LongDoubleBitsX86.h
4.66 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//===-- Bit representation of x86 long double numbers -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_LONG_DOUBLE_BITS_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_LONG_DOUBLE_BITS_X86_H
#include "FPBits.h"
#include <stdint.h>
namespace __llvm_libc {
namespace fputil {
template <> struct MantissaWidth<long double> {
static constexpr unsigned value = 63;
};
template <unsigned Width> struct Padding;
// i386 padding.
template <> struct Padding<4> { static constexpr unsigned value = 16; };
// x86_64 padding.
template <> struct Padding<8> { static constexpr unsigned value = 48; };
template <> struct __attribute__((packed)) FPBits<long double> {
using UIntType = __uint128_t;
static constexpr int exponentBias = 0x3FFF;
static constexpr int maxExponent = 0x7FFF;
static constexpr UIntType minSubnormal = UIntType(1);
// Subnormal numbers include the implicit bit in x86 long double formats.
static constexpr UIntType maxSubnormal =
(UIntType(1) << (MantissaWidth<long double>::value + 1)) - 1;
static constexpr UIntType minNormal =
(UIntType(3) << MantissaWidth<long double>::value);
static constexpr UIntType maxNormal =
((UIntType(maxExponent) - 1) << (MantissaWidth<long double>::value + 1)) |
(UIntType(1) << MantissaWidth<long double>::value) | maxSubnormal;
UIntType mantissa : MantissaWidth<long double>::value;
uint8_t implicitBit : 1;
uint16_t exponent : ExponentWidth<long double>::value;
uint8_t sign : 1;
uint64_t padding : Padding<sizeof(uintptr_t)>::value;
template <typename XType,
cpp::EnableIfType<cpp::IsSame<long double, XType>::Value, int> = 0>
explicit FPBits<long double>(XType x) {
*this = *reinterpret_cast<FPBits<long double> *>(&x);
}
operator long double() { return *reinterpret_cast<long double *>(this); }
int getExponent() const {
if (exponent == 0)
return int(1) - exponentBias;
return int(exponent) - exponentBias;
}
bool isZero() const {
return exponent == 0 && mantissa == 0 && implicitBit == 0;
}
bool isInf() const {
return exponent == maxExponent && mantissa == 0 && implicitBit == 1;
}
bool isNaN() const {
if (exponent == maxExponent) {
return (implicitBit == 0) || mantissa != 0;
} else if (exponent != 0) {
return implicitBit == 0;
}
return false;
}
bool isInfOrNaN() const {
return (exponent == maxExponent) || (exponent != 0 && implicitBit == 0);
}
// Methods below this are used by tests.
template <typename XType,
cpp::EnableIfType<cpp::IsSame<UIntType, XType>::Value, int> = 0>
explicit FPBits<long double>(XType x) {
// The last 4 bytes of v are ignored in case of i386.
*this = *reinterpret_cast<FPBits<long double> *>(&x);
}
UIntType bitsAsUInt() const {
// We cannot just return the bits as is as it will lead to reading
// out of bounds in case of i386. So, we first copy the wider value
// before returning the value. This makes the last 4 bytes are always
// zero in case i386.
UIntType result = UIntType(0);
*reinterpret_cast<FPBits<long double> *>(&result) = *this;
// Even though we zero out |result| before copying the long double value,
// there can be garbage bits in the padding. So, we zero the padding bits
// in |result|.
static constexpr UIntType mask =
(UIntType(1) << (sizeof(long double) * 8 -
Padding<sizeof(uintptr_t)>::value)) -
1;
return result & mask;
}
static FPBits<long double> zero() { return FPBits<long double>(0.0l); }
static FPBits<long double> negZero() {
FPBits<long double> bits(0.0l);
bits.sign = 1;
return bits;
}
static FPBits<long double> inf() {
FPBits<long double> bits(0.0l);
bits.exponent = maxExponent;
bits.implicitBit = 1;
return bits;
}
static FPBits<long double> negInf() {
FPBits<long double> bits(0.0l);
bits.exponent = maxExponent;
bits.implicitBit = 1;
bits.sign = 1;
return bits;
}
static long double buildNaN(UIntType v) {
FPBits<long double> bits(0.0l);
bits.exponent = maxExponent;
bits.implicitBit = 1;
bits.mantissa = v;
return bits;
}
};
static_assert(
sizeof(FPBits<long double>) == sizeof(long double),
"Internal long double representation does not match the machine format.");
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_LONG_DOUBLE_BITS_X86_H