinkable successor in which Reg is live-in.
MachineBasicBlock *BB = nullptr;
for (auto *SI : SinkableBBs) {
if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
// If BB is set here, Reg is live-in to at least two sinkable successors,
// so quit.
if (BB)
return nullptr;
BB = SI;
}
}
// Reg is not live-in to any sinkable successors.
if (!BB)
return nullptr;
// Check if any register aliased with Reg is live-in in other successors.
for (auto *SI : CurBB.successors()) {
if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
return nullptr;
}
return BB;
}
static MachineBasicBlock *
getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
ArrayRef<unsigned> DefedRegsInCopy,
const TargetRegisterInfo *TRI) {
MachineBasicBlock *SingleBB = nullptr;
for (auto DefReg : DefedRegsInCopy) {
MachineBasicBlock *BB =
getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
if (!BB || (SingleBB && SingleBB != BB))
return nullptr;
SingleBB = BB;
}
return SingleBB;
}
static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
SmallVectorImpl<unsigned> &UsedOpsInCopy,
LiveRegUnits &UsedRegUnits,
const TargetRegisterInfo *TRI) {
for (auto U : UsedOpsInCopy) {
MachineOperand &MO = MI->getOperand(U);
Register SrcReg = MO.getReg();
if (!UsedRegUnits.available(SrcReg)) {
MachineBasicBlock::iterator NI = std::next(MI->getIterator());
for (MachineInstr &UI : make_range(NI, CurBB.end())) {
if (UI.killsRegister(SrcReg, TRI)) {
UI.clearRegisterKills(SrcReg, TRI);
MO.setIsKill(true);
break;
}
}
}
}
}
static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
SmallVectorImpl<unsigned> &UsedOpsInCopy,
SmallVectorImpl<unsigned> &DefedRegsInCopy) {
MachineFunction &MF = *SuccBB->getParent();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
for (unsigned DefReg : DefedRegsInCopy)
for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
SuccBB->removeLiveIn(*S);
for (auto U : UsedOpsInCopy) {
Register SrcReg = MI->getOperand(U).getReg();
LaneBitmask Mask;
for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
Mask |= (*S).second;
}
SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
}
SuccBB->sortUniqueLiveIns();
}
static bool hasRegisterDependency(MachineInstr *MI,
SmallVectorImpl<unsigned> &UsedOpsInCopy,
SmallVectorImpl<unsigned> &DefedRegsInCopy,
LiveRegUnits &ModifiedRegUnits,
LiveRegUnits &UsedRegUnits) {
bool HasRegDependency = false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef()) {
if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
HasRegDependency = true;
break;
}
DefedRegsInCopy.push_back(Reg);
// FIXME: instead of isUse(), readsReg() would be a better fix here,
// For example, we can ignore modifications in reg with undef. However,
// it's not perfectly clear if skipping the internal read is safe in all
// other targets.
} else if (MO.isUse()) {
if (!ModifiedRegUnits.available(Reg)) {
HasRegDependency = true;
break;
}
UsedOpsInCopy.push_back(i);
}
}
return HasRegDependency;
}
static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
const TargetRegisterInfo *TRI) {
SmallSet<unsigned, 4> RegUnits;
for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
RegUnits.insert(*RI);
return RegUnits;
}
bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
MachineFunction &MF,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII) {
SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
// FIXME: For now, we sink only to a successor which has a single predecessor
// so that we can directly sink COPY instructions to the successor without
// adding any new block or branch instruction.
for (MachineBasicBlock *SI : CurBB.successors())
if (!SI->livein_empty() && SI->pred_size() == 1)
SinkableBBs.insert(SI);
if (SinkableBBs.empty())
return false;
bool Changed = false;
// Track which registers have been modified and used between the end of the
// block and the current instruction.
ModifiedRegUnits.clear();
UsedRegUnits.clear();
SeenDbgInstrs.clear();
for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
MachineInstr *MI = &*I;
++I;
// Track the operand index for use in Copy.
SmallVector<unsigned, 2> UsedOpsInCopy;
// Track the register number defed in Copy.
SmallVector<unsigned, 2> DefedRegsInCopy;
// We must sink this DBG_VALUE if its operand is sunk. To avoid searching
// for DBG_VALUEs later, record them when they're encountered.
if (MI->isDebugValue()) {
auto &MO = MI->getDebugOperand(0);
if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
// Bail if we can already tell the sink would be rejected, rather
// than needlessly accumulating lots of DBG_VALUEs.
if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
ModifiedRegUnits, UsedRegUnits))
continue;
// Record debug use of each reg unit.
SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
for (unsigned Reg : Units)
SeenDbgInstrs[Reg].push_back(MI);
}
continue;
}
if (MI->isDebugInstr())
continue;
// Do not move any instruction across function call.
if (MI->isCall())
return false;
if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
TRI);
continue;
}
// Don't sink the COPY if it would violate a register dependency.
if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
ModifiedRegUnits, UsedRegUnits)) {
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
TRI);
continue;
}
assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
"Unexpect SrcReg or DefReg");
MachineBasicBlock *SuccBB =
getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
// Don't sink if we cannot find a single sinkable successor in which Reg
// is live-in.
if (!SuccBB) {
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
TRI);
continue;
}
assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
"Unexpected predecessor");
// Collect DBG_VALUEs that must sink with this copy. We've previously
// recorded which reg units that DBG_VALUEs read, if this instruction
// writes any of those units then the corresponding DBG_VALUEs must sink.
SetVector<MachineInstr *> DbgValsToSinkSet;
SmallVector<MachineInstr *, 4> DbgValsToSink;
for (auto &MO : MI->operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
for (unsigned Reg : Units)
for (auto *MI : SeenDbgInstrs.lookup(Reg))
DbgValsToSinkSet.insert(MI);
}
DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
DbgValsToSinkSet.end());
// Clear the kill flag if SrcReg is killed between MI and the end of the
// block.
clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
Changed = true;
++NumPostRACopySink;
}
return Changed;
}
bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
bool Changed = false;
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
ModifiedRegUnits.init(*TRI);
UsedRegUnits.init(*TRI);
for (auto &BB : MF)
Changed |= tryToSinkCopy(BB, MF, TRI, TII);
return Changed;
}