constexpr-instantiate.cpp
7.75 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// RUN: %clang_cc1 -std=c++11 -verify %s
namespace UseBeforeDefinition {
struct A {
template<typename T> static constexpr T get() { return T(); }
// ok, not a constant expression.
int n = get<int>();
};
// ok, constant expression.
constexpr int j = A::get<int>();
template<typename T> constexpr int consume(T);
// ok, not a constant expression.
const int k = consume(0); // expected-note {{here}}
template<typename T> constexpr int consume(T) { return 0; }
// ok, constant expression.
constexpr int l = consume(0);
constexpr int m = k; // expected-error {{constant expression}} expected-note {{initializer of 'k'}}
}
namespace IntegralConst {
template<typename T> constexpr T f(T n) { return n; }
enum E {
v = f(0), w = f(1) // ok
};
static_assert(w == 1, "");
char arr[f('x')]; // ok
static_assert(sizeof(arr) == 'x', "");
}
namespace ConvertedConst {
template<typename T> constexpr T f(T n) { return n; }
int f() {
switch (f()) {
case f(4): return 0;
}
return 1;
}
}
namespace OverloadResolution {
template<typename T> constexpr T f(T t) { return t; }
template<int n> struct S { };
template<typename T> auto g(T t) -> S<f(sizeof(T))> &;
char &f(...);
template<typename T> auto h(T t[f(sizeof(T))]) -> decltype(&*t) {
return t;
}
S<4> &k = g(0);
int *p, *q = h(p);
}
namespace DataMember {
template<typename T> struct S { static const int k; };
const int n = S<int>::k; // expected-note {{here}}
template<typename T> const int S<T>::k = 0;
constexpr int m = S<int>::k; // ok
constexpr int o = n; // expected-error {{constant expression}} expected-note {{initializer of 'n'}}
}
namespace Reference {
const int k = 5;
template<typename T> struct S {
static volatile int &r;
};
template<typename T> volatile int &S<T>::r = const_cast<volatile int&>(k);
constexpr int n = const_cast<int&>(S<int>::r);
static_assert(n == 5, "");
}
namespace Unevaluated {
// We follow the current proposed resolution of core issue 1581: a constexpr
// function template specialization requires a definition if:
// * it is odr-used, or would be odr-used except that it appears within the
// definition of a template, or
// * it is used within a braced-init-list, where it may be necessary for
// detecting narrowing conversions.
//
// We apply this both for instantiating constexpr function template
// specializations and for implicitly defining defaulted constexpr special
// member functions.
//
// FIXME: None of this is required by the C++ standard yet. The rules in this
// area are subject to change.
namespace NotConstexpr {
template<typename T> struct S {
S() : n(0) {}
S(const S&) : n(T::error) {}
int n;
};
struct U : S<int> {};
decltype(U(U())) u;
}
namespace Constexpr {
template<typename T> struct S {
constexpr S() : n(0) {}
constexpr S(const S&) : n(T::error) {}
int n;
};
struct U : S<int> {};
decltype(U(U())) u;
}
namespace ConstexprList {
template<int N> struct S {
constexpr S() : n(0) {
static_assert(N >= 0, "");
}
constexpr operator int() const { return 0; }
int n;
};
struct U : S<0> {};
// ok, trigger instantiation within a list
decltype(char{U()}) t0;
decltype(new char{S<1>()}) t1; // expected-warning {{side effects}}
decltype((char){S<2>()}) t2;
decltype(+(char[1]){{S<3>()}}) t3;
// do not trigger instantiation outside a list
decltype(char(S<-1>())) u1;
decltype(new char(S<-2>())) u2; // expected-warning {{side effects}}
decltype((char)(S<-3>())) u3;
}
namespace PR11851_Comment0 {
template<int x> constexpr int f() { return x; }
template<int i> void ovf(int (&x)[f<i>()]);
void f() { int x[10]; ovf<10>(x); }
}
namespace PR11851_Comment1 {
template<typename T>
constexpr bool Integral() {
return true;
}
template<typename T, bool Int = Integral<T>()>
struct safe_make_unsigned {
typedef T type;
};
template<typename T>
using Make_unsigned = typename safe_make_unsigned<T>::type;
template <typename T>
struct get_distance_type {
using type = int;
};
template<typename R>
auto size(R) -> Make_unsigned<typename get_distance_type<R>::type>;
auto check() -> decltype(size(0));
}
namespace PR11851_Comment6 {
template<int> struct foo {};
template<class> constexpr int bar() { return 0; }
template<class T> foo<bar<T>()> foobar();
auto foobar_ = foobar<int>();
}
namespace PR11851_Comment9 {
struct S1 {
constexpr S1() {}
constexpr operator int() const { return 0; }
};
int k1 = sizeof(short{S1(S1())});
struct S2 {
constexpr S2() {}
constexpr operator int() const { return 123456; }
};
int k2 = sizeof(short{S2(S2())}); // expected-error {{cannot be narrowed}} expected-note {{insert an explicit cast to silence this issue}}
}
namespace PR12288 {
template <typename> constexpr bool foo() { return true; }
template <bool> struct bar {};
template <typename T> bar<foo<T>()> baz() { return bar<foo<T>()>(); }
int main() { baz<int>(); }
}
namespace PR13423 {
template<bool, typename> struct enable_if {};
template<typename T> struct enable_if<true, T> { using type = T; };
template<typename T> struct F {
template<typename U>
static constexpr bool f() { return sizeof(T) < U::size; }
template<typename U>
static typename enable_if<f<U>(), void>::type g() {} // expected-note {{requirement 'f<Unevaluated::PR13423::U>()' was not satisfied}}
};
struct U { static constexpr int size = 2; };
void h() { F<char>::g<U>(); }
void i() { F<int>::g<U>(); } // expected-error {{no matching function}}
}
namespace PR14203 {
struct duration { constexpr duration() {} };
template <typename>
void sleep_for() {
constexpr duration max = duration();
}
}
// For variables, we instantiate when they are used in a context in which
// evaluation could be required (odr-used, used in a template whose
// instantiations would odr-use, or used in list initialization), if they
// can be used as a constant (const integral or constexpr).
namespace Variables {
template<int N> struct A {
static const int k;
static int n;
};
template<const int *N> struct B {};
template<int N> constexpr int A<N>::k = *(int[N]){N}; // expected-error 1+{{negative}}
template<int N> int A<N>::n = *(int[N]){0};
template <typename> void f() {
(void)A<-1>::n; // ok
(void)A<-1>::k; // expected-note {{instantiation of }}
B<&A<-2>::n> b1; // ok
B<&A<-2>::k> b2; // expected-note {{instantiation of }}
};
decltype(A<-3>::k) d1 = 0; // ok
decltype(char{A<-4>::k}) d2 = 0; // expected-note {{instantiation of }} expected-error {{narrow}} expected-note {{cast}}
decltype(char{A<1>::k}) d3 = 0; // ok
decltype(char{A<1 + (unsigned char)-1>::k}) d4 = 0; // expected-error {{narrow}} expected-note {{cast}}
}
}
namespace NoInstantiationWhenSelectingOverload {
// Check that we don't instantiate conversion functions when we're checking
// for the existence of an implicit conversion sequence, only when a function
// is actually chosen by overload resolution.
struct S {
template<typename T> constexpr S(T) : n(T::error) {} // expected-error {{no members}}
int n;
};
constexpr int f(S) { return 0; }
constexpr int f(int) { return 0; }
void g() { f(0); }
void h() { (void)sizeof(char{f(0)}); }
void i() { (void)sizeof(char{f("oops")}); } // expected-note {{instantiation of}}
}
namespace PR20090 {
template <typename T> constexpr T fact(T n) {
return n == 0 ? 1 : [=] { return n * fact(n - 1); }();
}
static_assert(fact(0) == 1, "");
}