Sqrt.h
5.94 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_H
#include "FPBits.h"
#include "utils/CPP/TypeTraits.h"
namespace __llvm_libc {
namespace fputil {
namespace internal {
template <typename T>
static inline void normalize(int &exponent,
typename FPBits<T>::UIntType &mantissa);
template <> inline void normalize<float>(int &exponent, uint32_t &mantissa) {
// Use binary search to shift the leading 1 bit.
// With MantissaWidth<float> = 23, it will take
// ceil(log2(23)) = 5 steps checking the mantissa bits as followed:
// Step 1: 0000 0000 0000 XXXX XXXX XXXX
// Step 2: 0000 00XX XXXX XXXX XXXX XXXX
// Step 3: 000X XXXX XXXX XXXX XXXX XXXX
// Step 4: 00XX XXXX XXXX XXXX XXXX XXXX
// Step 5: 0XXX XXXX XXXX XXXX XXXX XXXX
constexpr int nsteps = 5; // = ceil(log2(MantissaWidth))
constexpr uint32_t bounds[nsteps] = {1 << 12, 1 << 18, 1 << 21, 1 << 22,
1 << 23};
constexpr int shifts[nsteps] = {12, 6, 3, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
template <> inline void normalize<double>(int &exponent, uint64_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<double> = 52, it will take
// ceil(log2(52)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr uint64_t bounds[nsteps] = {1ULL << 26, 1ULL << 39, 1ULL << 46,
1ULL << 49, 1ULL << 51, 1ULL << 52};
constexpr int shifts[nsteps] = {27, 14, 7, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#if !(defined(__x86_64__) || defined(__i386__))
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 112, it will take
// ceil(log2(112)) = 7 steps checking the mantissa bits.
constexpr int nsteps = 7; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 56, __uint128_t(1) << 84, __uint128_t(1) << 98,
__uint128_t(1) << 105, __uint128_t(1) << 109, __uint128_t(1) << 111,
__uint128_t(1) << 112};
constexpr int shifts[nsteps] = {57, 29, 15, 8, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
#endif
} // namespace internal
// Correctly rounded IEEE 754 SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T sqrt(T x) {
using UIntType = typename FPBits<T>::UIntType;
constexpr UIntType One = UIntType(1) << MantissaWidth<T>::value;
FPBits<T> bits(x);
if (bits.isInfOrNaN()) {
if (bits.sign && (bits.mantissa == 0)) {
// sqrt(-Inf) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.sign) {
// sqrt( negative numbers ) = NaN
return FPBits<T>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.mantissa;
// Step 1a: Normalize denormal input and append hiddent bit to the mantissa
if (bits.exponent == 0) {
++xExp; // let xExp be the correct exponent of One bit.
internal::normalize<T>(xExp, xMant);
} else {
xMant |= One;
}
// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Remove hidden bit and append the exponent field.
xExp = ((xExp >> 1) + FPBits<T>::exponentBias);
y = (y - One) | (static_cast<UIntType>(xExp) << MantissaWidth<T>::value);
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}
return *reinterpret_cast<T *>(&y);
}
}
} // namespace fputil
} // namespace __llvm_libc
#if (defined(__x86_64__) || defined(__i386__))
#include "SqrtLongDoubleX86.h"
#endif // defined(__x86_64__) || defined(__i386__)
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_H