check-allocate.cpp 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
//===-- lib/Semantics/check-allocate.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "check-allocate.h"
#include "assignment.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/attr.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"

namespace Fortran::semantics {

struct AllocateCheckerInfo {
  const DeclTypeSpec *typeSpec{nullptr};
  std::optional<evaluate::DynamicType> sourceExprType;
  std::optional<parser::CharBlock> sourceExprLoc;
  std::optional<parser::CharBlock> typeSpecLoc;
  int sourceExprRank{0}; // only valid if gotMold || gotSource
  bool gotStat{false};
  bool gotMsg{false};
  bool gotTypeSpec{false};
  bool gotSource{false};
  bool gotMold{false};
};

class AllocationCheckerHelper {
public:
  AllocationCheckerHelper(
      const parser::Allocation &alloc, AllocateCheckerInfo &info)
      : allocateInfo_{info}, allocateObject_{std::get<parser::AllocateObject>(
                                 alloc.t)},
        name_{parser::GetLastName(allocateObject_)},
        symbol_{name_.symbol ? &name_.symbol->GetUltimate() : nullptr},
        type_{symbol_ ? symbol_->GetType() : nullptr},
        allocateShapeSpecRank_{ShapeSpecRank(alloc)}, rank_{symbol_
                                                              ? symbol_->Rank()
                                                              : 0},
        allocateCoarraySpecRank_{CoarraySpecRank(alloc)},
        corank_{symbol_ ? symbol_->Corank() : 0} {}

  bool RunChecks(SemanticsContext &context);

private:
  bool hasAllocateShapeSpecList() const { return allocateShapeSpecRank_ != 0; }
  bool hasAllocateCoarraySpec() const { return allocateCoarraySpecRank_ != 0; }
  bool RunCoarrayRelatedChecks(SemanticsContext &) const;

  static int ShapeSpecRank(const parser::Allocation &allocation) {
    return static_cast<int>(
        std::get<std::list<parser::AllocateShapeSpec>>(allocation.t).size());
  }

  static int CoarraySpecRank(const parser::Allocation &allocation) {
    if (const auto &coarraySpec{
            std::get<std::optional<parser::AllocateCoarraySpec>>(
                allocation.t)}) {
      return std::get<std::list<parser::AllocateCoshapeSpec>>(coarraySpec->t)
                 .size() +
          1;
    } else {
      return 0;
    }
  }

  void GatherAllocationBasicInfo() {
    if (type_->category() == DeclTypeSpec::Category::Character) {
      hasDeferredTypeParameter_ =
          type_->characterTypeSpec().length().isDeferred();
    } else if (const DerivedTypeSpec * derivedTypeSpec{type_->AsDerived()}) {
      for (const auto &pair : derivedTypeSpec->parameters()) {
        hasDeferredTypeParameter_ |= pair.second.isDeferred();
      }
      isAbstract_ = derivedTypeSpec->typeSymbol().attrs().test(Attr::ABSTRACT);
    }
    isUnlimitedPolymorphic_ =
        type_->category() == DeclTypeSpec::Category::ClassStar;
  }

  AllocateCheckerInfo &allocateInfo_;
  const parser::AllocateObject &allocateObject_;
  const parser::Name &name_;
  const Symbol *symbol_{nullptr};
  const DeclTypeSpec *type_{nullptr};
  const int allocateShapeSpecRank_;
  const int rank_{0};
  const int allocateCoarraySpecRank_;
  const int corank_{0};
  bool hasDeferredTypeParameter_{false};
  bool isUnlimitedPolymorphic_{false};
  bool isAbstract_{false};
};

static std::optional<AllocateCheckerInfo> CheckAllocateOptions(
    const parser::AllocateStmt &allocateStmt, SemanticsContext &context) {
  AllocateCheckerInfo info;
  bool stopCheckingAllocate{false}; // for errors that would lead to ambiguity
  if (const auto &typeSpec{
          std::get<std::optional<parser::TypeSpec>>(allocateStmt.t)}) {
    info.typeSpec = typeSpec->declTypeSpec;
    if (!info.typeSpec) {
      CHECK(context.AnyFatalError());
      return std::nullopt;
    }
    info.gotTypeSpec = true;
    info.typeSpecLoc = parser::FindSourceLocation(*typeSpec);
    if (const DerivedTypeSpec * derived{info.typeSpec->AsDerived()}) {
      // C937
      if (auto it{FindCoarrayUltimateComponent(*derived)}) {
        context
            .Say("Type-spec in ALLOCATE must not specify a type with a coarray"
                 " ultimate component"_err_en_US)
            .Attach(it->name(),
                "Type '%s' has coarray ultimate component '%s' declared here"_en_US,
                info.typeSpec->AsFortran(), it.BuildResultDesignatorName());
      }
    }
  }

  const parser::Expr *parserSourceExpr{nullptr};
  for (const parser::AllocOpt &allocOpt :
      std::get<std::list<parser::AllocOpt>>(allocateStmt.t)) {
    std::visit(
        common::visitors{
            [&](const parser::StatOrErrmsg &statOrErr) {
              std::visit(
                  common::visitors{
                      [&](const parser::StatVariable &) {
                        if (info.gotStat) { // C943
                          context.Say(
                              "STAT may not be duplicated in a ALLOCATE statement"_err_en_US);
                        }
                        info.gotStat = true;
                      },
                      [&](const parser::MsgVariable &) {
                        if (info.gotMsg) { // C943
                          context.Say(
                              "ERRMSG may not be duplicated in a ALLOCATE statement"_err_en_US);
                        }
                        info.gotMsg = true;
                      },
                  },
                  statOrErr.u);
            },
            [&](const parser::AllocOpt::Source &source) {
              if (info.gotSource) { // C943
                context.Say(
                    "SOURCE may not be duplicated in a ALLOCATE statement"_err_en_US);
                stopCheckingAllocate = true;
              }
              if (info.gotMold || info.gotTypeSpec) { // C944
                context.Say(
                    "At most one of source-expr and type-spec may appear in a ALLOCATE statement"_err_en_US);
                stopCheckingAllocate = true;
              }
              parserSourceExpr = &source.v.value();
              info.gotSource = true;
            },
            [&](const parser::AllocOpt::Mold &mold) {
              if (info.gotMold) { // C943
                context.Say(
                    "MOLD may not be duplicated in a ALLOCATE statement"_err_en_US);
                stopCheckingAllocate = true;
              }
              if (info.gotSource || info.gotTypeSpec) { // C944
                context.Say(
                    "At most one of source-expr and type-spec may appear in a ALLOCATE statement"_err_en_US);
                stopCheckingAllocate = true;
              }
              parserSourceExpr = &mold.v.value();
              info.gotMold = true;
            },
        },
        allocOpt.u);
  }

  if (stopCheckingAllocate) {
    return std::nullopt;
  }

  if (info.gotSource || info.gotMold) {
    if (const auto *expr{GetExpr(DEREF(parserSourceExpr))}) {
      parser::CharBlock at{parserSourceExpr->source};
      info.sourceExprType = expr->GetType();
      if (!info.sourceExprType) {
        context.Say(at,
            "Typeless item not allowed as SOURCE or MOLD in ALLOCATE"_err_en_US);
        return std::nullopt;
      }
      info.sourceExprRank = expr->Rank();
      info.sourceExprLoc = parserSourceExpr->source;
      if (const DerivedTypeSpec *
          derived{evaluate::GetDerivedTypeSpec(info.sourceExprType)}) {
        // C949
        if (auto it{FindCoarrayUltimateComponent(*derived)}) {
          context
              .Say(at,
                  "SOURCE or MOLD expression must not have a type with a coarray ultimate component"_err_en_US)
              .Attach(it->name(),
                  "Type '%s' has coarray ultimate component '%s' declared here"_en_US,
                  info.sourceExprType.value().AsFortran(),
                  it.BuildResultDesignatorName());
        }
        if (info.gotSource) {
          // C948
          if (IsEventTypeOrLockType(derived)) {
            context.Say(at,
                "SOURCE expression type must not be EVENT_TYPE or LOCK_TYPE from ISO_FORTRAN_ENV"_err_en_US);
          } else if (auto it{FindEventOrLockPotentialComponent(*derived)}) {
            context
                .Say(at,
                    "SOURCE expression type must not have potential subobject "
                    "component"
                    " of type EVENT_TYPE or LOCK_TYPE from ISO_FORTRAN_ENV"_err_en_US)
                .Attach(it->name(),
                    "Type '%s' has potential ultimate component '%s' declared here"_en_US,
                    info.sourceExprType.value().AsFortran(),
                    it.BuildResultDesignatorName());
          }
        }
      }
      if (info.gotSource) { // C1594(6) - SOURCE= restrictions when pure
        const Scope &scope{context.FindScope(at)};
        if (FindPureProcedureContaining(scope)) {
          parser::ContextualMessages messages{at, &context.messages()};
          CheckCopyabilityInPureScope(messages, *expr, scope);
        }
      }
    } else {
      // Error already reported on source expression.
      // Do not continue allocate checks.
      return std::nullopt;
    }
  }

  return info;
}

// Beware, type compatibility is not symmetric, IsTypeCompatible checks that
// type1 is type compatible with type2. Note: type parameters are not considered
// in this test.
static bool IsTypeCompatible(
    const DeclTypeSpec &type1, const DerivedTypeSpec &derivedType2) {
  if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
    if (type1.category() == DeclTypeSpec::Category::TypeDerived) {
      return &derivedType1->typeSymbol() == &derivedType2.typeSymbol();
    } else if (type1.category() == DeclTypeSpec::Category::ClassDerived) {
      for (const DerivedTypeSpec *parent{&derivedType2}; parent;
           parent = parent->typeSymbol().GetParentTypeSpec()) {
        if (&derivedType1->typeSymbol() == &parent->typeSymbol()) {
          return true;
        }
      }
    }
  }
  return false;
}

static bool IsTypeCompatible(
    const DeclTypeSpec &type1, const DeclTypeSpec &type2) {
  if (type1.category() == DeclTypeSpec::Category::ClassStar) {
    // TypeStar does not make sense in allocate context because assumed type
    // cannot be allocatable (C709)
    return true;
  }
  if (const IntrinsicTypeSpec * intrinsicType2{type2.AsIntrinsic()}) {
    if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
      return intrinsicType1->category() == intrinsicType2->category();
    } else {
      return false;
    }
  } else if (const DerivedTypeSpec * derivedType2{type2.AsDerived()}) {
    return IsTypeCompatible(type1, *derivedType2);
  }
  return false;
}

static bool IsTypeCompatible(
    const DeclTypeSpec &type1, const evaluate::DynamicType &type2) {
  if (type1.category() == DeclTypeSpec::Category::ClassStar) {
    // TypeStar does not make sense in allocate context because assumed type
    // cannot be allocatable (C709)
    return true;
  }
  if (type2.category() != evaluate::TypeCategory::Derived) {
    if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
      return intrinsicType1->category() == type2.category();
    } else {
      return false;
    }
  } else if (!type2.IsUnlimitedPolymorphic()) {
    return IsTypeCompatible(type1, type2.GetDerivedTypeSpec());
  }
  return false;
}

// Note: Check assumes  type1 is compatible with type2. type2 may have more type
// parameters than type1 but if a type2 type parameter is assumed, then this
// check enforce that type1 has it. type1 can be unlimited polymorphic, but not
// type2.
static bool HaveSameAssumedTypeParameters(
    const DeclTypeSpec &type1, const DeclTypeSpec &type2) {
  if (type2.category() == DeclTypeSpec::Category::Character) {
    bool type2LengthIsAssumed{type2.characterTypeSpec().length().isAssumed()};
    if (type1.category() == DeclTypeSpec::Category::Character) {
      return type1.characterTypeSpec().length().isAssumed() ==
          type2LengthIsAssumed;
    }
    // It is possible to reach this if type1 is unlimited polymorphic
    return !type2LengthIsAssumed;
  } else if (const DerivedTypeSpec * derivedType2{type2.AsDerived()}) {
    int type2AssumedParametersCount{0};
    int type1AssumedParametersCount{0};
    for (const auto &pair : derivedType2->parameters()) {
      type2AssumedParametersCount += pair.second.isAssumed();
    }
    // type1 may be unlimited polymorphic
    if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
      for (auto it{derivedType1->parameters().begin()};
           it != derivedType1->parameters().end(); ++it) {
        if (it->second.isAssumed()) {
          ++type1AssumedParametersCount;
          const ParamValue *param{derivedType2->FindParameter(it->first)};
          if (!param || !param->isAssumed()) {
            // type1 has an assumed parameter that is not a type parameter of
            // type2 or not assumed in type2.
            return false;
          }
        }
      }
    }
    // Will return false if type2 has type parameters that are not assumed in
    // type1 or do not exist in type1
    return type1AssumedParametersCount == type2AssumedParametersCount;
  }
  return true; // other intrinsic types have no length type parameters
}

static std::optional<std::int64_t> GetTypeParameterInt64Value(
    const Symbol &parameterSymbol, const DerivedTypeSpec &derivedType) {
  if (const ParamValue *
      paramValue{derivedType.FindParameter(parameterSymbol.name())}) {
    return evaluate::ToInt64(paramValue->GetExplicit());
  } else {
    return std::nullopt;
  }
}

// HaveCompatibleKindParameters functions assume type1 is type compatible with
// type2 (except for kind type parameters)
static bool HaveCompatibleKindParameters(
    const DerivedTypeSpec &derivedType1, const DerivedTypeSpec &derivedType2) {
  for (const Symbol &symbol :
      OrderParameterDeclarations(derivedType1.typeSymbol())) {
    if (symbol.get<TypeParamDetails>().attr() == common::TypeParamAttr::Kind) {
      // At this point, it should have been ensured that these contain integer
      // constants, so die if this is not the case.
      if (GetTypeParameterInt64Value(symbol, derivedType1).value() !=
          GetTypeParameterInt64Value(symbol, derivedType2).value()) {
        return false;
      }
    }
  }
  return true;
}

static bool HaveCompatibleKindParameters(
    const DeclTypeSpec &type1, const evaluate::DynamicType &type2) {
  if (type1.category() == DeclTypeSpec::Category::ClassStar) {
    return true;
  }
  if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
    return evaluate::ToInt64(intrinsicType1->kind()).value() == type2.kind();
  } else if (type2.IsUnlimitedPolymorphic()) {
    return false;
  } else if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
    return HaveCompatibleKindParameters(
        *derivedType1, type2.GetDerivedTypeSpec());
  } else {
    common::die("unexpected type1 category");
  }
}

static bool HaveCompatibleKindParameters(
    const DeclTypeSpec &type1, const DeclTypeSpec &type2) {
  if (type1.category() == DeclTypeSpec::Category::ClassStar) {
    return true;
  }
  if (const IntrinsicTypeSpec * intrinsicType1{type1.AsIntrinsic()}) {
    return intrinsicType1->kind() == DEREF(type2.AsIntrinsic()).kind();
  } else if (const DerivedTypeSpec * derivedType1{type1.AsDerived()}) {
    return HaveCompatibleKindParameters(
        *derivedType1, DEREF(type2.AsDerived()));
  } else {
    common::die("unexpected type1 category");
  }
}

bool AllocationCheckerHelper::RunChecks(SemanticsContext &context) {
  if (!symbol_) {
    CHECK(context.AnyFatalError());
    return false;
  }
  if (!IsVariableName(*symbol_)) { // C932 pre-requisite
    context.Say(name_.source,
        "Name in ALLOCATE statement must be a variable name"_err_en_US);
    return false;
  }
  if (!type_) {
    // This is done after variable check because a user could have put
    // a subroutine name in allocate for instance which is a symbol with
    // no type.
    CHECK(context.AnyFatalError());
    return false;
  }
  GatherAllocationBasicInfo();
  if (!IsAllocatableOrPointer(*symbol_)) { // C932
    context.Say(name_.source,
        "Entity in ALLOCATE statement must have the ALLOCATABLE or POINTER attribute"_err_en_US);
    return false;
  }
  bool gotSourceExprOrTypeSpec{allocateInfo_.gotMold ||
      allocateInfo_.gotTypeSpec || allocateInfo_.gotSource};
  if (hasDeferredTypeParameter_ && !gotSourceExprOrTypeSpec) {
    // C933
    context.Say(name_.source,
        "Either type-spec or source-expr must appear in ALLOCATE when allocatable object has a deferred type parameters"_err_en_US);
    return false;
  }
  if (isUnlimitedPolymorphic_ && !gotSourceExprOrTypeSpec) {
    // C933
    context.Say(name_.source,
        "Either type-spec or source-expr must appear in ALLOCATE when allocatable object is unlimited polymorphic"_err_en_US);
    return false;
  }
  if (isAbstract_ && !gotSourceExprOrTypeSpec) {
    // C933
    context.Say(name_.source,
        "Either type-spec or source-expr must appear in ALLOCATE when allocatable object is of abstract type"_err_en_US);
    return false;
  }
  if (allocateInfo_.gotTypeSpec) {
    if (!IsTypeCompatible(*type_, *allocateInfo_.typeSpec)) {
      // C934
      context.Say(name_.source,
          "Allocatable object in ALLOCATE must be type compatible with type-spec"_err_en_US);
      return false;
    }
    if (!HaveCompatibleKindParameters(*type_, *allocateInfo_.typeSpec)) {
      context.Say(name_.source,
          // C936
          "Kind type parameters of allocatable object in ALLOCATE must be the same as the corresponding ones in type-spec"_err_en_US);
      return false;
    }
    if (!HaveSameAssumedTypeParameters(*type_, *allocateInfo_.typeSpec)) {
      // C935
      context.Say(name_.source,
          "Type parameters in type-spec must be assumed if and only if they are assumed for allocatable object in ALLOCATE"_err_en_US);
      return false;
    }
  } else if (allocateInfo_.gotSource || allocateInfo_.gotMold) {
    if (!IsTypeCompatible(*type_, allocateInfo_.sourceExprType.value())) {
      // first part of C945
      context.Say(name_.source,
          "Allocatable object in ALLOCATE must be type compatible with source expression from MOLD or SOURCE"_err_en_US);
      return false;
    }
    if (!HaveCompatibleKindParameters(
            *type_, allocateInfo_.sourceExprType.value())) {
      // C946
      context.Say(name_.source,
          "Kind type parameters of allocatable object must be the same as the corresponding ones of SOURCE or MOLD expression"_err_en_US);
      return false;
    }
  }
  // Shape related checks
  if (rank_ > 0) {
    if (!hasAllocateShapeSpecList()) {
      // C939
      if (!(allocateInfo_.gotSource || allocateInfo_.gotMold)) {
        context.Say(name_.source,
            "Arrays in ALLOCATE must have a shape specification or an expression of the same rank must appear in SOURCE or MOLD"_err_en_US);
        return false;
      } else {
        if (allocateInfo_.sourceExprRank != rank_) {
          context
              .Say(name_.source,
                  "Arrays in ALLOCATE must have a shape specification or an expression of the same rank must appear in SOURCE or MOLD"_err_en_US)
              .Attach(allocateInfo_.sourceExprLoc.value(),
                  "Expression in %s has rank %d but allocatable object has rank %d"_en_US,
                  allocateInfo_.gotSource ? "SOURCE" : "MOLD",
                  allocateInfo_.sourceExprRank, rank_);
          return false;
        }
      }
    } else {
      // first part of C942
      if (allocateShapeSpecRank_ != rank_) {
        context
            .Say(name_.source,
                "The number of shape specifications, when they appear, must match the rank of allocatable object"_err_en_US)
            .Attach(symbol_->name(), "Declared here with rank %d"_en_US, rank_);
        return false;
      }
    }
  } else {
    // C940
    if (hasAllocateShapeSpecList()) {
      context.Say(name_.source,
          "Shape specifications must not appear when allocatable object is scalar"_err_en_US);
      return false;
    }
  }
  // second and last part of C945
  if (allocateInfo_.gotSource && allocateInfo_.sourceExprRank &&
      allocateInfo_.sourceExprRank != rank_) {
    context
        .Say(name_.source,
            "If SOURCE appears, the related expression must be scalar or have the same rank as each allocatable object in ALLOCATE"_err_en_US)
        .Attach(allocateInfo_.sourceExprLoc.value(),
            "SOURCE expression has rank %d"_en_US, allocateInfo_.sourceExprRank)
        .Attach(symbol_->name(),
            "Allocatable object declared here with rank %d"_en_US, rank_);
    return false;
  }
  context.CheckIndexVarRedefine(name_);
  return RunCoarrayRelatedChecks(context);
}

bool AllocationCheckerHelper::RunCoarrayRelatedChecks(
    SemanticsContext &context) const {
  if (!symbol_) {
    CHECK(context.AnyFatalError());
    return false;
  }
  if (IsCoarray(*symbol_)) {
    if (allocateInfo_.gotTypeSpec) {
      // C938
      if (const DerivedTypeSpec *
          derived{allocateInfo_.typeSpec->AsDerived()}) {
        if (IsTeamType(derived)) {
          context
              .Say(allocateInfo_.typeSpecLoc.value(),
                  "Type-Spec in ALLOCATE must not be TEAM_TYPE from ISO_FORTRAN_ENV when an allocatable object is a coarray"_err_en_US)
              .Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
          return false;
        } else if (IsIsoCType(derived)) {
          context
              .Say(allocateInfo_.typeSpecLoc.value(),
                  "Type-Spec in ALLOCATE must not be C_PTR or C_FUNPTR from ISO_C_BINDING when an allocatable object is a coarray"_err_en_US)
              .Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
          return false;
        }
      }
    } else if (allocateInfo_.gotSource || allocateInfo_.gotMold) {
      // C948
      const evaluate::DynamicType &sourceType{
          allocateInfo_.sourceExprType.value()};
      if (const auto *derived{evaluate::GetDerivedTypeSpec(sourceType)}) {
        if (IsTeamType(derived)) {
          context
              .Say(allocateInfo_.sourceExprLoc.value(),
                  "SOURCE or MOLD expression type must not be TEAM_TYPE from ISO_FORTRAN_ENV when an allocatable object is a coarray"_err_en_US)
              .Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
          return false;
        } else if (IsIsoCType(derived)) {
          context
              .Say(allocateInfo_.sourceExprLoc.value(),
                  "SOURCE or MOLD expression type must not be C_PTR or C_FUNPTR from ISO_C_BINDING when an allocatable object is a coarray"_err_en_US)
              .Attach(name_.source, "'%s' is a coarray"_en_US, name_.source);
          return false;
        }
      }
    }
    if (!hasAllocateCoarraySpec()) {
      // C941
      context.Say(name_.source,
          "Coarray specification must appear in ALLOCATE when allocatable object is a coarray"_err_en_US);
      return false;
    } else {
      if (allocateCoarraySpecRank_ != corank_) {
        // Second and last part of C942
        context
            .Say(name_.source,
                "Corank of coarray specification in ALLOCATE must match corank of alloctable coarray"_err_en_US)
            .Attach(
                symbol_->name(), "Declared here with corank %d"_en_US, corank_);
        return false;
      }
    }
  } else { // Not a coarray
    if (hasAllocateCoarraySpec()) {
      // C941
      context.Say(name_.source,
          "Coarray specification must not appear in ALLOCATE when allocatable object is not a coarray"_err_en_US);
      return false;
    }
  }
  if (const parser::CoindexedNamedObject *
      coindexedObject{parser::GetCoindexedNamedObject(allocateObject_)}) {
    // C950
    context.Say(parser::FindSourceLocation(*coindexedObject),
        "Allocatable object must not be coindexed in ALLOCATE"_err_en_US);
    return false;
  }
  return true;
}

void AllocateChecker::Leave(const parser::AllocateStmt &allocateStmt) {
  if (auto info{CheckAllocateOptions(allocateStmt, context_)}) {
    for (const parser::Allocation &allocation :
        std::get<std::list<parser::Allocation>>(allocateStmt.t)) {
      AllocationCheckerHelper{allocation, *info}.RunChecks(context_);
    }
  }
}
} // namespace Fortran::semantics