sincosf_utils.h
4.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
//===-- Collection of utils for cosf/sinf/sincosf ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_MATH_SINCOSF_UTILS_H
#define LLVM_LIBC_SRC_MATH_SINCOSF_UTILS_H
#include "math_utils.h"
#include <stdint.h>
namespace __llvm_libc {
// 2PI * 2^-64.
static const double pi63 = as_double(0x3c1921fb54442d18);
// PI / 4.
static const double pio4 = as_double(0x3fe921fb54442d18);
// The constants and polynomials for sine and cosine.
typedef struct {
double sign[4]; // Sign of sine in quadrants 0..3.
double hpi_inv; // 2 / PI ( * 2^24 ).
double hpi; // PI / 2.
double c0, c1, c2, c3, c4; // Cosine polynomial.
double s1, s2, s3; // Sine polynomial.
} sincos_t;
// Polynomial data (the cosine polynomial is negated in the 2nd entry).
extern const sincos_t __sincosf_table[2];
// Table with 4/PI to 192 bit precision.
extern const uint32_t __inv_pio4[];
// Top 12 bits of the float representation with the sign bit cleared.
static inline uint32_t abstop12(float x) {
return (as_uint32_bits(x) >> 20) & 0x7ff;
}
// Compute the sine and cosine of inputs X and X2 (X squared), using the
// polynomial P and store the results in SINP and COSP. N is the quadrant,
// if odd the cosine and sine polynomials are swapped.
static inline void sincosf_poly(double x, double x2, const sincos_t *p, int n,
float *sinp, float *cosp) {
double x3, x4, x5, x6, s, c, c1, c2, s1;
x4 = x2 * x2;
x3 = x2 * x;
c2 = p->c3 + x2 * p->c4;
s1 = p->s2 + x2 * p->s3;
// Swap sin/cos result based on quadrant.
float *tmp = (n & 1 ? cosp : sinp);
cosp = (n & 1 ? sinp : cosp);
sinp = tmp;
c1 = p->c0 + x2 * p->c1;
x5 = x3 * x2;
x6 = x4 * x2;
s = x + x3 * p->s1;
c = c1 + x4 * p->c2;
*sinp = s + x5 * s1;
*cosp = c + x6 * c2;
}
// Return the sine of inputs X and X2 (X squared) using the polynomial P.
// N is the quadrant, and if odd the cosine polynomial is used.
static inline float sinf_poly(double x, double x2, const sincos_t *p, int n) {
double x3, x4, x6, x7, s, c, c1, c2, s1;
if ((n & 1) == 0) {
x3 = x * x2;
s1 = p->s2 + x2 * p->s3;
x7 = x3 * x2;
s = x + x3 * p->s1;
return s + x7 * s1;
} else {
x4 = x2 * x2;
c2 = p->c3 + x2 * p->c4;
c1 = p->c0 + x2 * p->c1;
x6 = x4 * x2;
c = c1 + x4 * p->c2;
return c + x6 * c2;
}
}
// Fast range reduction using single multiply-subtract. Return the modulo of
// X as a value between -PI/4 and PI/4 and store the quadrant in NP.
// The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double
// is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
// the result is accurate for |X| <= 120.0.
static inline double reduce_fast(double x, const sincos_t *p, int *np) {
double r;
// Use scaled float to int conversion with explicit rounding.
// hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
// This avoids inaccuracies introduced by truncating negative values.
r = x * p->hpi_inv;
int n = ((int32_t)r + 0x800000) >> 24;
*np = n;
return x - n * p->hpi;
}
// Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
// XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
// Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
// Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit
// multiply computes the exact 2.62-bit fixed-point modulo. Since the result
// can have at most 29 leading zeros after the binary point, the double
// precision result is accurate to 33 bits.
static inline double reduce_large(uint32_t xi, int *np) {
const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
int shift = (xi >> 23) & 7;
uint64_t n, res0, res1, res2;
xi = (xi & 0xffffff) | 0x800000;
xi <<= shift;
res0 = xi * arr[0];
res1 = (uint64_t)xi * arr[4];
res2 = (uint64_t)xi * arr[8];
res0 = (res2 >> 32) | (res0 << 32);
res0 += res1;
n = (res0 + (1ULL << 61)) >> 62;
res0 -= n << 62;
double x = (int64_t)res0;
*np = n;
return x * pi63;
}
} // namespace __llvm_libc
#endif // LLVM_LIBC_SRC_MATH_SINCOSF_UTILS_H