InputFiles.cpp 64.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Driver.h"
#include "InputSection.h"
#include "LinkerScript.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/LTO/LTO.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ARMAttributeParser.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RISCVAttributeParser.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::sys;
using namespace llvm::sys::fs;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;

bool InputFile::isInGroup;
uint32_t InputFile::nextGroupId;

std::vector<ArchiveFile *> elf::archiveFiles;
std::vector<BinaryFile *> elf::binaryFiles;
std::vector<BitcodeFile *> elf::bitcodeFiles;
std::vector<LazyObjFile *> elf::lazyObjFiles;
std::vector<InputFile *> elf::objectFiles;
std::vector<SharedFile *> elf::sharedFiles;

std::unique_ptr<TarWriter> elf::tar;

// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
std::string lld::toString(const InputFile *f) {
  if (!f)
    return "<internal>";

  if (f->toStringCache.empty()) {
    if (f->archiveName.empty())
      f->toStringCache = std::string(f->getName());
    else
      f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
  }
  return f->toStringCache;
}

static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
  unsigned char size;
  unsigned char endian;
  std::tie(size, endian) = getElfArchType(mb.getBuffer());

  auto report = [&](StringRef msg) {
    StringRef filename = mb.getBufferIdentifier();
    if (archiveName.empty())
      fatal(filename + ": " + msg);
    else
      fatal(archiveName + "(" + filename + "): " + msg);
  };

  if (!mb.getBuffer().startswith(ElfMagic))
    report("not an ELF file");
  if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
    report("corrupted ELF file: invalid data encoding");
  if (size != ELFCLASS32 && size != ELFCLASS64)
    report("corrupted ELF file: invalid file class");

  size_t bufSize = mb.getBuffer().size();
  if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
      (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
    report("corrupted ELF file: file is too short");

  if (size == ELFCLASS32)
    return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
  return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
}

InputFile::InputFile(Kind k, MemoryBufferRef m)
    : mb(m), groupId(nextGroupId), fileKind(k) {
  // All files within the same --{start,end}-group get the same group ID.
  // Otherwise, a new file will get a new group ID.
  if (!isInGroup)
    ++nextGroupId;
}

Optional<MemoryBufferRef> elf::readFile(StringRef path) {
  // The --chroot option changes our virtual root directory.
  // This is useful when you are dealing with files created by --reproduce.
  if (!config->chroot.empty() && path.startswith("/"))
    path = saver.save(config->chroot + path);

  log(path);
  config->dependencyFiles.insert(llvm::CachedHashString(path));

  auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
  if (auto ec = mbOrErr.getError()) {
    error("cannot open " + path + ": " + ec.message());
    return None;
  }

  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
  MemoryBufferRef mbref = mb->getMemBufferRef();
  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership

  if (tar)
    tar->append(relativeToRoot(path), mbref.getBuffer());
  return mbref;
}

// All input object files must be for the same architecture
// (e.g. it does not make sense to link x86 object files with
// MIPS object files.) This function checks for that error.
static bool isCompatible(InputFile *file) {
  if (!file->isElf() && !isa<BitcodeFile>(file))
    return true;

  if (file->ekind == config->ekind && file->emachine == config->emachine) {
    if (config->emachine != EM_MIPS)
      return true;
    if (isMipsN32Abi(file) == config->mipsN32Abi)
      return true;
  }

  StringRef target =
      !config->bfdname.empty() ? config->bfdname : config->emulation;
  if (!target.empty()) {
    error(toString(file) + " is incompatible with " + target);
    return false;
  }

  InputFile *existing;
  if (!objectFiles.empty())
    existing = objectFiles[0];
  else if (!sharedFiles.empty())
    existing = sharedFiles[0];
  else if (!bitcodeFiles.empty())
    existing = bitcodeFiles[0];
  else
    llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
                     "determine target emulation");

  error(toString(file) + " is incompatible with " + toString(existing));
  return false;
}

template <class ELFT> static void doParseFile(InputFile *file) {
  if (!isCompatible(file))
    return;

  // Binary file
  if (auto *f = dyn_cast<BinaryFile>(file)) {
    binaryFiles.push_back(f);
    f->parse();
    return;
  }

  // .a file
  if (auto *f = dyn_cast<ArchiveFile>(file)) {
    archiveFiles.push_back(f);
    f->parse();
    return;
  }

  // Lazy object file
  if (auto *f = dyn_cast<LazyObjFile>(file)) {
    lazyObjFiles.push_back(f);
    f->parse<ELFT>();
    return;
  }

  if (config->trace)
    message(toString(file));

  // .so file
  if (auto *f = dyn_cast<SharedFile>(file)) {
    f->parse<ELFT>();
    return;
  }

  // LLVM bitcode file
  if (auto *f = dyn_cast<BitcodeFile>(file)) {
    bitcodeFiles.push_back(f);
    f->parse<ELFT>();
    return;
  }

  // Regular object file
  objectFiles.push_back(file);
  cast<ObjFile<ELFT>>(file)->parse();
}

// Add symbols in File to the symbol table.
void elf::parseFile(InputFile *file) {
  switch (config->ekind) {
  case ELF32LEKind:
    doParseFile<ELF32LE>(file);
    return;
  case ELF32BEKind:
    doParseFile<ELF32BE>(file);
    return;
  case ELF64LEKind:
    doParseFile<ELF64LE>(file);
    return;
  case ELF64BEKind:
    doParseFile<ELF64BE>(file);
    return;
  default:
    llvm_unreachable("unknown ELFT");
  }
}

// Concatenates arguments to construct a string representing an error location.
static std::string createFileLineMsg(StringRef path, unsigned line) {
  std::string filename = std::string(path::filename(path));
  std::string lineno = ":" + std::to_string(line);
  if (filename == path)
    return filename + lineno;
  return filename + lineno + " (" + path.str() + lineno + ")";
}

template <class ELFT>
static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
                                InputSectionBase &sec, uint64_t offset) {
  // In DWARF, functions and variables are stored to different places.
  // First, lookup a function for a given offset.
  if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
    return createFileLineMsg(info->FileName, info->Line);

  // If it failed, lookup again as a variable.
  if (Optional<std::pair<std::string, unsigned>> fileLine =
          file.getVariableLoc(sym.getName()))
    return createFileLineMsg(fileLine->first, fileLine->second);

  // File.sourceFile contains STT_FILE symbol, and that is a last resort.
  return std::string(file.sourceFile);
}

std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
                                 uint64_t offset) {
  if (kind() != ObjKind)
    return "";
  switch (config->ekind) {
  default:
    llvm_unreachable("Invalid kind");
  case ELF32LEKind:
    return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
  case ELF32BEKind:
    return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
  case ELF64LEKind:
    return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
  case ELF64BEKind:
    return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
  }
}

StringRef InputFile::getNameForScript() const {
  if (archiveName.empty())
    return getName();

  if (nameForScriptCache.empty())
    nameForScriptCache = (archiveName + Twine(':') + getName()).str();

  return nameForScriptCache;
}

template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
  llvm::call_once(initDwarf, [this]() {
    dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
        std::make_unique<LLDDwarfObj<ELFT>>(this), "",
        [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
        [&](Error warning) {
          warn(getName() + ": " + toString(std::move(warning)));
        }));
  });

  return dwarf.get();
}

// Returns the pair of file name and line number describing location of data
// object (variable, array, etc) definition.
template <class ELFT>
Optional<std::pair<std::string, unsigned>>
ObjFile<ELFT>::getVariableLoc(StringRef name) {
  return getDwarf()->getVariableLoc(name);
}

// Returns source line information for a given offset
// using DWARF debug info.
template <class ELFT>
Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
                                                  uint64_t offset) {
  // Detect SectionIndex for specified section.
  uint64_t sectionIndex = object::SectionedAddress::UndefSection;
  ArrayRef<InputSectionBase *> sections = s->file->getSections();
  for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
    if (s == sections[curIndex]) {
      sectionIndex = curIndex;
      break;
    }
  }

  return getDwarf()->getDILineInfo(offset, sectionIndex);
}

ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
  ekind = getELFKind(mb, "");

  switch (ekind) {
  case ELF32LEKind:
    init<ELF32LE>();
    break;
  case ELF32BEKind:
    init<ELF32BE>();
    break;
  case ELF64LEKind:
    init<ELF64LE>();
    break;
  case ELF64BEKind:
    init<ELF64BE>();
    break;
  default:
    llvm_unreachable("getELFKind");
  }
}

template <typename Elf_Shdr>
static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
  for (const Elf_Shdr &sec : sections)
    if (sec.sh_type == type)
      return &sec;
  return nullptr;
}

template <class ELFT> void ELFFileBase::init() {
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;

  // Initialize trivial attributes.
  const ELFFile<ELFT> &obj = getObj<ELFT>();
  emachine = obj.getHeader().e_machine;
  osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
  abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];

  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);

  // Find a symbol table.
  bool isDSO =
      (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
  const Elf_Shdr *symtabSec =
      findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);

  if (!symtabSec)
    return;

  // Initialize members corresponding to a symbol table.
  firstGlobal = symtabSec->sh_info;

  ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
  if (firstGlobal == 0 || firstGlobal > eSyms.size())
    fatal(toString(this) + ": invalid sh_info in symbol table");

  elfSyms = reinterpret_cast<const void *>(eSyms.data());
  numELFSyms = eSyms.size();
  stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
}

template <class ELFT>
uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
  return CHECK(
      this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
      this);
}

template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
  if (this->symbols.empty())
    return {};
  return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
}

template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
  return makeArrayRef(this->symbols).slice(this->firstGlobal);
}

template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
  // Read a section table. justSymbols is usually false.
  if (this->justSymbols)
    initializeJustSymbols();
  else
    initializeSections(ignoreComdats);

  // Read a symbol table.
  initializeSymbols();
}

// Sections with SHT_GROUP and comdat bits define comdat section groups.
// They are identified and deduplicated by group name. This function
// returns a group name.
template <class ELFT>
StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
                                              const Elf_Shdr &sec) {
  typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
  if (sec.sh_info >= symbols.size())
    fatal(toString(this) + ": invalid symbol index");
  const typename ELFT::Sym &sym = symbols[sec.sh_info];
  StringRef signature = CHECK(sym.getName(this->stringTable), this);

  // As a special case, if a symbol is a section symbol and has no name,
  // we use a section name as a signature.
  //
  // Such SHT_GROUP sections are invalid from the perspective of the ELF
  // standard, but GNU gold 1.14 (the newest version as of July 2017) or
  // older produce such sections as outputs for the -r option, so we need
  // a bug-compatibility.
  if (signature.empty() && sym.getType() == STT_SECTION)
    return getSectionName(sec);
  return signature;
}

template <class ELFT>
bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
  if (!(sec.sh_flags & SHF_MERGE))
    return false;

  // On a regular link we don't merge sections if -O0 (default is -O1). This
  // sometimes makes the linker significantly faster, although the output will
  // be bigger.
  //
  // Doing the same for -r would create a problem as it would combine sections
  // with different sh_entsize. One option would be to just copy every SHF_MERGE
  // section as is to the output. While this would produce a valid ELF file with
  // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
  // they see two .debug_str. We could have separate logic for combining
  // SHF_MERGE sections based both on their name and sh_entsize, but that seems
  // to be more trouble than it is worth. Instead, we just use the regular (-O1)
  // logic for -r.
  if (config->optimize == 0 && !config->relocatable)
    return false;

  // A mergeable section with size 0 is useless because they don't have
  // any data to merge. A mergeable string section with size 0 can be
  // argued as invalid because it doesn't end with a null character.
  // We'll avoid a mess by handling them as if they were non-mergeable.
  if (sec.sh_size == 0)
    return false;

  // Check for sh_entsize. The ELF spec is not clear about the zero
  // sh_entsize. It says that "the member [sh_entsize] contains 0 if
  // the section does not hold a table of fixed-size entries". We know
  // that Rust 1.13 produces a string mergeable section with a zero
  // sh_entsize. Here we just accept it rather than being picky about it.
  uint64_t entSize = sec.sh_entsize;
  if (entSize == 0)
    return false;
  if (sec.sh_size % entSize)
    fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
          Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
          Twine(entSize) + ")");

  if (sec.sh_flags & SHF_WRITE)
    fatal(toString(this) + ":(" + name +
          "): writable SHF_MERGE section is not supported");

  return true;
}

// This is for --just-symbols.
//
// --just-symbols is a very minor feature that allows you to link your
// output against other existing program, so that if you load both your
// program and the other program into memory, your output can refer the
// other program's symbols.
//
// When the option is given, we link "just symbols". The section table is
// initialized with null pointers.
template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
  ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
  this->sections.resize(sections.size());
}

// An ELF object file may contain a `.deplibs` section. If it exists, the
// section contains a list of library specifiers such as `m` for libm. This
// function resolves a given name by finding the first matching library checking
// the various ways that a library can be specified to LLD. This ELF extension
// is a form of autolinking and is called `dependent libraries`. It is currently
// unique to LLVM and lld.
static void addDependentLibrary(StringRef specifier, const InputFile *f) {
  if (!config->dependentLibraries)
    return;
  if (fs::exists(specifier))
    driver->addFile(specifier, /*withLOption=*/false);
  else if (Optional<std::string> s = findFromSearchPaths(specifier))
    driver->addFile(*s, /*withLOption=*/true);
  else if (Optional<std::string> s = searchLibraryBaseName(specifier))
    driver->addFile(*s, /*withLOption=*/true);
  else
    error(toString(f) +
          ": unable to find library from dependent library specifier: " +
          specifier);
}

// Record the membership of a section group so that in the garbage collection
// pass, section group members are kept or discarded as a unit.
template <class ELFT>
static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
                               ArrayRef<typename ELFT::Word> entries) {
  bool hasAlloc = false;
  for (uint32_t index : entries.slice(1)) {
    if (index >= sections.size())
      return;
    if (InputSectionBase *s = sections[index])
      if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
        hasAlloc = true;
  }

  // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
  // collection. See the comment in markLive(). This rule retains .debug_types
  // and .rela.debug_types.
  if (!hasAlloc)
    return;

  // Connect the members in a circular doubly-linked list via
  // nextInSectionGroup.
  InputSectionBase *head;
  InputSectionBase *prev = nullptr;
  for (uint32_t index : entries.slice(1)) {
    InputSectionBase *s = sections[index];
    if (!s || s == &InputSection::discarded)
      continue;
    if (prev)
      prev->nextInSectionGroup = s;
    else
      head = s;
    prev = s;
  }
  if (prev)
    prev->nextInSectionGroup = head;
}

template <class ELFT>
void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
  const ELFFile<ELFT> &obj = this->getObj();

  ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
  uint64_t size = objSections.size();
  this->sections.resize(size);
  this->sectionStringTable =
      CHECK(obj.getSectionStringTable(objSections), this);

  std::vector<ArrayRef<Elf_Word>> selectedGroups;

  for (size_t i = 0, e = objSections.size(); i < e; ++i) {
    if (this->sections[i] == &InputSection::discarded)
      continue;
    const Elf_Shdr &sec = objSections[i];

    if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
      cgProfile =
          check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec));

    // SHF_EXCLUDE'ed sections are discarded by the linker. However,
    // if -r is given, we'll let the final link discard such sections.
    // This is compatible with GNU.
    if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
      if (sec.sh_type == SHT_LLVM_ADDRSIG) {
        // We ignore the address-significance table if we know that the object
        // file was created by objcopy or ld -r. This is because these tools
        // will reorder the symbols in the symbol table, invalidating the data
        // in the address-significance table, which refers to symbols by index.
        if (sec.sh_link != 0)
          this->addrsigSec = &sec;
        else if (config->icf == ICFLevel::Safe)
          warn(toString(this) + ": --icf=safe is incompatible with object "
                                "files created using objcopy or ld -r");
      }
      this->sections[i] = &InputSection::discarded;
      continue;
    }

    switch (sec.sh_type) {
    case SHT_GROUP: {
      // De-duplicate section groups by their signatures.
      StringRef signature = getShtGroupSignature(objSections, sec);
      this->sections[i] = &InputSection::discarded;


      ArrayRef<Elf_Word> entries =
          CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
      if (entries.empty())
        fatal(toString(this) + ": empty SHT_GROUP");

      // The first word of a SHT_GROUP section contains flags. Currently,
      // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
      // An group with the empty flag doesn't define anything; such sections
      // are just skipped.
      if (entries[0] == 0)
        continue;

      if (entries[0] != GRP_COMDAT)
        fatal(toString(this) + ": unsupported SHT_GROUP format");

      bool isNew =
          ignoreComdats ||
          symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
              .second;
      if (isNew) {
        if (config->relocatable)
          this->sections[i] = createInputSection(sec);
        selectedGroups.push_back(entries);
        continue;
      }

      // Otherwise, discard group members.
      for (uint32_t secIndex : entries.slice(1)) {
        if (secIndex >= size)
          fatal(toString(this) +
                ": invalid section index in group: " + Twine(secIndex));
        this->sections[secIndex] = &InputSection::discarded;
      }
      break;
    }
    case SHT_SYMTAB_SHNDX:
      shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
      break;
    case SHT_SYMTAB:
    case SHT_STRTAB:
    case SHT_REL:
    case SHT_RELA:
    case SHT_NULL:
      break;
    default:
      this->sections[i] = createInputSection(sec);
    }
  }

  // We have a second loop. It is used to:
  // 1) handle SHF_LINK_ORDER sections.
  // 2) create SHT_REL[A] sections. In some cases the section header index of a
  //    relocation section may be smaller than that of the relocated section. In
  //    such cases, the relocation section would attempt to reference a target
  //    section that has not yet been created. For simplicity, delay creation of
  //    relocation sections until now.
  for (size_t i = 0, e = objSections.size(); i < e; ++i) {
    if (this->sections[i] == &InputSection::discarded)
      continue;
    const Elf_Shdr &sec = objSections[i];

    if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
      this->sections[i] = createInputSection(sec);

    // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
    // the flag.
    if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
      continue;

    InputSectionBase *linkSec = nullptr;
    if (sec.sh_link < this->sections.size())
      linkSec = this->sections[sec.sh_link];
    if (!linkSec)
      fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));

    // A SHF_LINK_ORDER section is discarded if its linked-to section is
    // discarded.
    InputSection *isec = cast<InputSection>(this->sections[i]);
    linkSec->dependentSections.push_back(isec);
    if (!isa<InputSection>(linkSec))
      error("a section " + isec->name +
            " with SHF_LINK_ORDER should not refer a non-regular section: " +
            toString(linkSec));
  }

  for (ArrayRef<Elf_Word> entries : selectedGroups)
    handleSectionGroup<ELFT>(this->sections, entries);
}

// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
// the input objects have been compiled.
static void updateARMVFPArgs(const ARMAttributeParser &attributes,
                             const InputFile *f) {
  Optional<unsigned> attr =
      attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
  if (!attr.hasValue())
    // If an ABI tag isn't present then it is implicitly given the value of 0
    // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
    // including some in glibc that don't use FP args (and should have value 3)
    // don't have the attribute so we do not consider an implicit value of 0
    // as a clash.
    return;

  unsigned vfpArgs = attr.getValue();
  ARMVFPArgKind arg;
  switch (vfpArgs) {
  case ARMBuildAttrs::BaseAAPCS:
    arg = ARMVFPArgKind::Base;
    break;
  case ARMBuildAttrs::HardFPAAPCS:
    arg = ARMVFPArgKind::VFP;
    break;
  case ARMBuildAttrs::ToolChainFPPCS:
    // Tool chain specific convention that conforms to neither AAPCS variant.
    arg = ARMVFPArgKind::ToolChain;
    break;
  case ARMBuildAttrs::CompatibleFPAAPCS:
    // Object compatible with all conventions.
    return;
  default:
    error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
    return;
  }
  // Follow ld.bfd and error if there is a mix of calling conventions.
  if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
    error(toString(f) + ": incompatible Tag_ABI_VFP_args");
  else
    config->armVFPArgs = arg;
}

// The ARM support in lld makes some use of instructions that are not available
// on all ARM architectures. Namely:
// - Use of BLX instruction for interworking between ARM and Thumb state.
// - Use of the extended Thumb branch encoding in relocation.
// - Use of the MOVT/MOVW instructions in Thumb Thunks.
// The ARM Attributes section contains information about the architecture chosen
// at compile time. We follow the convention that if at least one input object
// is compiled with an architecture that supports these features then lld is
// permitted to use them.
static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
  Optional<unsigned> attr =
      attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
  if (!attr.hasValue())
    return;
  auto arch = attr.getValue();
  switch (arch) {
  case ARMBuildAttrs::Pre_v4:
  case ARMBuildAttrs::v4:
  case ARMBuildAttrs::v4T:
    // Architectures prior to v5 do not support BLX instruction
    break;
  case ARMBuildAttrs::v5T:
  case ARMBuildAttrs::v5TE:
  case ARMBuildAttrs::v5TEJ:
  case ARMBuildAttrs::v6:
  case ARMBuildAttrs::v6KZ:
  case ARMBuildAttrs::v6K:
    config->armHasBlx = true;
    // Architectures used in pre-Cortex processors do not support
    // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
    // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
    break;
  default:
    // All other Architectures have BLX and extended branch encoding
    config->armHasBlx = true;
    config->armJ1J2BranchEncoding = true;
    if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
      // All Architectures used in Cortex processors with the exception
      // of v6-M and v6S-M have the MOVT and MOVW instructions.
      config->armHasMovtMovw = true;
    break;
  }
}

// If a source file is compiled with x86 hardware-assisted call flow control
// enabled, the generated object file contains feature flags indicating that
// fact. This function reads the feature flags and returns it.
//
// Essentially we want to read a single 32-bit value in this function, but this
// function is rather complicated because the value is buried deep inside a
// .note.gnu.property section.
//
// The section consists of one or more NOTE records. Each NOTE record consists
// of zero or more type-length-value fields. We want to find a field of a
// certain type. It seems a bit too much to just store a 32-bit value, perhaps
// the ABI is unnecessarily complicated.
template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
  using Elf_Nhdr = typename ELFT::Nhdr;
  using Elf_Note = typename ELFT::Note;

  uint32_t featuresSet = 0;
  ArrayRef<uint8_t> data = sec.data();
  auto reportFatal = [&](const uint8_t *place, const char *msg) {
    fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
          Twine::utohexstr(place - sec.data().data()) + "): " + msg);
  };
  while (!data.empty()) {
    // Read one NOTE record.
    auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
    if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
      reportFatal(data.data(), "data is too short");

    Elf_Note note(*nhdr);
    if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
      data = data.slice(nhdr->getSize());
      continue;
    }

    uint32_t featureAndType = config->emachine == EM_AARCH64
                                  ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
                                  : GNU_PROPERTY_X86_FEATURE_1_AND;

    // Read a body of a NOTE record, which consists of type-length-value fields.
    ArrayRef<uint8_t> desc = note.getDesc();
    while (!desc.empty()) {
      const uint8_t *place = desc.data();
      if (desc.size() < 8)
        reportFatal(place, "program property is too short");
      uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
      uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
      desc = desc.slice(8);
      if (desc.size() < size)
        reportFatal(place, "program property is too short");

      if (type == featureAndType) {
        // We found a FEATURE_1_AND field. There may be more than one of these
        // in a .note.gnu.property section, for a relocatable object we
        // accumulate the bits set.
        if (size < 4)
          reportFatal(place, "FEATURE_1_AND entry is too short");
        featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
      }

      // Padding is present in the note descriptor, if necessary.
      desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
    }

    // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
    data = data.slice(nhdr->getSize());
  }

  return featuresSet;
}

template <class ELFT>
InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
  uint32_t idx = sec.sh_info;
  if (idx >= this->sections.size())
    fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
  InputSectionBase *target = this->sections[idx];

  // Strictly speaking, a relocation section must be included in the
  // group of the section it relocates. However, LLVM 3.3 and earlier
  // would fail to do so, so we gracefully handle that case.
  if (target == &InputSection::discarded)
    return nullptr;

  if (!target)
    fatal(toString(this) + ": unsupported relocation reference");
  return target;
}

// Create a regular InputSection class that has the same contents
// as a given section.
static InputSection *toRegularSection(MergeInputSection *sec) {
  return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
                            sec->data(), sec->name);
}

template <class ELFT>
InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
  StringRef name = getSectionName(sec);

  if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
    ARMAttributeParser attributes;
    ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
    if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
                                                 ? support::little
                                                 : support::big)) {
      auto *isec = make<InputSection>(*this, sec, name);
      warn(toString(isec) + ": " + llvm::toString(std::move(e)));
    } else {
      updateSupportedARMFeatures(attributes);
      updateARMVFPArgs(attributes, this);

      // FIXME: Retain the first attribute section we see. The eglibc ARM
      // dynamic loaders require the presence of an attribute section for dlopen
      // to work. In a full implementation we would merge all attribute
      // sections.
      if (in.attributes == nullptr) {
        in.attributes = make<InputSection>(*this, sec, name);
        return in.attributes;
      }
      return &InputSection::discarded;
    }
  }

  if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
    RISCVAttributeParser attributes;
    ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
    if (Error e = attributes.parse(contents, support::little)) {
      auto *isec = make<InputSection>(*this, sec, name);
      warn(toString(isec) + ": " + llvm::toString(std::move(e)));
    } else {
      // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
      // present.

      // FIXME: Retain the first attribute section we see. Tools such as
      // llvm-objdump make use of the attribute section to determine which
      // standard extensions to enable. In a full implementation we would merge
      // all attribute sections.
      if (in.attributes == nullptr) {
        in.attributes = make<InputSection>(*this, sec, name);
        return in.attributes;
      }
      return &InputSection::discarded;
    }
  }

  switch (sec.sh_type) {
  case SHT_LLVM_DEPENDENT_LIBRARIES: {
    if (config->relocatable)
      break;
    ArrayRef<char> data =
        CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
    if (!data.empty() && data.back() != '\0') {
      error(toString(this) +
            ": corrupted dependent libraries section (unterminated string): " +
            name);
      return &InputSection::discarded;
    }
    for (const char *d = data.begin(), *e = data.end(); d < e;) {
      StringRef s(d);
      addDependentLibrary(s, this);
      d += s.size() + 1;
    }
    return &InputSection::discarded;
  }
  case SHT_RELA:
  case SHT_REL: {
    // Find a relocation target section and associate this section with that.
    // Target may have been discarded if it is in a different section group
    // and the group is discarded, even though it's a violation of the
    // spec. We handle that situation gracefully by discarding dangling
    // relocation sections.
    InputSectionBase *target = getRelocTarget(sec);
    if (!target)
      return nullptr;

    // ELF spec allows mergeable sections with relocations, but they are
    // rare, and it is in practice hard to merge such sections by contents,
    // because applying relocations at end of linking changes section
    // contents. So, we simply handle such sections as non-mergeable ones.
    // Degrading like this is acceptable because section merging is optional.
    if (auto *ms = dyn_cast<MergeInputSection>(target)) {
      target = toRegularSection(ms);
      this->sections[sec.sh_info] = target;
    }

    if (target->firstRelocation)
      fatal(toString(this) +
            ": multiple relocation sections to one section are not supported");

    if (sec.sh_type == SHT_RELA) {
      ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
      target->firstRelocation = rels.begin();
      target->numRelocations = rels.size();
      target->areRelocsRela = true;
    } else {
      ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
      target->firstRelocation = rels.begin();
      target->numRelocations = rels.size();
      target->areRelocsRela = false;
    }
    assert(isUInt<31>(target->numRelocations));

    // Relocation sections are usually removed from the output, so return
    // `nullptr` for the normal case. However, if -r or --emit-relocs is
    // specified, we need to copy them to the output. (Some post link analysis
    // tools specify --emit-relocs to obtain the information.)
    if (!config->relocatable && !config->emitRelocs)
      return nullptr;
    InputSection *relocSec = make<InputSection>(*this, sec, name);
    // If the relocated section is discarded (due to /DISCARD/ or
    // --gc-sections), the relocation section should be discarded as well.
    target->dependentSections.push_back(relocSec);
    return relocSec;
  }
  }

  // The GNU linker uses .note.GNU-stack section as a marker indicating
  // that the code in the object file does not expect that the stack is
  // executable (in terms of NX bit). If all input files have the marker,
  // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
  // make the stack non-executable. Most object files have this section as
  // of 2017.
  //
  // But making the stack non-executable is a norm today for security
  // reasons. Failure to do so may result in a serious security issue.
  // Therefore, we make LLD always add PT_GNU_STACK unless it is
  // explicitly told to do otherwise (by -z execstack). Because the stack
  // executable-ness is controlled solely by command line options,
  // .note.GNU-stack sections are simply ignored.
  if (name == ".note.GNU-stack")
    return &InputSection::discarded;

  // Object files that use processor features such as Intel Control-Flow
  // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
  // .note.gnu.property section containing a bitfield of feature bits like the
  // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
  //
  // Since we merge bitmaps from multiple object files to create a new
  // .note.gnu.property containing a single AND'ed bitmap, we discard an input
  // file's .note.gnu.property section.
  if (name == ".note.gnu.property") {
    this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
    return &InputSection::discarded;
  }

  // Split stacks is a feature to support a discontiguous stack,
  // commonly used in the programming language Go. For the details,
  // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
  // for split stack will include a .note.GNU-split-stack section.
  if (name == ".note.GNU-split-stack") {
    if (config->relocatable) {
      error("cannot mix split-stack and non-split-stack in a relocatable link");
      return &InputSection::discarded;
    }
    this->splitStack = true;
    return &InputSection::discarded;
  }

  // An object file cmpiled for split stack, but where some of the
  // functions were compiled with the no_split_stack_attribute will
  // include a .note.GNU-no-split-stack section.
  if (name == ".note.GNU-no-split-stack") {
    this->someNoSplitStack = true;
    return &InputSection::discarded;
  }

  // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
  // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
  // sections. Drop those sections to avoid duplicate symbol errors.
  // FIXME: This is glibc PR20543, we should remove this hack once that has been
  // fixed for a while.
  if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
      name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
    return &InputSection::discarded;

  // If we are creating a new .build-id section, strip existing .build-id
  // sections so that the output won't have more than one .build-id.
  // This is not usually a problem because input object files normally don't
  // have .build-id sections, but you can create such files by
  // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
  if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
    return &InputSection::discarded;

  // The linker merges EH (exception handling) frames and creates a
  // .eh_frame_hdr section for runtime. So we handle them with a special
  // class. For relocatable outputs, they are just passed through.
  if (name == ".eh_frame" && !config->relocatable)
    return make<EhInputSection>(*this, sec, name);

  if (shouldMerge(sec, name))
    return make<MergeInputSection>(*this, sec, name);
  return make<InputSection>(*this, sec, name);
}

template <class ELFT>
StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
  return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
}

// Initialize this->Symbols. this->Symbols is a parallel array as
// its corresponding ELF symbol table.
template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
  ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
  this->symbols.resize(eSyms.size());

  // Fill in InputFile::symbols. Some entries have been initialized
  // because of LazyObjFile.
  for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
    if (this->symbols[i])
      continue;
    const Elf_Sym &eSym = eSyms[i];
    uint32_t secIdx = getSectionIndex(eSym);
    if (secIdx >= this->sections.size())
      fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
    if (eSym.getBinding() != STB_LOCAL) {
      if (i < firstGlobal)
        error(toString(this) + ": non-local symbol (" + Twine(i) +
              ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
              ")");
      this->symbols[i] =
          symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
      continue;
    }

    // Handle local symbols. Local symbols are not added to the symbol
    // table because they are not visible from other object files. We
    // allocate symbol instances and add their pointers to symbols.
    if (i >= firstGlobal)
      errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
                  ") found at index >= .symtab's sh_info (" +
                  Twine(firstGlobal) + ")");

    InputSectionBase *sec = this->sections[secIdx];
    uint8_t type = eSym.getType();
    if (type == STT_FILE)
      sourceFile = CHECK(eSym.getName(this->stringTable), this);
    if (this->stringTable.size() <= eSym.st_name)
      fatal(toString(this) + ": invalid symbol name offset");
    StringRefZ name = this->stringTable.data() + eSym.st_name;

    if (eSym.st_shndx == SHN_UNDEF)
      this->symbols[i] =
          make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
    else if (sec == &InputSection::discarded)
      this->symbols[i] =
          make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
                          /*discardedSecIdx=*/secIdx);
    else
      this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
                                       type, eSym.st_value, eSym.st_size, sec);
  }

  // Symbol resolution of non-local symbols.
  for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
    const Elf_Sym &eSym = eSyms[i];
    uint8_t binding = eSym.getBinding();
    if (binding == STB_LOCAL)
      continue; // Errored above.

    uint32_t secIdx = getSectionIndex(eSym);
    InputSectionBase *sec = this->sections[secIdx];
    uint8_t stOther = eSym.st_other;
    uint8_t type = eSym.getType();
    uint64_t value = eSym.st_value;
    uint64_t size = eSym.st_size;
    StringRefZ name = this->stringTable.data() + eSym.st_name;

    // Handle global undefined symbols.
    if (eSym.st_shndx == SHN_UNDEF) {
      this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
      this->symbols[i]->referenced = true;
      continue;
    }

    // Handle global common symbols.
    if (eSym.st_shndx == SHN_COMMON) {
      if (value == 0 || value >= UINT32_MAX)
        fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
              "' has invalid alignment: " + Twine(value));
      this->symbols[i]->resolve(
          CommonSymbol{this, name, binding, stOther, type, value, size});
      continue;
    }

    // If a defined symbol is in a discarded section, handle it as if it
    // were an undefined symbol. Such symbol doesn't comply with the
    // standard, but in practice, a .eh_frame often directly refer
    // COMDAT member sections, and if a comdat group is discarded, some
    // defined symbol in a .eh_frame becomes dangling symbols.
    if (sec == &InputSection::discarded) {
      Undefined und{this, name, binding, stOther, type, secIdx};
      Symbol *sym = this->symbols[i];
      // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
      // containing this object has not finished processing, i.e. this symbol is
      // a result of a lazy symbol fetch. We should demote the lazy symbol to an
      // Undefined so that any relocations outside of the group to it will
      // trigger a discarded section error.
      if ((sym->symbolKind == Symbol::LazyArchiveKind &&
           !cast<ArchiveFile>(sym->file)->parsed) ||
          (sym->symbolKind == Symbol::LazyObjectKind &&
           cast<LazyObjFile>(sym->file)->fetched))
        sym->replace(und);
      else
        sym->resolve(und);
      continue;
    }

    // Handle global defined symbols.
    if (binding == STB_GLOBAL || binding == STB_WEAK ||
        binding == STB_GNU_UNIQUE) {
      this->symbols[i]->resolve(
          Defined{this, name, binding, stOther, type, value, size, sec});
      continue;
    }

    fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
  }
}

ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
    : InputFile(ArchiveKind, file->getMemoryBufferRef()),
      file(std::move(file)) {}

void ArchiveFile::parse() {
  for (const Archive::Symbol &sym : file->symbols())
    symtab->addSymbol(LazyArchive{*this, sym});

  // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
  // archive has been processed.
  parsed = true;
}

// Returns a buffer pointing to a member file containing a given symbol.
void ArchiveFile::fetch(const Archive::Symbol &sym) {
  Archive::Child c =
      CHECK(sym.getMember(), toString(this) +
                                 ": could not get the member for symbol " +
                                 toELFString(sym));

  if (!seen.insert(c.getChildOffset()).second)
    return;

  MemoryBufferRef mb =
      CHECK(c.getMemoryBufferRef(),
            toString(this) +
                ": could not get the buffer for the member defining symbol " +
                toELFString(sym));

  if (tar && c.getParent()->isThin())
    tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());

  InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
  file->groupId = groupId;
  parseFile(file);
}

size_t ArchiveFile::getMemberCount() const {
  size_t count = 0;
  Error err = Error::success();
  for (const Archive::Child &c : file->children(err)) {
    (void)c;
    ++count;
  }
  // This function is used by --print-archive-stats=, where an error does not
  // really matter.
  consumeError(std::move(err));
  return count;
}

unsigned SharedFile::vernauxNum;

// Parse the version definitions in the object file if present, and return a
// vector whose nth element contains a pointer to the Elf_Verdef for version
// identifier n. Version identifiers that are not definitions map to nullptr.
template <typename ELFT>
static std::vector<const void *> parseVerdefs(const uint8_t *base,
                                              const typename ELFT::Shdr *sec) {
  if (!sec)
    return {};

  // We cannot determine the largest verdef identifier without inspecting
  // every Elf_Verdef, but both bfd and gold assign verdef identifiers
  // sequentially starting from 1, so we predict that the largest identifier
  // will be verdefCount.
  unsigned verdefCount = sec->sh_info;
  std::vector<const void *> verdefs(verdefCount + 1);

  // Build the Verdefs array by following the chain of Elf_Verdef objects
  // from the start of the .gnu.version_d section.
  const uint8_t *verdef = base + sec->sh_offset;
  for (unsigned i = 0; i != verdefCount; ++i) {
    auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
    verdef += curVerdef->vd_next;
    unsigned verdefIndex = curVerdef->vd_ndx;
    verdefs.resize(verdefIndex + 1);
    verdefs[verdefIndex] = curVerdef;
  }
  return verdefs;
}

// Parse SHT_GNU_verneed to properly set the name of a versioned undefined
// symbol. We detect fatal issues which would cause vulnerabilities, but do not
// implement sophisticated error checking like in llvm-readobj because the value
// of such diagnostics is low.
template <typename ELFT>
std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
                                               const typename ELFT::Shdr *sec) {
  if (!sec)
    return {};
  std::vector<uint32_t> verneeds;
  ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
  const uint8_t *verneedBuf = data.begin();
  for (unsigned i = 0; i != sec->sh_info; ++i) {
    if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
      fatal(toString(this) + " has an invalid Verneed");
    auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
    const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
    for (unsigned j = 0; j != vn->vn_cnt; ++j) {
      if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
        fatal(toString(this) + " has an invalid Vernaux");
      auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
      if (aux->vna_name >= this->stringTable.size())
        fatal(toString(this) + " has a Vernaux with an invalid vna_name");
      uint16_t version = aux->vna_other & VERSYM_VERSION;
      if (version >= verneeds.size())
        verneeds.resize(version + 1);
      verneeds[version] = aux->vna_name;
      vernauxBuf += aux->vna_next;
    }
    verneedBuf += vn->vn_next;
  }
  return verneeds;
}

// We do not usually care about alignments of data in shared object
// files because the loader takes care of it. However, if we promote a
// DSO symbol to point to .bss due to copy relocation, we need to keep
// the original alignment requirements. We infer it in this function.
template <typename ELFT>
static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
                             const typename ELFT::Sym &sym) {
  uint64_t ret = UINT64_MAX;
  if (sym.st_value)
    ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
  if (0 < sym.st_shndx && sym.st_shndx < sections.size())
    ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
  return (ret > UINT32_MAX) ? 0 : ret;
}

// Fully parse the shared object file.
//
// This function parses symbol versions. If a DSO has version information,
// the file has a ".gnu.version_d" section which contains symbol version
// definitions. Each symbol is associated to one version through a table in
// ".gnu.version" section. That table is a parallel array for the symbol
// table, and each table entry contains an index in ".gnu.version_d".
//
// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
// VER_NDX_GLOBAL. There's no table entry for these special versions in
// ".gnu.version_d".
//
// The file format for symbol versioning is perhaps a bit more complicated
// than necessary, but you can easily understand the code if you wrap your
// head around the data structure described above.
template <class ELFT> void SharedFile::parse() {
  using Elf_Dyn = typename ELFT::Dyn;
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;
  using Elf_Verdef = typename ELFT::Verdef;
  using Elf_Versym = typename ELFT::Versym;

  ArrayRef<Elf_Dyn> dynamicTags;
  const ELFFile<ELFT> obj = this->getObj<ELFT>();
  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);

  const Elf_Shdr *versymSec = nullptr;
  const Elf_Shdr *verdefSec = nullptr;
  const Elf_Shdr *verneedSec = nullptr;

  // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
  for (const Elf_Shdr &sec : sections) {
    switch (sec.sh_type) {
    default:
      continue;
    case SHT_DYNAMIC:
      dynamicTags =
          CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
      break;
    case SHT_GNU_versym:
      versymSec = &sec;
      break;
    case SHT_GNU_verdef:
      verdefSec = &sec;
      break;
    case SHT_GNU_verneed:
      verneedSec = &sec;
      break;
    }
  }

  if (versymSec && numELFSyms == 0) {
    error("SHT_GNU_versym should be associated with symbol table");
    return;
  }

  // Search for a DT_SONAME tag to initialize this->soName.
  for (const Elf_Dyn &dyn : dynamicTags) {
    if (dyn.d_tag == DT_NEEDED) {
      uint64_t val = dyn.getVal();
      if (val >= this->stringTable.size())
        fatal(toString(this) + ": invalid DT_NEEDED entry");
      dtNeeded.push_back(this->stringTable.data() + val);
    } else if (dyn.d_tag == DT_SONAME) {
      uint64_t val = dyn.getVal();
      if (val >= this->stringTable.size())
        fatal(toString(this) + ": invalid DT_SONAME entry");
      soName = this->stringTable.data() + val;
    }
  }

  // DSOs are uniquified not by filename but by soname.
  DenseMap<StringRef, SharedFile *>::iterator it;
  bool wasInserted;
  std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);

  // If a DSO appears more than once on the command line with and without
  // --as-needed, --no-as-needed takes precedence over --as-needed because a
  // user can add an extra DSO with --no-as-needed to force it to be added to
  // the dependency list.
  it->second->isNeeded |= isNeeded;
  if (!wasInserted)
    return;

  sharedFiles.push_back(this);

  verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
  std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);

  // Parse ".gnu.version" section which is a parallel array for the symbol
  // table. If a given file doesn't have a ".gnu.version" section, we use
  // VER_NDX_GLOBAL.
  size_t size = numELFSyms - firstGlobal;
  std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
  if (versymSec) {
    ArrayRef<Elf_Versym> versym =
        CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
              this)
            .slice(firstGlobal);
    for (size_t i = 0; i < size; ++i)
      versyms[i] = versym[i].vs_index;
  }

  // System libraries can have a lot of symbols with versions. Using a
  // fixed buffer for computing the versions name (foo@ver) can save a
  // lot of allocations.
  SmallString<0> versionedNameBuffer;

  // Add symbols to the symbol table.
  ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
  for (size_t i = 0; i < syms.size(); ++i) {
    const Elf_Sym &sym = syms[i];

    // ELF spec requires that all local symbols precede weak or global
    // symbols in each symbol table, and the index of first non-local symbol
    // is stored to sh_info. If a local symbol appears after some non-local
    // symbol, that's a violation of the spec.
    StringRef name = CHECK(sym.getName(this->stringTable), this);
    if (sym.getBinding() == STB_LOCAL) {
      warn("found local symbol '" + name +
           "' in global part of symbol table in file " + toString(this));
      continue;
    }

    uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
    if (sym.isUndefined()) {
      // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
      // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
      if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
        if (idx >= verneeds.size()) {
          error("corrupt input file: version need index " + Twine(idx) +
                " for symbol " + name + " is out of bounds\n>>> defined in " +
                toString(this));
          continue;
        }
        StringRef verName = this->stringTable.data() + verneeds[idx];
        versionedNameBuffer.clear();
        name =
            saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
      }
      Symbol *s = symtab->addSymbol(
          Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
      s->exportDynamic = true;
      continue;
    }

    // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
    // assigns VER_NDX_LOCAL to this section global symbol. Here is a
    // workaround for this bug.
    if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
        name == "_gp_disp")
      continue;

    uint32_t alignment = getAlignment<ELFT>(sections, sym);
    if (!(versyms[i] & VERSYM_HIDDEN)) {
      symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
                                     sym.st_other, sym.getType(), sym.st_value,
                                     sym.st_size, alignment, idx});
    }

    // Also add the symbol with the versioned name to handle undefined symbols
    // with explicit versions.
    if (idx == VER_NDX_GLOBAL)
      continue;

    if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
      error("corrupt input file: version definition index " + Twine(idx) +
            " for symbol " + name + " is out of bounds\n>>> defined in " +
            toString(this));
      continue;
    }

    StringRef verName =
        this->stringTable.data() +
        reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
    versionedNameBuffer.clear();
    name = (name + "@" + verName).toStringRef(versionedNameBuffer);
    symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
                                   sym.st_other, sym.getType(), sym.st_value,
                                   sym.st_size, alignment, idx});
  }
}

static ELFKind getBitcodeELFKind(const Triple &t) {
  if (t.isLittleEndian())
    return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
  return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
}

static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
  switch (t.getArch()) {
  case Triple::aarch64:
    return EM_AARCH64;
  case Triple::amdgcn:
  case Triple::r600:
    return EM_AMDGPU;
  case Triple::arm:
  case Triple::thumb:
    return EM_ARM;
  case Triple::avr:
    return EM_AVR;
  case Triple::mips:
  case Triple::mipsel:
  case Triple::mips64:
  case Triple::mips64el:
    return EM_MIPS;
  case Triple::msp430:
    return EM_MSP430;
  case Triple::ppc:
    return EM_PPC;
  case Triple::ppc64:
  case Triple::ppc64le:
    return EM_PPC64;
  case Triple::riscv32:
  case Triple::riscv64:
    return EM_RISCV;
  case Triple::x86:
    return t.isOSIAMCU() ? EM_IAMCU : EM_386;
  case Triple::x86_64:
    return EM_X86_64;
  default:
    error(path + ": could not infer e_machine from bitcode target triple " +
          t.str());
    return EM_NONE;
  }
}

BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
                         uint64_t offsetInArchive)
    : InputFile(BitcodeKind, mb) {
  this->archiveName = std::string(archiveName);

  std::string path = mb.getBufferIdentifier().str();
  if (config->thinLTOIndexOnly)
    path = replaceThinLTOSuffix(mb.getBufferIdentifier());

  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
  // name. If two archives define two members with the same name, this
  // causes a collision which result in only one of the objects being taken
  // into consideration at LTO time (which very likely causes undefined
  // symbols later in the link stage). So we append file offset to make
  // filename unique.
  StringRef name =
      archiveName.empty()
          ? saver.save(path)
          : saver.save(archiveName + "(" + path::filename(path) + " at " +
                       utostr(offsetInArchive) + ")");
  MemoryBufferRef mbref(mb.getBuffer(), name);

  obj = CHECK(lto::InputFile::create(mbref), this);

  Triple t(obj->getTargetTriple());
  ekind = getBitcodeELFKind(t);
  emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
}

static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
  switch (gvVisibility) {
  case GlobalValue::DefaultVisibility:
    return STV_DEFAULT;
  case GlobalValue::HiddenVisibility:
    return STV_HIDDEN;
  case GlobalValue::ProtectedVisibility:
    return STV_PROTECTED;
  }
  llvm_unreachable("unknown visibility");
}

template <class ELFT>
static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
                                   const lto::InputFile::Symbol &objSym,
                                   BitcodeFile &f) {
  StringRef name = saver.save(objSym.getName());
  uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
  uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
  uint8_t visibility = mapVisibility(objSym.getVisibility());
  bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();

  int c = objSym.getComdatIndex();
  if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
    Undefined newSym(&f, name, binding, visibility, type);
    if (canOmitFromDynSym)
      newSym.exportDynamic = false;
    Symbol *ret = symtab->addSymbol(newSym);
    ret->referenced = true;
    return ret;
  }

  if (objSym.isCommon())
    return symtab->addSymbol(
        CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
                     objSym.getCommonAlignment(), objSym.getCommonSize()});

  Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
  if (canOmitFromDynSym)
    newSym.exportDynamic = false;
  return symtab->addSymbol(newSym);
}

template <class ELFT> void BitcodeFile::parse() {
  std::vector<bool> keptComdats;
  for (StringRef s : obj->getComdatTable())
    keptComdats.push_back(
        symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);

  for (const lto::InputFile::Symbol &objSym : obj->symbols())
    symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));

  for (auto l : obj->getDependentLibraries())
    addDependentLibrary(l, this);
}

void BinaryFile::parse() {
  ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
  auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
                                     8, data, ".data");
  sections.push_back(section);

  // For each input file foo that is embedded to a result as a binary
  // blob, we define _binary_foo_{start,end,size} symbols, so that
  // user programs can access blobs by name. Non-alphanumeric
  // characters in a filename are replaced with underscore.
  std::string s = "_binary_" + mb.getBufferIdentifier().str();
  for (size_t i = 0; i < s.size(); ++i)
    if (!isAlnum(s[i]))
      s[i] = '_';

  symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
                            STV_DEFAULT, STT_OBJECT, 0, 0, section});
  symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
                            STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
  symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
                            STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
}

InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
                                 uint64_t offsetInArchive) {
  if (isBitcode(mb))
    return make<BitcodeFile>(mb, archiveName, offsetInArchive);

  switch (getELFKind(mb, archiveName)) {
  case ELF32LEKind:
    return make<ObjFile<ELF32LE>>(mb, archiveName);
  case ELF32BEKind:
    return make<ObjFile<ELF32BE>>(mb, archiveName);
  case ELF64LEKind:
    return make<ObjFile<ELF64LE>>(mb, archiveName);
  case ELF64BEKind:
    return make<ObjFile<ELF64BE>>(mb, archiveName);
  default:
    llvm_unreachable("getELFKind");
  }
}

void LazyObjFile::fetch() {
  if (fetched)
    return;
  fetched = true;

  InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
  file->groupId = groupId;

  // Copy symbol vector so that the new InputFile doesn't have to
  // insert the same defined symbols to the symbol table again.
  file->symbols = std::move(symbols);

  parseFile(file);
}

template <class ELFT> void LazyObjFile::parse() {
  using Elf_Sym = typename ELFT::Sym;

  // A lazy object file wraps either a bitcode file or an ELF file.
  if (isBitcode(this->mb)) {
    std::unique_ptr<lto::InputFile> obj =
        CHECK(lto::InputFile::create(this->mb), this);
    for (const lto::InputFile::Symbol &sym : obj->symbols()) {
      if (sym.isUndefined())
        continue;
      symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
    }
    return;
  }

  if (getELFKind(this->mb, archiveName) != config->ekind) {
    error("incompatible file: " + this->mb.getBufferIdentifier());
    return;
  }

  // Find a symbol table.
  ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
  ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);

  for (const typename ELFT::Shdr &sec : sections) {
    if (sec.sh_type != SHT_SYMTAB)
      continue;

    // A symbol table is found.
    ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
    uint32_t firstGlobal = sec.sh_info;
    StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
    this->symbols.resize(eSyms.size());

    // Get existing symbols or insert placeholder symbols.
    for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
      if (eSyms[i].st_shndx != SHN_UNDEF)
        this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));

    // Replace existing symbols with LazyObject symbols.
    //
    // resolve() may trigger this->fetch() if an existing symbol is an
    // undefined symbol. If that happens, this LazyObjFile has served
    // its purpose, and we can exit from the loop early.
    for (Symbol *sym : this->symbols) {
      if (!sym)
        continue;
      sym->resolve(LazyObject{*this, sym->getName()});

      // If fetched, stop iterating because this->symbols has been transferred
      // to the instantiated ObjFile.
      if (fetched)
        return;
    }
    return;
  }
}

std::string elf::replaceThinLTOSuffix(StringRef path) {
  StringRef suffix = config->thinLTOObjectSuffixReplace.first;
  StringRef repl = config->thinLTOObjectSuffixReplace.second;

  if (path.consume_back(suffix))
    return (path + repl).str();
  return std::string(path);
}

template void BitcodeFile::parse<ELF32LE>();
template void BitcodeFile::parse<ELF32BE>();
template void BitcodeFile::parse<ELF64LE>();
template void BitcodeFile::parse<ELF64BE>();

template void LazyObjFile::parse<ELF32LE>();
template void LazyObjFile::parse<ELF32BE>();
template void LazyObjFile::parse<ELF64LE>();
template void LazyObjFile::parse<ELF64BE>();

template class elf::ObjFile<ELF32LE>;
template class elf::ObjFile<ELF32BE>;
template class elf::ObjFile<ELF64LE>;
template class elf::ObjFile<ELF64BE>;

template void SharedFile::parse<ELF32LE>();
template void SharedFile::parse<ELF32BE>();
template void SharedFile::parse<ELF64LE>();
template void SharedFile::parse<ELF64BE>();