BodyFarm.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
//== BodyFarm.cpp  - Factory for conjuring up fake bodies ----------*- C++ -*-//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BodyFarm is a factory for creating faux implementations for functions/methods
// for analysis purposes.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/BodyFarm.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/Analysis/CodeInjector.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "body-farm"

using namespace clang;

//===----------------------------------------------------------------------===//
// Helper creation functions for constructing faux ASTs.
//===----------------------------------------------------------------------===//

static bool isDispatchBlock(QualType Ty) {
  // Is it a block pointer?
  const BlockPointerType *BPT = Ty->getAs<BlockPointerType>();
  if (!BPT)
    return false;

  // Check if the block pointer type takes no arguments and
  // returns void.
  const FunctionProtoType *FT =
  BPT->getPointeeType()->getAs<FunctionProtoType>();
  return FT && FT->getReturnType()->isVoidType() && FT->getNumParams() == 0;
}

namespace {
class ASTMaker {
public:
  ASTMaker(ASTContext &C) : C(C) {}

  /// Create a new BinaryOperator representing a simple assignment.
  BinaryOperator *makeAssignment(const Expr *LHS, const Expr *RHS, QualType Ty);

  /// Create a new BinaryOperator representing a comparison.
  BinaryOperator *makeComparison(const Expr *LHS, const Expr *RHS,
                                 BinaryOperator::Opcode Op);

  /// Create a new compound stmt using the provided statements.
  CompoundStmt *makeCompound(ArrayRef<Stmt*>);

  /// Create a new DeclRefExpr for the referenced variable.
  DeclRefExpr *makeDeclRefExpr(const VarDecl *D,
                               bool RefersToEnclosingVariableOrCapture = false);

  /// Create a new UnaryOperator representing a dereference.
  UnaryOperator *makeDereference(const Expr *Arg, QualType Ty);

  /// Create an implicit cast for an integer conversion.
  Expr *makeIntegralCast(const Expr *Arg, QualType Ty);

  /// Create an implicit cast to a builtin boolean type.
  ImplicitCastExpr *makeIntegralCastToBoolean(const Expr *Arg);

  /// Create an implicit cast for lvalue-to-rvaluate conversions.
  ImplicitCastExpr *makeLvalueToRvalue(const Expr *Arg, QualType Ty);

  /// Make RValue out of variable declaration, creating a temporary
  /// DeclRefExpr in the process.
  ImplicitCastExpr *
  makeLvalueToRvalue(const VarDecl *Decl,
                     bool RefersToEnclosingVariableOrCapture = false);

  /// Create an implicit cast of the given type.
  ImplicitCastExpr *makeImplicitCast(const Expr *Arg, QualType Ty,
                                     CastKind CK = CK_LValueToRValue);

  /// Create an Objective-C bool literal.
  ObjCBoolLiteralExpr *makeObjCBool(bool Val);

  /// Create an Objective-C ivar reference.
  ObjCIvarRefExpr *makeObjCIvarRef(const Expr *Base, const ObjCIvarDecl *IVar);

  /// Create a Return statement.
  ReturnStmt *makeReturn(const Expr *RetVal);

  /// Create an integer literal expression of the given type.
  IntegerLiteral *makeIntegerLiteral(uint64_t Value, QualType Ty);

  /// Create a member expression.
  MemberExpr *makeMemberExpression(Expr *base, ValueDecl *MemberDecl,
                                   bool IsArrow = false,
                                   ExprValueKind ValueKind = VK_LValue);

  /// Returns a *first* member field of a record declaration with a given name.
  /// \return an nullptr if no member with such a name exists.
  ValueDecl *findMemberField(const RecordDecl *RD, StringRef Name);

private:
  ASTContext &C;
};
}

BinaryOperator *ASTMaker::makeAssignment(const Expr *LHS, const Expr *RHS,
                                         QualType Ty) {
  return BinaryOperator::Create(
      C, const_cast<Expr *>(LHS), const_cast<Expr *>(RHS), BO_Assign, Ty,
      VK_RValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
}

BinaryOperator *ASTMaker::makeComparison(const Expr *LHS, const Expr *RHS,
                                         BinaryOperator::Opcode Op) {
  assert(BinaryOperator::isLogicalOp(Op) ||
         BinaryOperator::isComparisonOp(Op));
  return BinaryOperator::Create(
      C, const_cast<Expr *>(LHS), const_cast<Expr *>(RHS), Op,
      C.getLogicalOperationType(), VK_RValue, OK_Ordinary, SourceLocation(),
      FPOptionsOverride());
}

CompoundStmt *ASTMaker::makeCompound(ArrayRef<Stmt *> Stmts) {
  return CompoundStmt::Create(C, Stmts, SourceLocation(), SourceLocation());
}

DeclRefExpr *ASTMaker::makeDeclRefExpr(
    const VarDecl *D,
    bool RefersToEnclosingVariableOrCapture) {
  QualType Type = D->getType().getNonReferenceType();

  DeclRefExpr *DR = DeclRefExpr::Create(
      C, NestedNameSpecifierLoc(), SourceLocation(), const_cast<VarDecl *>(D),
      RefersToEnclosingVariableOrCapture, SourceLocation(), Type, VK_LValue);
  return DR;
}

UnaryOperator *ASTMaker::makeDereference(const Expr *Arg, QualType Ty) {
  return UnaryOperator::Create(C, const_cast<Expr *>(Arg), UO_Deref, Ty,
                               VK_LValue, OK_Ordinary, SourceLocation(),
                               /*CanOverflow*/ false, FPOptionsOverride());
}

ImplicitCastExpr *ASTMaker::makeLvalueToRvalue(const Expr *Arg, QualType Ty) {
  return makeImplicitCast(Arg, Ty, CK_LValueToRValue);
}

ImplicitCastExpr *
ASTMaker::makeLvalueToRvalue(const VarDecl *Arg,
                             bool RefersToEnclosingVariableOrCapture) {
  QualType Type = Arg->getType().getNonReferenceType();
  return makeLvalueToRvalue(makeDeclRefExpr(Arg,
                                            RefersToEnclosingVariableOrCapture),
                            Type);
}

ImplicitCastExpr *ASTMaker::makeImplicitCast(const Expr *Arg, QualType Ty,
                                             CastKind CK) {
  return ImplicitCastExpr::Create(C, Ty,
                                  /* CastKind=*/CK,
                                  /* Expr=*/const_cast<Expr *>(Arg),
                                  /* CXXCastPath=*/nullptr,
                                  /* ExprValueKind=*/VK_RValue,
                                  /* FPFeatures */ FPOptionsOverride());
}

Expr *ASTMaker::makeIntegralCast(const Expr *Arg, QualType Ty) {
  if (Arg->getType() == Ty)
    return const_cast<Expr*>(Arg);
  return makeImplicitCast(Arg, Ty, CK_IntegralCast);
}

ImplicitCastExpr *ASTMaker::makeIntegralCastToBoolean(const Expr *Arg) {
  return makeImplicitCast(Arg, C.BoolTy, CK_IntegralToBoolean);
}

ObjCBoolLiteralExpr *ASTMaker::makeObjCBool(bool Val) {
  QualType Ty = C.getBOOLDecl() ? C.getBOOLType() : C.ObjCBuiltinBoolTy;
  return new (C) ObjCBoolLiteralExpr(Val, Ty, SourceLocation());
}

ObjCIvarRefExpr *ASTMaker::makeObjCIvarRef(const Expr *Base,
                                           const ObjCIvarDecl *IVar) {
  return new (C) ObjCIvarRefExpr(const_cast<ObjCIvarDecl*>(IVar),
                                 IVar->getType(), SourceLocation(),
                                 SourceLocation(), const_cast<Expr*>(Base),
                                 /*arrow=*/true, /*free=*/false);
}

ReturnStmt *ASTMaker::makeReturn(const Expr *RetVal) {
  return ReturnStmt::Create(C, SourceLocation(), const_cast<Expr *>(RetVal),
                            /* NRVOCandidate=*/nullptr);
}

IntegerLiteral *ASTMaker::makeIntegerLiteral(uint64_t Value, QualType Ty) {
  llvm::APInt APValue = llvm::APInt(C.getTypeSize(Ty), Value);
  return IntegerLiteral::Create(C, APValue, Ty, SourceLocation());
}

MemberExpr *ASTMaker::makeMemberExpression(Expr *base, ValueDecl *MemberDecl,
                                           bool IsArrow,
                                           ExprValueKind ValueKind) {

  DeclAccessPair FoundDecl = DeclAccessPair::make(MemberDecl, AS_public);
  return MemberExpr::Create(
      C, base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(),
      SourceLocation(), MemberDecl, FoundDecl,
      DeclarationNameInfo(MemberDecl->getDeclName(), SourceLocation()),
      /* TemplateArgumentListInfo=*/ nullptr, MemberDecl->getType(), ValueKind,
      OK_Ordinary, NOUR_None);
}

ValueDecl *ASTMaker::findMemberField(const RecordDecl *RD, StringRef Name) {

  CXXBasePaths Paths(
      /* FindAmbiguities=*/false,
      /* RecordPaths=*/false,
      /* DetectVirtual=*/ false);
  const IdentifierInfo &II = C.Idents.get(Name);
  DeclarationName DeclName = C.DeclarationNames.getIdentifier(&II);

  DeclContextLookupResult Decls = RD->lookup(DeclName);
  for (NamedDecl *FoundDecl : Decls)
    if (!FoundDecl->getDeclContext()->isFunctionOrMethod())
      return cast<ValueDecl>(FoundDecl);

  return nullptr;
}

//===----------------------------------------------------------------------===//
// Creation functions for faux ASTs.
//===----------------------------------------------------------------------===//

typedef Stmt *(*FunctionFarmer)(ASTContext &C, const FunctionDecl *D);

static CallExpr *create_call_once_funcptr_call(ASTContext &C, ASTMaker M,
                                               const ParmVarDecl *Callback,
                                               ArrayRef<Expr *> CallArgs) {

  QualType Ty = Callback->getType();
  DeclRefExpr *Call = M.makeDeclRefExpr(Callback);
  Expr *SubExpr;
  if (Ty->isRValueReferenceType()) {
    SubExpr = M.makeImplicitCast(
        Call, Ty.getNonReferenceType(), CK_LValueToRValue);
  } else if (Ty->isLValueReferenceType() &&
             Call->getType()->isFunctionType()) {
    Ty = C.getPointerType(Ty.getNonReferenceType());
    SubExpr = M.makeImplicitCast(Call, Ty, CK_FunctionToPointerDecay);
  } else if (Ty->isLValueReferenceType()
             && Call->getType()->isPointerType()
             && Call->getType()->getPointeeType()->isFunctionType()){
    SubExpr = Call;
  } else {
    llvm_unreachable("Unexpected state");
  }

  return CallExpr::Create(C, SubExpr, CallArgs, C.VoidTy, VK_RValue,
                          SourceLocation(), FPOptionsOverride());
}

static CallExpr *create_call_once_lambda_call(ASTContext &C, ASTMaker M,
                                              const ParmVarDecl *Callback,
                                              CXXRecordDecl *CallbackDecl,
                                              ArrayRef<Expr *> CallArgs) {
  assert(CallbackDecl != nullptr);
  assert(CallbackDecl->isLambda());
  FunctionDecl *callOperatorDecl = CallbackDecl->getLambdaCallOperator();
  assert(callOperatorDecl != nullptr);

  DeclRefExpr *callOperatorDeclRef =
      DeclRefExpr::Create(/* Ctx =*/ C,
                          /* QualifierLoc =*/ NestedNameSpecifierLoc(),
                          /* TemplateKWLoc =*/ SourceLocation(),
                          const_cast<FunctionDecl *>(callOperatorDecl),
                          /* RefersToEnclosingVariableOrCapture=*/ false,
                          /* NameLoc =*/ SourceLocation(),
                          /* T =*/ callOperatorDecl->getType(),
                          /* VK =*/ VK_LValue);

  return CXXOperatorCallExpr::Create(
      /*AstContext=*/C, OO_Call, callOperatorDeclRef,
      /*Args=*/CallArgs,
      /*QualType=*/C.VoidTy,
      /*ExprValueType=*/VK_RValue,
      /*SourceLocation=*/SourceLocation(),
      /*FPFeatures=*/FPOptionsOverride());
}

/// Create a fake body for std::call_once.
/// Emulates the following function body:
///
/// \code
/// typedef struct once_flag_s {
///   unsigned long __state = 0;
/// } once_flag;
/// template<class Callable>
/// void call_once(once_flag& o, Callable func) {
///   if (!o.__state) {
///     func();
///   }
///   o.__state = 1;
/// }
/// \endcode
static Stmt *create_call_once(ASTContext &C, const FunctionDecl *D) {
  LLVM_DEBUG(llvm::dbgs() << "Generating body for call_once\n");

  // We need at least two parameters.
  if (D->param_size() < 2)
    return nullptr;

  ASTMaker M(C);

  const ParmVarDecl *Flag = D->getParamDecl(0);
  const ParmVarDecl *Callback = D->getParamDecl(1);

  if (!Callback->getType()->isReferenceType()) {
    llvm::dbgs() << "libcxx03 std::call_once implementation, skipping.\n";
    return nullptr;
  }
  if (!Flag->getType()->isReferenceType()) {
    llvm::dbgs() << "unknown std::call_once implementation, skipping.\n";
    return nullptr;
  }

  QualType CallbackType = Callback->getType().getNonReferenceType();

  // Nullable pointer, non-null iff function is a CXXRecordDecl.
  CXXRecordDecl *CallbackRecordDecl = CallbackType->getAsCXXRecordDecl();
  QualType FlagType = Flag->getType().getNonReferenceType();
  auto *FlagRecordDecl = FlagType->getAsRecordDecl();

  if (!FlagRecordDecl) {
    LLVM_DEBUG(llvm::dbgs() << "Flag field is not a record: "
                            << "unknown std::call_once implementation, "
                            << "ignoring the call.\n");
    return nullptr;
  }

  // We initially assume libc++ implementation of call_once,
  // where the once_flag struct has a field `__state_`.
  ValueDecl *FlagFieldDecl = M.findMemberField(FlagRecordDecl, "__state_");

  // Otherwise, try libstdc++ implementation, with a field
  // `_M_once`
  if (!FlagFieldDecl) {
    FlagFieldDecl = M.findMemberField(FlagRecordDecl, "_M_once");
  }

  if (!FlagFieldDecl) {
    LLVM_DEBUG(llvm::dbgs() << "No field _M_once or __state_ found on "
                            << "std::once_flag struct: unknown std::call_once "
                            << "implementation, ignoring the call.");
    return nullptr;
  }

  bool isLambdaCall = CallbackRecordDecl && CallbackRecordDecl->isLambda();
  if (CallbackRecordDecl && !isLambdaCall) {
    LLVM_DEBUG(llvm::dbgs()
               << "Not supported: synthesizing body for functors when "
               << "body farming std::call_once, ignoring the call.");
    return nullptr;
  }

  SmallVector<Expr *, 5> CallArgs;
  const FunctionProtoType *CallbackFunctionType;
  if (isLambdaCall) {

    // Lambda requires callback itself inserted as a first parameter.
    CallArgs.push_back(
        M.makeDeclRefExpr(Callback,
                          /* RefersToEnclosingVariableOrCapture=*/ true));
    CallbackFunctionType = CallbackRecordDecl->getLambdaCallOperator()
                               ->getType()
                               ->getAs<FunctionProtoType>();
  } else if (!CallbackType->getPointeeType().isNull()) {
    CallbackFunctionType =
        CallbackType->getPointeeType()->getAs<FunctionProtoType>();
  } else {
    CallbackFunctionType = CallbackType->getAs<FunctionProtoType>();
  }

  if (!CallbackFunctionType)
    return nullptr;

  // First two arguments are used for the flag and for the callback.
  if (D->getNumParams() != CallbackFunctionType->getNumParams() + 2) {
    LLVM_DEBUG(llvm::dbgs() << "Types of params of the callback do not match "
                            << "params passed to std::call_once, "
                            << "ignoring the call\n");
    return nullptr;
  }

  // All arguments past first two ones are passed to the callback,
  // and we turn lvalues into rvalues if the argument is not passed by
  // reference.
  for (unsigned int ParamIdx = 2; ParamIdx < D->getNumParams(); ParamIdx++) {
    const ParmVarDecl *PDecl = D->getParamDecl(ParamIdx);
    assert(PDecl);
    if (CallbackFunctionType->getParamType(ParamIdx - 2)
                .getNonReferenceType()
                .getCanonicalType() !=
            PDecl->getType().getNonReferenceType().getCanonicalType()) {
      LLVM_DEBUG(llvm::dbgs() << "Types of params of the callback do not match "
                              << "params passed to std::call_once, "
                              << "ignoring the call\n");
      return nullptr;
    }
    Expr *ParamExpr = M.makeDeclRefExpr(PDecl);
    if (!CallbackFunctionType->getParamType(ParamIdx - 2)->isReferenceType()) {
      QualType PTy = PDecl->getType().getNonReferenceType();
      ParamExpr = M.makeLvalueToRvalue(ParamExpr, PTy);
    }
    CallArgs.push_back(ParamExpr);
  }

  CallExpr *CallbackCall;
  if (isLambdaCall) {

    CallbackCall = create_call_once_lambda_call(C, M, Callback,
                                                CallbackRecordDecl, CallArgs);
  } else {

    // Function pointer case.
    CallbackCall = create_call_once_funcptr_call(C, M, Callback, CallArgs);
  }

  DeclRefExpr *FlagDecl =
      M.makeDeclRefExpr(Flag,
                        /* RefersToEnclosingVariableOrCapture=*/true);


  MemberExpr *Deref = M.makeMemberExpression(FlagDecl, FlagFieldDecl);
  assert(Deref->isLValue());
  QualType DerefType = Deref->getType();

  // Negation predicate.
  UnaryOperator *FlagCheck = UnaryOperator::Create(
      C,
      /* input=*/
      M.makeImplicitCast(M.makeLvalueToRvalue(Deref, DerefType), DerefType,
                         CK_IntegralToBoolean),
      /* opc=*/UO_LNot,
      /* QualType=*/C.IntTy,
      /* ExprValueKind=*/VK_RValue,
      /* ExprObjectKind=*/OK_Ordinary, SourceLocation(),
      /* CanOverflow*/ false, FPOptionsOverride());

  // Create assignment.
  BinaryOperator *FlagAssignment = M.makeAssignment(
      Deref, M.makeIntegralCast(M.makeIntegerLiteral(1, C.IntTy), DerefType),
      DerefType);

  auto *Out =
      IfStmt::Create(C, SourceLocation(),
                     /* IsConstexpr=*/false,
                     /* Init=*/nullptr,
                     /* Var=*/nullptr,
                     /* Cond=*/FlagCheck,
                     /* LPL=*/SourceLocation(),
                     /* RPL=*/SourceLocation(),
                     /* Then=*/M.makeCompound({CallbackCall, FlagAssignment}));

  return Out;
}

/// Create a fake body for dispatch_once.
static Stmt *create_dispatch_once(ASTContext &C, const FunctionDecl *D) {
  // Check if we have at least two parameters.
  if (D->param_size() != 2)
    return nullptr;

  // Check if the first parameter is a pointer to integer type.
  const ParmVarDecl *Predicate = D->getParamDecl(0);
  QualType PredicateQPtrTy = Predicate->getType();
  const PointerType *PredicatePtrTy = PredicateQPtrTy->getAs<PointerType>();
  if (!PredicatePtrTy)
    return nullptr;
  QualType PredicateTy = PredicatePtrTy->getPointeeType();
  if (!PredicateTy->isIntegerType())
    return nullptr;

  // Check if the second parameter is the proper block type.
  const ParmVarDecl *Block = D->getParamDecl(1);
  QualType Ty = Block->getType();
  if (!isDispatchBlock(Ty))
    return nullptr;

  // Everything checks out.  Create a fakse body that checks the predicate,
  // sets it, and calls the block.  Basically, an AST dump of:
  //
  // void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block) {
  //  if (*predicate != ~0l) {
  //    *predicate = ~0l;
  //    block();
  //  }
  // }

  ASTMaker M(C);

  // (1) Create the call.
  CallExpr *CE = CallExpr::Create(
      /*ASTContext=*/C,
      /*StmtClass=*/M.makeLvalueToRvalue(/*Expr=*/Block),
      /*Args=*/None,
      /*QualType=*/C.VoidTy,
      /*ExprValueType=*/VK_RValue,
      /*SourceLocation=*/SourceLocation(), FPOptionsOverride());

  // (2) Create the assignment to the predicate.
  Expr *DoneValue =
      UnaryOperator::Create(C, M.makeIntegerLiteral(0, C.LongTy), UO_Not,
                            C.LongTy, VK_RValue, OK_Ordinary, SourceLocation(),
                            /*CanOverflow*/ false, FPOptionsOverride());

  BinaryOperator *B =
    M.makeAssignment(
       M.makeDereference(
          M.makeLvalueToRvalue(
            M.makeDeclRefExpr(Predicate), PredicateQPtrTy),
            PredicateTy),
       M.makeIntegralCast(DoneValue, PredicateTy),
       PredicateTy);

  // (3) Create the compound statement.
  Stmt *Stmts[] = { B, CE };
  CompoundStmt *CS = M.makeCompound(Stmts);

  // (4) Create the 'if' condition.
  ImplicitCastExpr *LValToRval =
    M.makeLvalueToRvalue(
      M.makeDereference(
        M.makeLvalueToRvalue(
          M.makeDeclRefExpr(Predicate),
          PredicateQPtrTy),
        PredicateTy),
    PredicateTy);

  Expr *GuardCondition = M.makeComparison(LValToRval, DoneValue, BO_NE);
  // (5) Create the 'if' statement.
  auto *If = IfStmt::Create(C, SourceLocation(),
                            /* IsConstexpr=*/false,
                            /* Init=*/nullptr,
                            /* Var=*/nullptr,
                            /* Cond=*/GuardCondition,
                            /* LPL=*/SourceLocation(),
                            /* RPL=*/SourceLocation(),
                            /* Then=*/CS);
  return If;
}

/// Create a fake body for dispatch_sync.
static Stmt *create_dispatch_sync(ASTContext &C, const FunctionDecl *D) {
  // Check if we have at least two parameters.
  if (D->param_size() != 2)
    return nullptr;

  // Check if the second parameter is a block.
  const ParmVarDecl *PV = D->getParamDecl(1);
  QualType Ty = PV->getType();
  if (!isDispatchBlock(Ty))
    return nullptr;

  // Everything checks out.  Create a fake body that just calls the block.
  // This is basically just an AST dump of:
  //
  // void dispatch_sync(dispatch_queue_t queue, void (^block)(void)) {
  //   block();
  // }
  //
  ASTMaker M(C);
  DeclRefExpr *DR = M.makeDeclRefExpr(PV);
  ImplicitCastExpr *ICE = M.makeLvalueToRvalue(DR, Ty);
  CallExpr *CE = CallExpr::Create(C, ICE, None, C.VoidTy, VK_RValue,
                                  SourceLocation(), FPOptionsOverride());
  return CE;
}

static Stmt *create_OSAtomicCompareAndSwap(ASTContext &C, const FunctionDecl *D)
{
  // There are exactly 3 arguments.
  if (D->param_size() != 3)
    return nullptr;

  // Signature:
  // _Bool OSAtomicCompareAndSwapPtr(void *__oldValue,
  //                                 void *__newValue,
  //                                 void * volatile *__theValue)
  // Generate body:
  //   if (oldValue == *theValue) {
  //    *theValue = newValue;
  //    return YES;
  //   }
  //   else return NO;

  QualType ResultTy = D->getReturnType();
  bool isBoolean = ResultTy->isBooleanType();
  if (!isBoolean && !ResultTy->isIntegralType(C))
    return nullptr;

  const ParmVarDecl *OldValue = D->getParamDecl(0);
  QualType OldValueTy = OldValue->getType();

  const ParmVarDecl *NewValue = D->getParamDecl(1);
  QualType NewValueTy = NewValue->getType();

  assert(OldValueTy == NewValueTy);

  const ParmVarDecl *TheValue = D->getParamDecl(2);
  QualType TheValueTy = TheValue->getType();
  const PointerType *PT = TheValueTy->getAs<PointerType>();
  if (!PT)
    return nullptr;
  QualType PointeeTy = PT->getPointeeType();

  ASTMaker M(C);
  // Construct the comparison.
  Expr *Comparison =
    M.makeComparison(
      M.makeLvalueToRvalue(M.makeDeclRefExpr(OldValue), OldValueTy),
      M.makeLvalueToRvalue(
        M.makeDereference(
          M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
          PointeeTy),
        PointeeTy),
      BO_EQ);

  // Construct the body of the IfStmt.
  Stmt *Stmts[2];
  Stmts[0] =
    M.makeAssignment(
      M.makeDereference(
        M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
        PointeeTy),
      M.makeLvalueToRvalue(M.makeDeclRefExpr(NewValue), NewValueTy),
      NewValueTy);

  Expr *BoolVal = M.makeObjCBool(true);
  Expr *RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
                           : M.makeIntegralCast(BoolVal, ResultTy);
  Stmts[1] = M.makeReturn(RetVal);
  CompoundStmt *Body = M.makeCompound(Stmts);

  // Construct the else clause.
  BoolVal = M.makeObjCBool(false);
  RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
                     : M.makeIntegralCast(BoolVal, ResultTy);
  Stmt *Else = M.makeReturn(RetVal);

  /// Construct the If.
  auto *If =
      IfStmt::Create(C, SourceLocation(),
                     /* IsConstexpr=*/false,
                     /* Init=*/nullptr,
                     /* Var=*/nullptr, Comparison,
                     /* LPL=*/SourceLocation(),
                     /* RPL=*/SourceLocation(), Body, SourceLocation(), Else);

  return If;
}

Stmt *BodyFarm::getBody(const FunctionDecl *D) {
  Optional<Stmt *> &Val = Bodies[D];
  if (Val.hasValue())
    return Val.getValue();

  Val = nullptr;

  if (D->getIdentifier() == nullptr)
    return nullptr;

  StringRef Name = D->getName();
  if (Name.empty())
    return nullptr;

  FunctionFarmer FF;

  if (Name.startswith("OSAtomicCompareAndSwap") ||
      Name.startswith("objc_atomicCompareAndSwap")) {
    FF = create_OSAtomicCompareAndSwap;
  } else if (Name == "call_once" && D->getDeclContext()->isStdNamespace()) {
    FF = create_call_once;
  } else {
    FF = llvm::StringSwitch<FunctionFarmer>(Name)
          .Case("dispatch_sync", create_dispatch_sync)
          .Case("dispatch_once", create_dispatch_once)
          .Default(nullptr);
  }

  if (FF) { Val = FF(C, D); }
  else if (Injector) { Val = Injector->getBody(D); }
  return Val.getValue();
}

static const ObjCIvarDecl *findBackingIvar(const ObjCPropertyDecl *Prop) {
  const ObjCIvarDecl *IVar = Prop->getPropertyIvarDecl();

  if (IVar)
    return IVar;

  // When a readonly property is shadowed in a class extensions with a
  // a readwrite property, the instance variable belongs to the shadowing
  // property rather than the shadowed property. If there is no instance
  // variable on a readonly property, check to see whether the property is
  // shadowed and if so try to get the instance variable from shadowing
  // property.
  if (!Prop->isReadOnly())
    return nullptr;

  auto *Container = cast<ObjCContainerDecl>(Prop->getDeclContext());
  const ObjCInterfaceDecl *PrimaryInterface = nullptr;
  if (auto *InterfaceDecl = dyn_cast<ObjCInterfaceDecl>(Container)) {
    PrimaryInterface = InterfaceDecl;
  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Container)) {
    PrimaryInterface = CategoryDecl->getClassInterface();
  } else if (auto *ImplDecl = dyn_cast<ObjCImplDecl>(Container)) {
    PrimaryInterface = ImplDecl->getClassInterface();
  } else {
    return nullptr;
  }

  // FindPropertyVisibleInPrimaryClass() looks first in class extensions, so it
  // is guaranteed to find the shadowing property, if it exists, rather than
  // the shadowed property.
  auto *ShadowingProp = PrimaryInterface->FindPropertyVisibleInPrimaryClass(
      Prop->getIdentifier(), Prop->getQueryKind());
  if (ShadowingProp && ShadowingProp != Prop) {
    IVar = ShadowingProp->getPropertyIvarDecl();
  }

  return IVar;
}

static Stmt *createObjCPropertyGetter(ASTContext &Ctx,
                                      const ObjCMethodDecl *MD) {
    // First, find the backing ivar.
  const ObjCIvarDecl *IVar = nullptr;

  // Property accessor stubs sometimes do not correspond to any property decl
  // in the current interface (but in a superclass). They still have a
  // corresponding property impl decl in this case.
  if (MD->isSynthesizedAccessorStub()) {
    const ObjCInterfaceDecl *IntD = MD->getClassInterface();
    const ObjCImplementationDecl *ImpD = IntD->getImplementation();
    for (const auto *PI: ImpD->property_impls()) {
      if (const ObjCPropertyDecl *P = PI->getPropertyDecl()) {
        if (P->getGetterName() == MD->getSelector())
          IVar = P->getPropertyIvarDecl();
      }
    }
  }

  if (!IVar) {
    const ObjCPropertyDecl *Prop = MD->findPropertyDecl();
    IVar = findBackingIvar(Prop);
    if (!IVar)
      return nullptr;

    // Ignore weak variables, which have special behavior.
    if (Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
      return nullptr;

    // Look to see if Sema has synthesized a body for us. This happens in
    // Objective-C++ because the return value may be a C++ class type with a
    // non-trivial copy constructor. We can only do this if we can find the
    // @synthesize for this property, though (or if we know it's been auto-
    // synthesized).
    const ObjCImplementationDecl *ImplDecl =
      IVar->getContainingInterface()->getImplementation();
    if (ImplDecl) {
      for (const auto *I : ImplDecl->property_impls()) {
        if (I->getPropertyDecl() != Prop)
          continue;

        if (I->getGetterCXXConstructor()) {
          ASTMaker M(Ctx);
          return M.makeReturn(I->getGetterCXXConstructor());
        }
      }
    }

    // Sanity check that the property is the same type as the ivar, or a
    // reference to it, and that it is either an object pointer or trivially
    // copyable.
    if (!Ctx.hasSameUnqualifiedType(IVar->getType(),
                                    Prop->getType().getNonReferenceType()))
      return nullptr;
    if (!IVar->getType()->isObjCLifetimeType() &&
        !IVar->getType().isTriviallyCopyableType(Ctx))
      return nullptr;
  }

  // Generate our body:
  //   return self->_ivar;
  ASTMaker M(Ctx);

  const VarDecl *selfVar = MD->getSelfDecl();
  if (!selfVar)
    return nullptr;

  Expr *loadedIVar =
    M.makeObjCIvarRef(
      M.makeLvalueToRvalue(
        M.makeDeclRefExpr(selfVar),
        selfVar->getType()),
      IVar);

  if (!MD->getReturnType()->isReferenceType())
    loadedIVar = M.makeLvalueToRvalue(loadedIVar, IVar->getType());

  return M.makeReturn(loadedIVar);
}

Stmt *BodyFarm::getBody(const ObjCMethodDecl *D) {
  // We currently only know how to synthesize property accessors.
  if (!D->isPropertyAccessor())
    return nullptr;

  D = D->getCanonicalDecl();

  // We should not try to synthesize explicitly redefined accessors.
  // We do not know for sure how they behave.
  if (!D->isImplicit())
    return nullptr;

  Optional<Stmt *> &Val = Bodies[D];
  if (Val.hasValue())
    return Val.getValue();
  Val = nullptr;

  // For now, we only synthesize getters.
  // Synthesizing setters would cause false negatives in the
  // RetainCountChecker because the method body would bind the parameter
  // to an instance variable, causing it to escape. This would prevent
  // warning in the following common scenario:
  //
  //  id foo = [[NSObject alloc] init];
  //  self.foo = foo; // We should warn that foo leaks here.
  //
  if (D->param_size() != 0)
    return nullptr;

  // If the property was defined in an extension, search the extensions for
  // overrides.
  const ObjCInterfaceDecl *OID = D->getClassInterface();
  if (dyn_cast<ObjCInterfaceDecl>(D->getParent()) != OID)
    for (auto *Ext : OID->known_extensions()) {
      auto *OMD = Ext->getInstanceMethod(D->getSelector());
      if (OMD && !OMD->isImplicit())
        return nullptr;
    }

  Val = createObjCPropertyGetter(C, D);

  return Val.getValue();
}