ParseInit.cpp 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
//===--- ParseInit.cpp - Initializer Parsing ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements initializer parsing as specified by C99 6.7.8.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/TokenKinds.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;


/// MayBeDesignationStart - Return true if the current token might be the start
/// of a designator.  If we can tell it is impossible that it is a designator,
/// return false.
bool Parser::MayBeDesignationStart() {
  switch (Tok.getKind()) {
  default:
    return false;

  case tok::period:      // designator: '.' identifier
    return true;

  case tok::l_square: {  // designator: array-designator
    if (!PP.getLangOpts().CPlusPlus11)
      return true;

    // C++11 lambda expressions and C99 designators can be ambiguous all the
    // way through the closing ']' and to the next character. Handle the easy
    // cases here, and fall back to tentative parsing if those fail.
    switch (PP.LookAhead(0).getKind()) {
    case tok::equal:
    case tok::ellipsis:
    case tok::r_square:
      // Definitely starts a lambda expression.
      return false;

    case tok::amp:
    case tok::kw_this:
    case tok::star:
    case tok::identifier:
      // We have to do additional analysis, because these could be the
      // start of a constant expression or a lambda capture list.
      break;

    default:
      // Anything not mentioned above cannot occur following a '[' in a
      // lambda expression.
      return true;
    }

    // Handle the complicated case below.
    break;
  }
  case tok::identifier:  // designation: identifier ':'
    return PP.LookAhead(0).is(tok::colon);
  }

  // Parse up to (at most) the token after the closing ']' to determine
  // whether this is a C99 designator or a lambda.
  RevertingTentativeParsingAction Tentative(*this);

  LambdaIntroducer Intro;
  LambdaIntroducerTentativeParse ParseResult;
  if (ParseLambdaIntroducer(Intro, &ParseResult)) {
    // Hit and diagnosed an error in a lambda.
    // FIXME: Tell the caller this happened so they can recover.
    return true;
  }

  switch (ParseResult) {
  case LambdaIntroducerTentativeParse::Success:
  case LambdaIntroducerTentativeParse::Incomplete:
    // Might be a lambda-expression. Keep looking.
    // FIXME: If our tentative parse was not incomplete, parse the lambda from
    // here rather than throwing away then reparsing the LambdaIntroducer.
    break;

  case LambdaIntroducerTentativeParse::MessageSend:
  case LambdaIntroducerTentativeParse::Invalid:
    // Can't be a lambda-expression. Treat it as a designator.
    // FIXME: Should we disambiguate against a message-send?
    return true;
  }

  // Once we hit the closing square bracket, we look at the next
  // token. If it's an '=', this is a designator. Otherwise, it's a
  // lambda expression. This decision favors lambdas over the older
  // GNU designator syntax, which allows one to omit the '=', but is
  // consistent with GCC.
  return Tok.is(tok::equal);
}

static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc,
                                       Designation &Desig) {
  // If we have exactly one array designator, this used the GNU
  // 'designation: array-designator' extension, otherwise there should be no
  // designators at all!
  if (Desig.getNumDesignators() == 1 &&
      (Desig.getDesignator(0).isArrayDesignator() ||
       Desig.getDesignator(0).isArrayRangeDesignator()))
    P.Diag(Loc, diag::ext_gnu_missing_equal_designator);
  else if (Desig.getNumDesignators() > 0)
    P.Diag(Loc, diag::err_expected_equal_designator);
}

/// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
/// checking to see if the token stream starts with a designator.
///
/// C99:
///
///       designation:
///         designator-list '='
/// [GNU]   array-designator
/// [GNU]   identifier ':'
///
///       designator-list:
///         designator
///         designator-list designator
///
///       designator:
///         array-designator
///         '.' identifier
///
///       array-designator:
///         '[' constant-expression ']'
/// [GNU]   '[' constant-expression '...' constant-expression ']'
///
/// C++20:
///
///       designated-initializer-list:
///         designated-initializer-clause
///         designated-initializer-list ',' designated-initializer-clause
///
///       designated-initializer-clause:
///         designator brace-or-equal-initializer
///
///       designator:
///         '.' identifier
///
/// We allow the C99 syntax extensions in C++20, but do not allow the C++20
/// extension (a braced-init-list after the designator with no '=') in C99.
///
/// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
/// initializer (because it is an expression).  We need to consider this case
/// when parsing array designators.
///
/// \p CodeCompleteCB is called with Designation parsed so far.
ExprResult Parser::ParseInitializerWithPotentialDesignator(
    llvm::function_ref<void(const Designation &)> CodeCompleteCB) {

  // If this is the old-style GNU extension:
  //   designation ::= identifier ':'
  // Handle it as a field designator.  Otherwise, this must be the start of a
  // normal expression.
  if (Tok.is(tok::identifier)) {
    const IdentifierInfo *FieldName = Tok.getIdentifierInfo();

    SmallString<256> NewSyntax;
    llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName()
                                         << " = ";

    SourceLocation NameLoc = ConsumeToken(); // Eat the identifier.

    assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!");
    SourceLocation ColonLoc = ConsumeToken();

    Diag(NameLoc, diag::ext_gnu_old_style_field_designator)
      << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc),
                                      NewSyntax);

    Designation D;
    D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc));
    return Actions.ActOnDesignatedInitializer(D, ColonLoc, true,
                                              ParseInitializer());
  }

  // Desig - This is initialized when we see our first designator.  We may have
  // an objc message send with no designator, so we don't want to create this
  // eagerly.
  Designation Desig;

  // Parse each designator in the designator list until we find an initializer.
  while (Tok.is(tok::period) || Tok.is(tok::l_square)) {
    if (Tok.is(tok::period)) {
      // designator: '.' identifier
      SourceLocation DotLoc = ConsumeToken();

      if (Tok.is(tok::code_completion)) {
        CodeCompleteCB(Desig);
        cutOffParsing();
        return ExprError();
      }
      if (Tok.isNot(tok::identifier)) {
        Diag(Tok.getLocation(), diag::err_expected_field_designator);
        return ExprError();
      }

      Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc,
                                               Tok.getLocation()));
      ConsumeToken(); // Eat the identifier.
      continue;
    }

    // We must have either an array designator now or an objc message send.
    assert(Tok.is(tok::l_square) && "Unexpected token!");

    // Handle the two forms of array designator:
    //   array-designator: '[' constant-expression ']'
    //   array-designator: '[' constant-expression '...' constant-expression ']'
    //
    // Also, we have to handle the case where the expression after the
    // designator an an objc message send: '[' objc-message-expr ']'.
    // Interesting cases are:
    //   [foo bar]         -> objc message send
    //   [foo]             -> array designator
    //   [foo ... bar]     -> array designator
    //   [4][foo bar]      -> obsolete GNU designation with objc message send.
    //
    // We do not need to check for an expression starting with [[ here. If it
    // contains an Objective-C message send, then it is not an ill-formed
    // attribute. If it is a lambda-expression within an array-designator, then
    // it will be rejected because a constant-expression cannot begin with a
    // lambda-expression.
    InMessageExpressionRAIIObject InMessage(*this, true);

    BalancedDelimiterTracker T(*this, tok::l_square);
    T.consumeOpen();
    SourceLocation StartLoc = T.getOpenLocation();

    ExprResult Idx;

    // If Objective-C is enabled and this is a typename (class message
    // send) or send to 'super', parse this as a message send
    // expression.  We handle C++ and C separately, since C++ requires
    // much more complicated parsing.
    if  (getLangOpts().ObjC && getLangOpts().CPlusPlus) {
      // Send to 'super'.
      if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
          NextToken().isNot(tok::period) &&
          getCurScope()->isInObjcMethodScope()) {
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        return ParseAssignmentExprWithObjCMessageExprStart(
            StartLoc, ConsumeToken(), nullptr, nullptr);
      }

      // Parse the receiver, which is either a type or an expression.
      bool IsExpr;
      void *TypeOrExpr;
      if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
        SkipUntil(tok::r_square, StopAtSemi);
        return ExprError();
      }

      // If the receiver was a type, we have a class message; parse
      // the rest of it.
      if (!IsExpr) {
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
                                                           SourceLocation(),
                                   ParsedType::getFromOpaquePtr(TypeOrExpr),
                                                           nullptr);
      }

      // If the receiver was an expression, we still don't know
      // whether we have a message send or an array designator; just
      // adopt the expression for further analysis below.
      // FIXME: potentially-potentially evaluated expression above?
      Idx = ExprResult(static_cast<Expr*>(TypeOrExpr));
    } else if (getLangOpts().ObjC && Tok.is(tok::identifier)) {
      IdentifierInfo *II = Tok.getIdentifierInfo();
      SourceLocation IILoc = Tok.getLocation();
      ParsedType ReceiverType;
      // Three cases. This is a message send to a type: [type foo]
      // This is a message send to super:  [super foo]
      // This is a message sent to an expr:  [super.bar foo]
      switch (Actions.getObjCMessageKind(
          getCurScope(), II, IILoc, II == Ident_super,
          NextToken().is(tok::period), ReceiverType)) {
      case Sema::ObjCSuperMessage:
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        return ParseAssignmentExprWithObjCMessageExprStart(
            StartLoc, ConsumeToken(), nullptr, nullptr);

      case Sema::ObjCClassMessage:
        CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
        ConsumeToken(); // the identifier
        if (!ReceiverType) {
          SkipUntil(tok::r_square, StopAtSemi);
          return ExprError();
        }

        // Parse type arguments and protocol qualifiers.
        if (Tok.is(tok::less)) {
          SourceLocation NewEndLoc;
          TypeResult NewReceiverType
            = parseObjCTypeArgsAndProtocolQualifiers(IILoc, ReceiverType,
                                                     /*consumeLastToken=*/true,
                                                     NewEndLoc);
          if (!NewReceiverType.isUsable()) {
            SkipUntil(tok::r_square, StopAtSemi);
            return ExprError();
          }

          ReceiverType = NewReceiverType.get();
        }

        return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
                                                           SourceLocation(),
                                                           ReceiverType,
                                                           nullptr);

      case Sema::ObjCInstanceMessage:
        // Fall through; we'll just parse the expression and
        // (possibly) treat this like an Objective-C message send
        // later.
        break;
      }
    }

    // Parse the index expression, if we haven't already gotten one
    // above (which can only happen in Objective-C++).
    // Note that we parse this as an assignment expression, not a constant
    // expression (allowing *=, =, etc) to handle the objc case.  Sema needs
    // to validate that the expression is a constant.
    // FIXME: We also need to tell Sema that we're in a
    // potentially-potentially evaluated context.
    if (!Idx.get()) {
      Idx = ParseAssignmentExpression();
      if (Idx.isInvalid()) {
        SkipUntil(tok::r_square, StopAtSemi);
        return Idx;
      }
    }

    // Given an expression, we could either have a designator (if the next
    // tokens are '...' or ']' or an objc message send.  If this is an objc
    // message send, handle it now.  An objc-message send is the start of
    // an assignment-expression production.
    if (getLangOpts().ObjC && Tok.isNot(tok::ellipsis) &&
        Tok.isNot(tok::r_square)) {
      CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig);
      return ParseAssignmentExprWithObjCMessageExprStart(
          StartLoc, SourceLocation(), nullptr, Idx.get());
    }

    // If this is a normal array designator, remember it.
    if (Tok.isNot(tok::ellipsis)) {
      Desig.AddDesignator(Designator::getArray(Idx.get(), StartLoc));
    } else {
      // Handle the gnu array range extension.
      Diag(Tok, diag::ext_gnu_array_range);
      SourceLocation EllipsisLoc = ConsumeToken();

      ExprResult RHS(ParseConstantExpression());
      if (RHS.isInvalid()) {
        SkipUntil(tok::r_square, StopAtSemi);
        return RHS;
      }
      Desig.AddDesignator(Designator::getArrayRange(Idx.get(),
                                                    RHS.get(),
                                                    StartLoc, EllipsisLoc));
    }

    T.consumeClose();
    Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc(
                                                        T.getCloseLocation());
  }

  // Okay, we're done with the designator sequence.  We know that there must be
  // at least one designator, because the only case we can get into this method
  // without a designator is when we have an objc message send.  That case is
  // handled and returned from above.
  assert(!Desig.empty() && "Designator is empty?");

  // Handle a normal designator sequence end, which is an equal.
  if (Tok.is(tok::equal)) {
    SourceLocation EqualLoc = ConsumeToken();
    return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false,
                                              ParseInitializer());
  }

  // Handle a C++20 braced designated initialization, which results in
  // direct-list-initialization of the aggregate element. We allow this as an
  // extension from C++11 onwards (when direct-list-initialization was added).
  if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
    return Actions.ActOnDesignatedInitializer(Desig, SourceLocation(), false,
                                              ParseBraceInitializer());
  }

  // We read some number of designators and found something that isn't an = or
  // an initializer.  If we have exactly one array designator, this
  // is the GNU 'designation: array-designator' extension.  Otherwise, it is a
  // parse error.
  if (Desig.getNumDesignators() == 1 &&
      (Desig.getDesignator(0).isArrayDesignator() ||
       Desig.getDesignator(0).isArrayRangeDesignator())) {
    Diag(Tok, diag::ext_gnu_missing_equal_designator)
      << FixItHint::CreateInsertion(Tok.getLocation(), "= ");
    return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(),
                                              true, ParseInitializer());
  }

  Diag(Tok, diag::err_expected_equal_designator);
  return ExprError();
}

/// ParseBraceInitializer - Called when parsing an initializer that has a
/// leading open brace.
///
///       initializer: [C99 6.7.8]
///         '{' initializer-list '}'
///         '{' initializer-list ',' '}'
/// [GNU]   '{' '}'
///
///       initializer-list:
///         designation[opt] initializer ...[opt]
///         initializer-list ',' designation[opt] initializer ...[opt]
///
ExprResult Parser::ParseBraceInitializer() {
  InMessageExpressionRAIIObject InMessage(*this, false);

  BalancedDelimiterTracker T(*this, tok::l_brace);
  T.consumeOpen();
  SourceLocation LBraceLoc = T.getOpenLocation();

  /// InitExprs - This is the actual list of expressions contained in the
  /// initializer.
  ExprVector InitExprs;

  if (Tok.is(tok::r_brace)) {
    // Empty initializers are a C++ feature and a GNU extension to C.
    if (!getLangOpts().CPlusPlus)
      Diag(LBraceLoc, diag::ext_gnu_empty_initializer);
    // Match the '}'.
    return Actions.ActOnInitList(LBraceLoc, None, ConsumeBrace());
  }

  // Enter an appropriate expression evaluation context for an initializer list.
  EnterExpressionEvaluationContext EnterContext(
      Actions, EnterExpressionEvaluationContext::InitList);

  bool InitExprsOk = true;
  auto CodeCompleteDesignation = [&](const Designation &D) {
    Actions.CodeCompleteDesignator(PreferredType.get(T.getOpenLocation()),
                                   InitExprs, D);
  };

  while (1) {
    // Handle Microsoft __if_exists/if_not_exists if necessary.
    if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
        Tok.is(tok::kw___if_not_exists))) {
      if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) {
        if (Tok.isNot(tok::comma)) break;
        ConsumeToken();
      }
      if (Tok.is(tok::r_brace)) break;
      continue;
    }

    // Parse: designation[opt] initializer

    // If we know that this cannot be a designation, just parse the nested
    // initializer directly.
    ExprResult SubElt;
    if (MayBeDesignationStart())
      SubElt = ParseInitializerWithPotentialDesignator(CodeCompleteDesignation);
    else
      SubElt = ParseInitializer();

    if (Tok.is(tok::ellipsis))
      SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());

    SubElt = Actions.CorrectDelayedTyposInExpr(SubElt.get());

    // If we couldn't parse the subelement, bail out.
    if (SubElt.isUsable()) {
      InitExprs.push_back(SubElt.get());
    } else {
      InitExprsOk = false;

      // We have two ways to try to recover from this error: if the code looks
      // grammatically ok (i.e. we have a comma coming up) try to continue
      // parsing the rest of the initializer.  This allows us to emit
      // diagnostics for later elements that we find.  If we don't see a comma,
      // assume there is a parse error, and just skip to recover.
      // FIXME: This comment doesn't sound right. If there is a r_brace
      // immediately, it can't be an error, since there is no other way of
      // leaving this loop except through this if.
      if (Tok.isNot(tok::comma)) {
        SkipUntil(tok::r_brace, StopBeforeMatch);
        break;
      }
    }

    // If we don't have a comma continued list, we're done.
    if (Tok.isNot(tok::comma)) break;

    // TODO: save comma locations if some client cares.
    ConsumeToken();

    // Handle trailing comma.
    if (Tok.is(tok::r_brace)) break;
  }

  bool closed = !T.consumeClose();

  if (InitExprsOk && closed)
    return Actions.ActOnInitList(LBraceLoc, InitExprs,
                                 T.getCloseLocation());

  return ExprError(); // an error occurred.
}


// Return true if a comma (or closing brace) is necessary after the
// __if_exists/if_not_exists statement.
bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs,
                                                    bool &InitExprsOk) {
  bool trailingComma = false;
  IfExistsCondition Result;
  if (ParseMicrosoftIfExistsCondition(Result))
    return false;

  BalancedDelimiterTracker Braces(*this, tok::l_brace);
  if (Braces.consumeOpen()) {
    Diag(Tok, diag::err_expected) << tok::l_brace;
    return false;
  }

  switch (Result.Behavior) {
  case IEB_Parse:
    // Parse the declarations below.
    break;

  case IEB_Dependent:
    Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
      << Result.IsIfExists;
    // Fall through to skip.
    LLVM_FALLTHROUGH;

  case IEB_Skip:
    Braces.skipToEnd();
    return false;
  }

  auto CodeCompleteDesignation = [&](const Designation &D) {
    Actions.CodeCompleteDesignator(PreferredType.get(Braces.getOpenLocation()),
                                   InitExprs, D);
  };
  while (!isEofOrEom()) {
    trailingComma = false;
    // If we know that this cannot be a designation, just parse the nested
    // initializer directly.
    ExprResult SubElt;
    if (MayBeDesignationStart())
      SubElt = ParseInitializerWithPotentialDesignator(CodeCompleteDesignation);
    else
      SubElt = ParseInitializer();

    if (Tok.is(tok::ellipsis))
      SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());

    // If we couldn't parse the subelement, bail out.
    if (!SubElt.isInvalid())
      InitExprs.push_back(SubElt.get());
    else
      InitExprsOk = false;

    if (Tok.is(tok::comma)) {
      ConsumeToken();
      trailingComma = true;
    }

    if (Tok.is(tok::r_brace))
      break;
  }

  Braces.consumeClose();

  return !trailingComma;
}