RegionStore.cpp 97.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a basic region store model. In this model, we do have field
// sensitivity. But we assume nothing about the heap shape. So recursive data
// structures are largely ignored. Basically we do 1-limiting analysis.
// Parameter pointers are assumed with no aliasing. Pointee objects of
// parameters are created lazily.
//
//===----------------------------------------------------------------------===//

#include "clang/AST/Attr.h"
#include "clang/AST/CharUnits.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Basic/JsonSupport.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/raw_ostream.h"
#include <utility>

using namespace clang;
using namespace ento;

//===----------------------------------------------------------------------===//
// Representation of binding keys.
//===----------------------------------------------------------------------===//

namespace {
class BindingKey {
public:
  enum Kind { Default = 0x0, Direct = 0x1 };
private:
  enum { Symbolic = 0x2 };

  llvm::PointerIntPair<const MemRegion *, 2> P;
  uint64_t Data;

  /// Create a key for a binding to region \p r, which has a symbolic offset
  /// from region \p Base.
  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
    assert(r && Base && "Must have known regions.");
    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
  }

  /// Create a key for a binding at \p offset from base region \p r.
  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
    : P(r, k), Data(offset) {
    assert(r && "Must have known regions.");
    assert(getOffset() == offset && "Failed to store offset");
    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r) ||
            isa <CXXDerivedObjectRegion>(r)) &&
           "Not a base");
  }
public:

  bool isDirect() const { return P.getInt() & Direct; }
  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }

  const MemRegion *getRegion() const { return P.getPointer(); }
  uint64_t getOffset() const {
    assert(!hasSymbolicOffset());
    return Data;
  }

  const SubRegion *getConcreteOffsetRegion() const {
    assert(hasSymbolicOffset());
    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
  }

  const MemRegion *getBaseRegion() const {
    if (hasSymbolicOffset())
      return getConcreteOffsetRegion()->getBaseRegion();
    return getRegion()->getBaseRegion();
  }

  void Profile(llvm::FoldingSetNodeID& ID) const {
    ID.AddPointer(P.getOpaqueValue());
    ID.AddInteger(Data);
  }

  static BindingKey Make(const MemRegion *R, Kind k);

  bool operator<(const BindingKey &X) const {
    if (P.getOpaqueValue() < X.P.getOpaqueValue())
      return true;
    if (P.getOpaqueValue() > X.P.getOpaqueValue())
      return false;
    return Data < X.Data;
  }

  bool operator==(const BindingKey &X) const {
    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
           Data == X.Data;
  }

  LLVM_DUMP_METHOD void dump() const;
};
} // end anonymous namespace

BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
  const RegionOffset &RO = R->getAsOffset();
  if (RO.hasSymbolicOffset())
    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);

  return BindingKey(RO.getRegion(), RO.getOffset(), k);
}

namespace llvm {
static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
      << "\", \"offset\": ";

  if (!K.hasSymbolicOffset())
    Out << K.getOffset();
  else
    Out << "null";

  return Out;
}

} // namespace llvm

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void BindingKey::dump() const { llvm::errs() << *this; }
#endif

//===----------------------------------------------------------------------===//
// Actual Store type.
//===----------------------------------------------------------------------===//

typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
typedef std::pair<BindingKey, SVal> BindingPair;

typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
        RegionBindings;

namespace {
class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
                                 ClusterBindings> {
  ClusterBindings::Factory *CBFactory;

  // This flag indicates whether the current bindings are within the analysis
  // that has started from main(). It affects how we perform loads from
  // global variables that have initializers: if we have observed the
  // program execution from the start and we know that these variables
  // have not been overwritten yet, we can be sure that their initializers
  // are still relevant. This flag never gets changed when the bindings are
  // updated, so it could potentially be moved into RegionStoreManager
  // (as if it's the same bindings but a different loading procedure)
  // however that would have made the manager needlessly stateful.
  bool IsMainAnalysis;

public:
  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
          ParentTy;

  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
                    const RegionBindings::TreeTy *T,
                    RegionBindings::TreeTy::Factory *F,
                    bool IsMainAnalysis)
      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}

  RegionBindingsRef(const ParentTy &P,
                    ClusterBindings::Factory &CBFactory,
                    bool IsMainAnalysis)
      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}

  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
    return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
                             *CBFactory, IsMainAnalysis);
  }

  RegionBindingsRef remove(key_type_ref K) const {
    return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
                             *CBFactory, IsMainAnalysis);
  }

  RegionBindingsRef addBinding(BindingKey K, SVal V) const;

  RegionBindingsRef addBinding(const MemRegion *R,
                               BindingKey::Kind k, SVal V) const;

  const SVal *lookup(BindingKey K) const;
  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;

  RegionBindingsRef removeBinding(BindingKey K);

  RegionBindingsRef removeBinding(const MemRegion *R,
                                  BindingKey::Kind k);

  RegionBindingsRef removeBinding(const MemRegion *R) {
    return removeBinding(R, BindingKey::Direct).
           removeBinding(R, BindingKey::Default);
  }

  Optional<SVal> getDirectBinding(const MemRegion *R) const;

  /// getDefaultBinding - Returns an SVal* representing an optional default
  ///  binding associated with a region and its subregions.
  Optional<SVal> getDefaultBinding(const MemRegion *R) const;

  /// Return the internal tree as a Store.
  Store asStore() const {
    llvm::PointerIntPair<Store, 1, bool> Ptr = {
        asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
    return reinterpret_cast<Store>(Ptr.getOpaqueValue());
  }

  bool isMainAnalysis() const {
    return IsMainAnalysis;
  }

  void printJson(raw_ostream &Out, const char *NL = "\n",
                 unsigned int Space = 0, bool IsDot = false) const {
    for (iterator I = begin(); I != end(); ++I) {
      // TODO: We might need a .printJson for I.getKey() as well.
      Indent(Out, Space, IsDot)
          << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
          << (const void *)I.getKey() << "\", \"items\": [" << NL;

      ++Space;
      const ClusterBindings &CB = I.getData();
      for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
        Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
        CI.getData().printJson(Out, /*AddQuotes=*/true);
        Out << " }";
        if (std::next(CI) != CB.end())
          Out << ',';
        Out << NL;
      }

      --Space;
      Indent(Out, Space, IsDot) << "]}";
      if (std::next(I) != end())
        Out << ',';
      Out << NL;
    }
  }

  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
};
} // end anonymous namespace

typedef const RegionBindingsRef& RegionBindingsConstRef;

Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
}

Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
  return Optional<SVal>::create(lookup(R, BindingKey::Default));
}

RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
  const MemRegion *Base = K.getBaseRegion();

  const ClusterBindings *ExistingCluster = lookup(Base);
  ClusterBindings Cluster =
      (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());

  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
  return add(Base, NewCluster);
}


RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
                                                BindingKey::Kind k,
                                                SVal V) const {
  return addBinding(BindingKey::Make(R, k), V);
}

const SVal *RegionBindingsRef::lookup(BindingKey K) const {
  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
  if (!Cluster)
    return nullptr;
  return Cluster->lookup(K);
}

const SVal *RegionBindingsRef::lookup(const MemRegion *R,
                                      BindingKey::Kind k) const {
  return lookup(BindingKey::Make(R, k));
}

RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
  const MemRegion *Base = K.getBaseRegion();
  const ClusterBindings *Cluster = lookup(Base);
  if (!Cluster)
    return *this;

  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
  if (NewCluster.isEmpty())
    return remove(Base);
  return add(Base, NewCluster);
}

RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
                                                BindingKey::Kind k){
  return removeBinding(BindingKey::Make(R, k));
}

//===----------------------------------------------------------------------===//
// Fine-grained control of RegionStoreManager.
//===----------------------------------------------------------------------===//

namespace {
struct minimal_features_tag {};
struct maximal_features_tag {};

class RegionStoreFeatures {
  bool SupportsFields;
public:
  RegionStoreFeatures(minimal_features_tag) :
    SupportsFields(false) {}

  RegionStoreFeatures(maximal_features_tag) :
    SupportsFields(true) {}

  void enableFields(bool t) { SupportsFields = t; }

  bool supportsFields() const { return SupportsFields; }
};
}

//===----------------------------------------------------------------------===//
// Main RegionStore logic.
//===----------------------------------------------------------------------===//

namespace {
class InvalidateRegionsWorker;

class RegionStoreManager : public StoreManager {
public:
  const RegionStoreFeatures Features;

  RegionBindings::Factory RBFactory;
  mutable ClusterBindings::Factory CBFactory;

  typedef std::vector<SVal> SValListTy;
private:
  typedef llvm::DenseMap<const LazyCompoundValData *,
                         SValListTy> LazyBindingsMapTy;
  LazyBindingsMapTy LazyBindingsMap;

  /// The largest number of fields a struct can have and still be
  /// considered "small".
  ///
  /// This is currently used to decide whether or not it is worth "forcing" a
  /// LazyCompoundVal on bind.
  ///
  /// This is controlled by 'region-store-small-struct-limit' option.
  /// To disable all small-struct-dependent behavior, set the option to "0".
  unsigned SmallStructLimit;

  /// A helper used to populate the work list with the given set of
  /// regions.
  void populateWorkList(InvalidateRegionsWorker &W,
                        ArrayRef<SVal> Values,
                        InvalidatedRegions *TopLevelRegions);

public:
  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
    : StoreManager(mgr), Features(f),
      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
      SmallStructLimit(0) {
    ExprEngine &Eng = StateMgr.getOwningEngine();
    AnalyzerOptions &Options = Eng.getAnalysisManager().options;
    SmallStructLimit = Options.RegionStoreSmallStructLimit;
  }


  /// setImplicitDefaultValue - Set the default binding for the provided
  ///  MemRegion to the value implicitly defined for compound literals when
  ///  the value is not specified.
  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
                                            const MemRegion *R, QualType T);

  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
  ///  type.  'Array' represents the lvalue of the array being decayed
  ///  to a pointer, and the returned SVal represents the decayed
  ///  version of that lvalue (i.e., a pointer to the first element of
  ///  the array).  This is called by ExprEngine when evaluating
  ///  casts from arrays to pointers.
  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;

  /// Creates the Store that correctly represents memory contents before
  /// the beginning of the analysis of the given top-level stack frame.
  StoreRef getInitialStore(const LocationContext *InitLoc) override {
    bool IsMainAnalysis = false;
    if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
      IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
    return StoreRef(RegionBindingsRef(
        RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
        CBFactory, IsMainAnalysis).asStore(), *this);
  }

  //===-------------------------------------------------------------------===//
  // Binding values to regions.
  //===-------------------------------------------------------------------===//
  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
                                           const Expr *Ex,
                                           unsigned Count,
                                           const LocationContext *LCtx,
                                           RegionBindingsRef B,
                                           InvalidatedRegions *Invalidated);

  StoreRef invalidateRegions(Store store,
                             ArrayRef<SVal> Values,
                             const Expr *E, unsigned Count,
                             const LocationContext *LCtx,
                             const CallEvent *Call,
                             InvalidatedSymbols &IS,
                             RegionAndSymbolInvalidationTraits &ITraits,
                             InvalidatedRegions *Invalidated,
                             InvalidatedRegions *InvalidatedTopLevel) override;

  bool scanReachableSymbols(Store S, const MemRegion *R,
                            ScanReachableSymbols &Callbacks) override;

  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
                                            const SubRegion *R);

public: // Part of public interface to class.

  StoreRef Bind(Store store, Loc LV, SVal V) override {
    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
  }

  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);

  // BindDefaultInitial is only used to initialize a region with
  // a default value.
  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
                              SVal V) override {
    RegionBindingsRef B = getRegionBindings(store);
    // Use other APIs when you have to wipe the region that was initialized
    // earlier.
    assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
           "Double initialization!");
    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
  }

  // BindDefaultZero is used for zeroing constructors that may accidentally
  // overwrite existing bindings.
  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
    // FIXME: The offsets of empty bases can be tricky because of
    // of the so called "empty base class optimization".
    // If a base class has been optimized out
    // we should not try to create a binding, otherwise we should.
    // Unfortunately, at the moment ASTRecordLayout doesn't expose
    // the actual sizes of the empty bases
    // and trying to infer them from offsets/alignments
    // seems to be error-prone and non-trivial because of the trailing padding.
    // As a temporary mitigation we don't create bindings for empty bases.
    if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
      if (BR->getDecl()->isEmpty())
        return StoreRef(store, *this);

    RegionBindingsRef B = getRegionBindings(store);
    SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
    B = removeSubRegionBindings(B, cast<SubRegion>(R));
    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
  }

  /// Attempt to extract the fields of \p LCV and bind them to the struct region
  /// \p R.
  ///
  /// This path is used when it seems advantageous to "force" loading the values
  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
  /// than using a Default binding at the base of the entire region. This is a
  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
  ///
  /// \returns The updated store bindings, or \c None if binding non-lazily
  ///          would be too expensive.
  Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
                                                 const TypedValueRegion *R,
                                                 const RecordDecl *RD,
                                                 nonloc::LazyCompoundVal LCV);

  /// BindStruct - Bind a compound value to a structure.
  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
                               const TypedValueRegion* R, SVal V);

  /// BindVector - Bind a compound value to a vector.
  RegionBindingsRef bindVector(RegionBindingsConstRef B,
                               const TypedValueRegion* R, SVal V);

  RegionBindingsRef bindArray(RegionBindingsConstRef B,
                              const TypedValueRegion* R,
                              SVal V);

  /// Clears out all bindings in the given region and assigns a new value
  /// as a Default binding.
  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
                                  const TypedRegion *R,
                                  SVal DefaultVal);

  /// Create a new store with the specified binding removed.
  /// \param ST the original store, that is the basis for the new store.
  /// \param L the location whose binding should be removed.
  StoreRef killBinding(Store ST, Loc L) override;

  void incrementReferenceCount(Store store) override {
    getRegionBindings(store).manualRetain();
  }

  /// If the StoreManager supports it, decrement the reference count of
  /// the specified Store object.  If the reference count hits 0, the memory
  /// associated with the object is recycled.
  void decrementReferenceCount(Store store) override {
    getRegionBindings(store).manualRelease();
  }

  bool includedInBindings(Store store, const MemRegion *region) const override;

  /// Return the value bound to specified location in a given state.
  ///
  /// The high level logic for this method is this:
  /// getBinding (L)
  ///   if L has binding
  ///     return L's binding
  ///   else if L is in killset
  ///     return unknown
  ///   else
  ///     if L is on stack or heap
  ///       return undefined
  ///     else
  ///       return symbolic
  SVal getBinding(Store S, Loc L, QualType T) override {
    return getBinding(getRegionBindings(S), L, T);
  }

  Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
    RegionBindingsRef B = getRegionBindings(S);
    // Default bindings are always applied over a base region so look up the
    // base region's default binding, otherwise the lookup will fail when R
    // is at an offset from R->getBaseRegion().
    return B.getDefaultBinding(R->getBaseRegion());
  }

  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());

  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);

  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);

  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);

  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);

  SVal getBindingForLazySymbol(const TypedValueRegion *R);

  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
                                         const TypedValueRegion *R,
                                         QualType Ty);

  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
                      RegionBindingsRef LazyBinding);

  /// Get bindings for the values in a struct and return a CompoundVal, used
  /// when doing struct copy:
  /// struct s x, y;
  /// x = y;
  /// y's value is retrieved by this method.
  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);

  /// Used to lazily generate derived symbols for bindings that are defined
  /// implicitly by default bindings in a super region.
  ///
  /// Note that callers may need to specially handle LazyCompoundVals, which
  /// are returned as is in case the caller needs to treat them differently.
  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
                                                  const MemRegion *superR,
                                                  const TypedValueRegion *R,
                                                  QualType Ty);

  /// Get the state and region whose binding this region \p R corresponds to.
  ///
  /// If there is no lazy binding for \p R, the returned value will have a null
  /// \c second. Note that a null pointer can represents a valid Store.
  std::pair<Store, const SubRegion *>
  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
                  const SubRegion *originalRegion);

  /// Returns the cached set of interesting SVals contained within a lazy
  /// binding.
  ///
  /// The precise value of "interesting" is determined for the purposes of
  /// RegionStore's internal analysis. It must always contain all regions and
  /// symbols, but may omit constants and other kinds of SVal.
  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);

  //===------------------------------------------------------------------===//
  // State pruning.
  //===------------------------------------------------------------------===//

  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
  ///  It returns a new Store with these values removed.
  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
                              SymbolReaper& SymReaper) override;

  //===------------------------------------------------------------------===//
  // Utility methods.
  //===------------------------------------------------------------------===//

  RegionBindingsRef getRegionBindings(Store store) const {
    llvm::PointerIntPair<Store, 1, bool> Ptr;
    Ptr.setFromOpaqueValue(const_cast<void *>(store));
    return RegionBindingsRef(
        CBFactory,
        static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
        RBFactory.getTreeFactory(),
        Ptr.getInt());
  }

  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
                 unsigned int Space = 0, bool IsDot = false) const override;

  void iterBindings(Store store, BindingsHandler& f) override {
    RegionBindingsRef B = getRegionBindings(store);
    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
      const ClusterBindings &Cluster = I.getData();
      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
           CI != CE; ++CI) {
        const BindingKey &K = CI.getKey();
        if (!K.isDirect())
          continue;
        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
          // FIXME: Possibly incorporate the offset?
          if (!f.HandleBinding(*this, store, R, CI.getData()))
            return;
        }
      }
    }
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// RegionStore creation.
//===----------------------------------------------------------------------===//

std::unique_ptr<StoreManager>
ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
  RegionStoreFeatures F = maximal_features_tag();
  return std::make_unique<RegionStoreManager>(StMgr, F);
}

std::unique_ptr<StoreManager>
ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
  RegionStoreFeatures F = minimal_features_tag();
  F.enableFields(true);
  return std::make_unique<RegionStoreManager>(StMgr, F);
}


//===----------------------------------------------------------------------===//
// Region Cluster analysis.
//===----------------------------------------------------------------------===//

namespace {
/// Used to determine which global regions are automatically included in the
/// initial worklist of a ClusterAnalysis.
enum GlobalsFilterKind {
  /// Don't include any global regions.
  GFK_None,
  /// Only include system globals.
  GFK_SystemOnly,
  /// Include all global regions.
  GFK_All
};

template <typename DERIVED>
class ClusterAnalysis  {
protected:
  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
  typedef const MemRegion * WorkListElement;
  typedef SmallVector<WorkListElement, 10> WorkList;

  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;

  WorkList WL;

  RegionStoreManager &RM;
  ASTContext &Ctx;
  SValBuilder &svalBuilder;

  RegionBindingsRef B;


protected:
  const ClusterBindings *getCluster(const MemRegion *R) {
    return B.lookup(R);
  }

  /// Returns true if all clusters in the given memspace should be initially
  /// included in the cluster analysis. Subclasses may provide their
  /// own implementation.
  bool includeEntireMemorySpace(const MemRegion *Base) {
    return false;
  }

public:
  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
                  RegionBindingsRef b)
      : RM(rm), Ctx(StateMgr.getContext()),
        svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}

  RegionBindingsRef getRegionBindings() const { return B; }

  bool isVisited(const MemRegion *R) {
    return Visited.count(getCluster(R));
  }

  void GenerateClusters() {
    // Scan the entire set of bindings and record the region clusters.
    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
         RI != RE; ++RI){
      const MemRegion *Base = RI.getKey();

      const ClusterBindings &Cluster = RI.getData();
      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);

      // If the base's memspace should be entirely invalidated, add the cluster
      // to the workspace up front.
      if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
        AddToWorkList(WorkListElement(Base), &Cluster);
    }
  }

  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
    if (C && !Visited.insert(C).second)
      return false;
    WL.push_back(E);
    return true;
  }

  bool AddToWorkList(const MemRegion *R) {
    return static_cast<DERIVED*>(this)->AddToWorkList(R);
  }

  void RunWorkList() {
    while (!WL.empty()) {
      WorkListElement E = WL.pop_back_val();
      const MemRegion *BaseR = E;

      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
    }
  }

  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}

  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
                    bool Flag) {
    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
  }
};
}

//===----------------------------------------------------------------------===//
// Binding invalidation.
//===----------------------------------------------------------------------===//

bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
                                              ScanReachableSymbols &Callbacks) {
  assert(R == R->getBaseRegion() && "Should only be called for base regions");
  RegionBindingsRef B = getRegionBindings(S);
  const ClusterBindings *Cluster = B.lookup(R);

  if (!Cluster)
    return true;

  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
       RI != RE; ++RI) {
    if (!Callbacks.scan(RI.getData()))
      return false;
  }

  return true;
}

static inline bool isUnionField(const FieldRegion *FR) {
  return FR->getDecl()->getParent()->isUnion();
}

typedef SmallVector<const FieldDecl *, 8> FieldVector;

static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");

  const MemRegion *Base = K.getConcreteOffsetRegion();
  const MemRegion *R = K.getRegion();

  while (R != Base) {
    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
      if (!isUnionField(FR))
        Fields.push_back(FR->getDecl());

    R = cast<SubRegion>(R)->getSuperRegion();
  }
}

static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");

  if (Fields.empty())
    return true;

  FieldVector FieldsInBindingKey;
  getSymbolicOffsetFields(K, FieldsInBindingKey);

  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
  if (Delta >= 0)
    return std::equal(FieldsInBindingKey.begin() + Delta,
                      FieldsInBindingKey.end(),
                      Fields.begin());
  else
    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
                      Fields.begin() - Delta);
}

/// Collects all bindings in \p Cluster that may refer to bindings within
/// \p Top.
///
/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
/// \c second is the value (an SVal).
///
/// The \p IncludeAllDefaultBindings parameter specifies whether to include
/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
/// an aggregate within a larger aggregate with a default binding.
static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
                         SValBuilder &SVB, const ClusterBindings &Cluster,
                         const SubRegion *Top, BindingKey TopKey,
                         bool IncludeAllDefaultBindings) {
  FieldVector FieldsInSymbolicSubregions;
  if (TopKey.hasSymbolicOffset()) {
    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
    Top = TopKey.getConcreteOffsetRegion();
    TopKey = BindingKey::Make(Top, BindingKey::Default);
  }

  // Find the length (in bits) of the region being invalidated.
  uint64_t Length = UINT64_MAX;
  SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
  if (Optional<nonloc::ConcreteInt> ExtentCI =
          Extent.getAs<nonloc::ConcreteInt>()) {
    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
    // Extents are in bytes but region offsets are in bits. Be careful!
    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
    if (FR->getDecl()->isBitField())
      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
  }

  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
       I != E; ++I) {
    BindingKey NextKey = I.getKey();
    if (NextKey.getRegion() == TopKey.getRegion()) {
      // FIXME: This doesn't catch the case where we're really invalidating a
      // region with a symbolic offset. Example:
      //      R: points[i].y
      //   Next: points[0].x

      if (NextKey.getOffset() > TopKey.getOffset() &&
          NextKey.getOffset() - TopKey.getOffset() < Length) {
        // Case 1: The next binding is inside the region we're invalidating.
        // Include it.
        Bindings.push_back(*I);

      } else if (NextKey.getOffset() == TopKey.getOffset()) {
        // Case 2: The next binding is at the same offset as the region we're
        // invalidating. In this case, we need to leave default bindings alone,
        // since they may be providing a default value for a regions beyond what
        // we're invalidating.
        // FIXME: This is probably incorrect; consider invalidating an outer
        // struct whose first field is bound to a LazyCompoundVal.
        if (IncludeAllDefaultBindings || NextKey.isDirect())
          Bindings.push_back(*I);
      }

    } else if (NextKey.hasSymbolicOffset()) {
      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
      if (Top->isSubRegionOf(Base) && Top != Base) {
        // Case 3: The next key is symbolic and we just changed something within
        // its concrete region. We don't know if the binding is still valid, so
        // we'll be conservative and include it.
        if (IncludeAllDefaultBindings || NextKey.isDirect())
          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
            Bindings.push_back(*I);
      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
        // Case 4: The next key is symbolic, but we changed a known
        // super-region. In this case the binding is certainly included.
        if (BaseSR->isSubRegionOf(Top))
          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
            Bindings.push_back(*I);
      }
    }
  }
}

static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
                         SValBuilder &SVB, const ClusterBindings &Cluster,
                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
                           BindingKey::Make(Top, BindingKey::Default),
                           IncludeAllDefaultBindings);
}

RegionBindingsRef
RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
                                            const SubRegion *Top) {
  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
  const MemRegion *ClusterHead = TopKey.getBaseRegion();

  if (Top == ClusterHead) {
    // We can remove an entire cluster's bindings all in one go.
    return B.remove(Top);
  }

  const ClusterBindings *Cluster = B.lookup(ClusterHead);
  if (!Cluster) {
    // If we're invalidating a region with a symbolic offset, we need to make
    // sure we don't treat the base region as uninitialized anymore.
    if (TopKey.hasSymbolicOffset()) {
      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
    }
    return B;
  }

  SmallVector<BindingPair, 32> Bindings;
  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
                           /*IncludeAllDefaultBindings=*/false);

  ClusterBindingsRef Result(*Cluster, CBFactory);
  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
                                                    E = Bindings.end();
       I != E; ++I)
    Result = Result.remove(I->first);

  // If we're invalidating a region with a symbolic offset, we need to make sure
  // we don't treat the base region as uninitialized anymore.
  // FIXME: This isn't very precise; see the example in
  // collectSubRegionBindings.
  if (TopKey.hasSymbolicOffset()) {
    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
                        UnknownVal());
  }

  if (Result.isEmpty())
    return B.remove(ClusterHead);
  return B.add(ClusterHead, Result.asImmutableMap());
}

namespace {
class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
{
  const Expr *Ex;
  unsigned Count;
  const LocationContext *LCtx;
  InvalidatedSymbols &IS;
  RegionAndSymbolInvalidationTraits &ITraits;
  StoreManager::InvalidatedRegions *Regions;
  GlobalsFilterKind GlobalsFilter;
public:
  InvalidateRegionsWorker(RegionStoreManager &rm,
                          ProgramStateManager &stateMgr,
                          RegionBindingsRef b,
                          const Expr *ex, unsigned count,
                          const LocationContext *lctx,
                          InvalidatedSymbols &is,
                          RegionAndSymbolInvalidationTraits &ITraitsIn,
                          StoreManager::InvalidatedRegions *r,
                          GlobalsFilterKind GFK)
     : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
       GlobalsFilter(GFK) {}

  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
  void VisitBinding(SVal V);

  using ClusterAnalysis::AddToWorkList;

  bool AddToWorkList(const MemRegion *R);

  /// Returns true if all clusters in the memory space for \p Base should be
  /// be invalidated.
  bool includeEntireMemorySpace(const MemRegion *Base);

  /// Returns true if the memory space of the given region is one of the global
  /// regions specially included at the start of invalidation.
  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
};
}

bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
      R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
}

void InvalidateRegionsWorker::VisitBinding(SVal V) {
  // A symbol?  Mark it touched by the invalidation.
  if (SymbolRef Sym = V.getAsSymbol())
    IS.insert(Sym);

  if (const MemRegion *R = V.getAsRegion()) {
    AddToWorkList(R);
    return;
  }

  // Is it a LazyCompoundVal?  All references get invalidated as well.
  if (Optional<nonloc::LazyCompoundVal> LCS =
          V.getAs<nonloc::LazyCompoundVal>()) {

    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);

    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
                                                        E = Vals.end();
         I != E; ++I)
      VisitBinding(*I);

    return;
  }
}

void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
                                           const ClusterBindings *C) {

  bool PreserveRegionsContents =
      ITraits.hasTrait(baseR,
                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);

  if (C) {
    for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
      VisitBinding(I.getData());

    // Invalidate regions contents.
    if (!PreserveRegionsContents)
      B = B.remove(baseR);
  }

  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
    if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {

      // Lambdas can affect all static local variables without explicitly
      // capturing those.
      // We invalidate all static locals referenced inside the lambda body.
      if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
        using namespace ast_matchers;

        const char *DeclBind = "DeclBind";
        StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
              to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
        auto Matches =
            match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
                  RD->getASTContext());

        for (BoundNodes &Match : Matches) {
          auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
          const VarRegion *ToInvalidate =
              RM.getRegionManager().getVarRegion(VD, LCtx);
          AddToWorkList(ToInvalidate);
        }
      }
    }
  }

  // BlockDataRegion?  If so, invalidate captured variables that are passed
  // by reference.
  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
    for (BlockDataRegion::referenced_vars_iterator
         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
         BI != BE; ++BI) {
      const VarRegion *VR = BI.getCapturedRegion();
      const VarDecl *VD = VR->getDecl();
      if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
        AddToWorkList(VR);
      }
      else if (Loc::isLocType(VR->getValueType())) {
        // Map the current bindings to a Store to retrieve the value
        // of the binding.  If that binding itself is a region, we should
        // invalidate that region.  This is because a block may capture
        // a pointer value, but the thing pointed by that pointer may
        // get invalidated.
        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
        if (Optional<Loc> L = V.getAs<Loc>()) {
          if (const MemRegion *LR = L->getAsRegion())
            AddToWorkList(LR);
        }
      }
    }
    return;
  }

  // Symbolic region?
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
    IS.insert(SR->getSymbol());

  // Nothing else should be done in the case when we preserve regions context.
  if (PreserveRegionsContents)
    return;

  // Otherwise, we have a normal data region. Record that we touched the region.
  if (Regions)
    Regions->push_back(baseR);

  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
    // Invalidate the region by setting its default value to
    // conjured symbol. The type of the symbol is irrelevant.
    DefinedOrUnknownSVal V =
      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
    B = B.addBinding(baseR, BindingKey::Default, V);
    return;
  }

  if (!baseR->isBoundable())
    return;

  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
  QualType T = TR->getValueType();

  if (isInitiallyIncludedGlobalRegion(baseR)) {
    // If the region is a global and we are invalidating all globals,
    // erasing the entry is good enough.  This causes all globals to be lazily
    // symbolicated from the same base symbol.
    return;
  }

  if (T->isRecordType()) {
    // Invalidate the region by setting its default value to
    // conjured symbol. The type of the symbol is irrelevant.
    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
                                                          Ctx.IntTy, Count);
    B = B.addBinding(baseR, BindingKey::Default, V);
    return;
  }

  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
    bool doNotInvalidateSuperRegion = ITraits.hasTrait(
        baseR,
        RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);

    if (doNotInvalidateSuperRegion) {
      // We are not doing blank invalidation of the whole array region so we
      // have to manually invalidate each elements.
      Optional<uint64_t> NumElements;

      // Compute lower and upper offsets for region within array.
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
        NumElements = CAT->getSize().getZExtValue();
      if (!NumElements) // We are not dealing with a constant size array
        goto conjure_default;
      QualType ElementTy = AT->getElementType();
      uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
      const RegionOffset &RO = baseR->getAsOffset();
      const MemRegion *SuperR = baseR->getBaseRegion();
      if (RO.hasSymbolicOffset()) {
        // If base region has a symbolic offset,
        // we revert to invalidating the super region.
        if (SuperR)
          AddToWorkList(SuperR);
        goto conjure_default;
      }

      uint64_t LowerOffset = RO.getOffset();
      uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
      bool UpperOverflow = UpperOffset < LowerOffset;

      // Invalidate regions which are within array boundaries,
      // or have a symbolic offset.
      if (!SuperR)
        goto conjure_default;

      const ClusterBindings *C = B.lookup(SuperR);
      if (!C)
        goto conjure_default;

      for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
           ++I) {
        const BindingKey &BK = I.getKey();
        Optional<uint64_t> ROffset =
            BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();

        // Check offset is not symbolic and within array's boundaries.
        // Handles arrays of 0 elements and of 0-sized elements as well.
        if (!ROffset ||
            ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
             (UpperOverflow &&
              (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
             (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
          B = B.removeBinding(I.getKey());
          // Bound symbolic regions need to be invalidated for dead symbol
          // detection.
          SVal V = I.getData();
          const MemRegion *R = V.getAsRegion();
          if (R && isa<SymbolicRegion>(R))
            VisitBinding(V);
        }
      }
    }
  conjure_default:
      // Set the default value of the array to conjured symbol.
    DefinedOrUnknownSVal V =
    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
                                     AT->getElementType(), Count);
    B = B.addBinding(baseR, BindingKey::Default, V);
    return;
  }

  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
                                                        T,Count);
  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
  B = B.addBinding(baseR, BindingKey::Direct, V);
}

bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
    const MemRegion *R) {
  switch (GlobalsFilter) {
  case GFK_None:
    return false;
  case GFK_SystemOnly:
    return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
  case GFK_All:
    return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
  }

  llvm_unreachable("unknown globals filter");
}

bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
  if (isInitiallyIncludedGlobalRegion(Base))
    return true;

  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
  return ITraits.hasTrait(MemSpace,
                          RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
}

RegionBindingsRef
RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
                                           const Expr *Ex,
                                           unsigned Count,
                                           const LocationContext *LCtx,
                                           RegionBindingsRef B,
                                           InvalidatedRegions *Invalidated) {
  // Bind the globals memory space to a new symbol that we will use to derive
  // the bindings for all globals.
  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
                                        /* type does not matter */ Ctx.IntTy,
                                        Count);

  B = B.removeBinding(GS)
       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);

  // Even if there are no bindings in the global scope, we still need to
  // record that we touched it.
  if (Invalidated)
    Invalidated->push_back(GS);

  return B;
}

void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
                                          ArrayRef<SVal> Values,
                                          InvalidatedRegions *TopLevelRegions) {
  for (ArrayRef<SVal>::iterator I = Values.begin(),
                                E = Values.end(); I != E; ++I) {
    SVal V = *I;
    if (Optional<nonloc::LazyCompoundVal> LCS =
        V.getAs<nonloc::LazyCompoundVal>()) {

      const SValListTy &Vals = getInterestingValues(*LCS);

      for (SValListTy::const_iterator I = Vals.begin(),
                                      E = Vals.end(); I != E; ++I) {
        // Note: the last argument is false here because these are
        // non-top-level regions.
        if (const MemRegion *R = (*I).getAsRegion())
          W.AddToWorkList(R);
      }
      continue;
    }

    if (const MemRegion *R = V.getAsRegion()) {
      if (TopLevelRegions)
        TopLevelRegions->push_back(R);
      W.AddToWorkList(R);
      continue;
    }
  }
}

StoreRef
RegionStoreManager::invalidateRegions(Store store,
                                     ArrayRef<SVal> Values,
                                     const Expr *Ex, unsigned Count,
                                     const LocationContext *LCtx,
                                     const CallEvent *Call,
                                     InvalidatedSymbols &IS,
                                     RegionAndSymbolInvalidationTraits &ITraits,
                                     InvalidatedRegions *TopLevelRegions,
                                     InvalidatedRegions *Invalidated) {
  GlobalsFilterKind GlobalsFilter;
  if (Call) {
    if (Call->isInSystemHeader())
      GlobalsFilter = GFK_SystemOnly;
    else
      GlobalsFilter = GFK_All;
  } else {
    GlobalsFilter = GFK_None;
  }

  RegionBindingsRef B = getRegionBindings(store);
  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
                            Invalidated, GlobalsFilter);

  // Scan the bindings and generate the clusters.
  W.GenerateClusters();

  // Add the regions to the worklist.
  populateWorkList(W, Values, TopLevelRegions);

  W.RunWorkList();

  // Return the new bindings.
  B = W.getRegionBindings();

  // For calls, determine which global regions should be invalidated and
  // invalidate them. (Note that function-static and immutable globals are never
  // invalidated by this.)
  // TODO: This could possibly be more precise with modules.
  switch (GlobalsFilter) {
  case GFK_All:
    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
                               Ex, Count, LCtx, B, Invalidated);
    LLVM_FALLTHROUGH;
  case GFK_SystemOnly:
    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
                               Ex, Count, LCtx, B, Invalidated);
    LLVM_FALLTHROUGH;
  case GFK_None:
    break;
  }

  return StoreRef(B.asStore(), *this);
}

//===----------------------------------------------------------------------===//
// Location and region casting.
//===----------------------------------------------------------------------===//

/// ArrayToPointer - Emulates the "decay" of an array to a pointer
///  type.  'Array' represents the lvalue of the array being decayed
///  to a pointer, and the returned SVal represents the decayed
///  version of that lvalue (i.e., a pointer to the first element of
///  the array).  This is called by ExprEngine when evaluating casts
///  from arrays to pointers.
SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
  if (Array.getAs<loc::ConcreteInt>())
    return Array;

  if (!Array.getAs<loc::MemRegionVal>())
    return UnknownVal();

  const SubRegion *R =
      cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
}

//===----------------------------------------------------------------------===//
// Loading values from regions.
//===----------------------------------------------------------------------===//

SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
  assert(!L.getAs<UnknownVal>() && "location unknown");
  assert(!L.getAs<UndefinedVal>() && "location undefined");

  // For access to concrete addresses, return UnknownVal.  Checks
  // for null dereferences (and similar errors) are done by checkers, not
  // the Store.
  // FIXME: We can consider lazily symbolicating such memory, but we really
  // should defer this when we can reason easily about symbolicating arrays
  // of bytes.
  if (L.getAs<loc::ConcreteInt>()) {
    return UnknownVal();
  }
  if (!L.getAs<loc::MemRegionVal>()) {
    return UnknownVal();
  }

  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();

  if (isa<BlockDataRegion>(MR)) {
    return UnknownVal();
  }

  if (!isa<TypedValueRegion>(MR)) {
    if (T.isNull()) {
      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
        T = TR->getLocationType()->getPointeeType();
      else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
        T = SR->getSymbol()->getType()->getPointeeType();
    }
    assert(!T.isNull() && "Unable to auto-detect binding type!");
    assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
    MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
  } else {
    T = cast<TypedValueRegion>(MR)->getValueType();
  }

  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
  QualType RTy = R->getValueType();

  // FIXME: we do not yet model the parts of a complex type, so treat the
  // whole thing as "unknown".
  if (RTy->isAnyComplexType())
    return UnknownVal();

  // FIXME: We should eventually handle funny addressing.  e.g.:
  //
  //   int x = ...;
  //   int *p = &x;
  //   char *q = (char*) p;
  //   char c = *q;  // returns the first byte of 'x'.
  //
  // Such funny addressing will occur due to layering of regions.
  if (RTy->isStructureOrClassType())
    return getBindingForStruct(B, R);

  // FIXME: Handle unions.
  if (RTy->isUnionType())
    return createLazyBinding(B, R);

  if (RTy->isArrayType()) {
    if (RTy->isConstantArrayType())
      return getBindingForArray(B, R);
    else
      return UnknownVal();
  }

  // FIXME: handle Vector types.
  if (RTy->isVectorType())
    return UnknownVal();

  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
    return CastRetrievedVal(getBindingForField(B, FR), FR, T);

  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
    // FIXME: Here we actually perform an implicit conversion from the loaded
    // value to the element type.  Eventually we want to compose these values
    // more intelligently.  For example, an 'element' can encompass multiple
    // bound regions (e.g., several bound bytes), or could be a subset of
    // a larger value.
    return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
  }

  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
    // FIXME: Here we actually perform an implicit conversion from the loaded
    // value to the ivar type.  What we should model is stores to ivars
    // that blow past the extent of the ivar.  If the address of the ivar is
    // reinterpretted, it is possible we stored a different value that could
    // fit within the ivar.  Either we need to cast these when storing them
    // or reinterpret them lazily (as we do here).
    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
  }

  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
    // FIXME: Here we actually perform an implicit conversion from the loaded
    // value to the variable type.  What we should model is stores to variables
    // that blow past the extent of the variable.  If the address of the
    // variable is reinterpretted, it is possible we stored a different value
    // that could fit within the variable.  Either we need to cast these when
    // storing them or reinterpret them lazily (as we do here).
    return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
  }

  const SVal *V = B.lookup(R, BindingKey::Direct);

  // Check if the region has a binding.
  if (V)
    return *V;

  // The location does not have a bound value.  This means that it has
  // the value it had upon its creation and/or entry to the analyzed
  // function/method.  These are either symbolic values or 'undefined'.
  if (R->hasStackNonParametersStorage()) {
    // All stack variables are considered to have undefined values
    // upon creation.  All heap allocated blocks are considered to
    // have undefined values as well unless they are explicitly bound
    // to specific values.
    return UndefinedVal();
  }

  // All other values are symbolic.
  return svalBuilder.getRegionValueSymbolVal(R);
}

static QualType getUnderlyingType(const SubRegion *R) {
  QualType RegionTy;
  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
    RegionTy = TVR->getValueType();

  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
    RegionTy = SR->getSymbol()->getType();

  return RegionTy;
}

/// Checks to see if store \p B has a lazy binding for region \p R.
///
/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
/// if there are additional bindings within \p R.
///
/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
/// for lazy bindings for super-regions of \p R.
static Optional<nonloc::LazyCompoundVal>
getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
                       const SubRegion *R, bool AllowSubregionBindings) {
  Optional<SVal> V = B.getDefaultBinding(R);
  if (!V)
    return None;

  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
  if (!LCV)
    return None;

  // If the LCV is for a subregion, the types might not match, and we shouldn't
  // reuse the binding.
  QualType RegionTy = getUnderlyingType(R);
  if (!RegionTy.isNull() &&
      !RegionTy->isVoidPointerType()) {
    QualType SourceRegionTy = LCV->getRegion()->getValueType();
    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
      return None;
  }

  if (!AllowSubregionBindings) {
    // If there are any other bindings within this region, we shouldn't reuse
    // the top-level binding.
    SmallVector<BindingPair, 16> Bindings;
    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
                             /*IncludeAllDefaultBindings=*/true);
    if (Bindings.size() > 1)
      return None;
  }

  return *LCV;
}


std::pair<Store, const SubRegion *>
RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
                                   const SubRegion *R,
                                   const SubRegion *originalRegion) {
  if (originalRegion != R) {
    if (Optional<nonloc::LazyCompoundVal> V =
          getExistingLazyBinding(svalBuilder, B, R, true))
      return std::make_pair(V->getStore(), V->getRegion());
  }

  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
  StoreRegionPair Result = StoreRegionPair();

  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
                             originalRegion);

    if (Result.second)
      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);

  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
                                       originalRegion);

    if (Result.second)
      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);

  } else if (const CXXBaseObjectRegion *BaseReg =
               dyn_cast<CXXBaseObjectRegion>(R)) {
    // C++ base object region is another kind of region that we should blast
    // through to look for lazy compound value. It is like a field region.
    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
                             originalRegion);

    if (Result.second)
      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
                                                            Result.second);
  }

  return Result;
}

SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
                                              const ElementRegion* R) {
  // Check if the region has a binding.
  if (const Optional<SVal> &V = B.getDirectBinding(R))
    return *V;

  const MemRegion* superR = R->getSuperRegion();

  // Check if the region is an element region of a string literal.
  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
    // FIXME: Handle loads from strings where the literal is treated as
    // an integer, e.g., *((unsigned int*)"hello")
    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
    if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
      return UnknownVal();

    const StringLiteral *Str = StrR->getStringLiteral();
    SVal Idx = R->getIndex();
    if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
      int64_t i = CI->getValue().getSExtValue();
      // Abort on string underrun.  This can be possible by arbitrary
      // clients of getBindingForElement().
      if (i < 0)
        return UndefinedVal();
      int64_t length = Str->getLength();
      // Technically, only i == length is guaranteed to be null.
      // However, such overflows should be caught before reaching this point;
      // the only time such an access would be made is if a string literal was
      // used to initialize a larger array.
      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
      return svalBuilder.makeIntVal(c, T);
    }
  } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
    // Check if the containing array has an initialized value that we can trust.
    // We can trust a const value or a value of a global initializer in main().
    const VarDecl *VD = VR->getDecl();
    if (VD->getType().isConstQualified() ||
        R->getElementType().isConstQualified() ||
        (B.isMainAnalysis() && VD->hasGlobalStorage())) {
      if (const Expr *Init = VD->getAnyInitializer()) {
        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
          // The array index has to be known.
          if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
            int64_t i = CI->getValue().getSExtValue();
            // If it is known that the index is out of bounds, we can return
            // an undefined value.
            if (i < 0)
              return UndefinedVal();

            if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
              if (CAT->getSize().sle(i))
                return UndefinedVal();

            // If there is a list, but no init, it must be zero.
            if (i >= InitList->getNumInits())
              return svalBuilder.makeZeroVal(R->getElementType());

            if (const Expr *ElemInit = InitList->getInit(i))
              if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
                return *V;
          }
        }
      }
    }
  }

  // Check for loads from a code text region.  For such loads, just give up.
  if (isa<CodeTextRegion>(superR))
    return UnknownVal();

  // Handle the case where we are indexing into a larger scalar object.
  // For example, this handles:
  //   int x = ...
  //   char *y = &x;
  //   return *y;
  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
  const RegionRawOffset &O = R->getAsArrayOffset();

  // If we cannot reason about the offset, return an unknown value.
  if (!O.getRegion())
    return UnknownVal();

  if (const TypedValueRegion *baseR =
        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
    QualType baseT = baseR->getValueType();
    if (baseT->isScalarType()) {
      QualType elemT = R->getElementType();
      if (elemT->isScalarType()) {
        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
            if (SymbolRef parentSym = V->getAsSymbol())
              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);

            if (V->isUnknownOrUndef())
              return *V;
            // Other cases: give up.  We are indexing into a larger object
            // that has some value, but we don't know how to handle that yet.
            return UnknownVal();
          }
        }
      }
    }
  }
  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
}

SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
                                            const FieldRegion* R) {

  // Check if the region has a binding.
  if (const Optional<SVal> &V = B.getDirectBinding(R))
    return *V;

  // Is the field declared constant and has an in-class initializer?
  const FieldDecl *FD = R->getDecl();
  QualType Ty = FD->getType();
  if (Ty.isConstQualified())
    if (const Expr *Init = FD->getInClassInitializer())
      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
        return *V;

  // If the containing record was initialized, try to get its constant value.
  const MemRegion* superR = R->getSuperRegion();
  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
    const VarDecl *VD = VR->getDecl();
    QualType RecordVarTy = VD->getType();
    unsigned Index = FD->getFieldIndex();
    // Either the record variable or the field has an initializer that we can
    // trust. We trust initializers of constants and, additionally, respect
    // initializers of globals when analyzing main().
    if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
        (B.isMainAnalysis() && VD->hasGlobalStorage()))
      if (const Expr *Init = VD->getAnyInitializer())
        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
          if (Index < InitList->getNumInits()) {
            if (const Expr *FieldInit = InitList->getInit(Index))
              if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
                return *V;
          } else {
            return svalBuilder.makeZeroVal(Ty);
          }
        }
  }

  return getBindingForFieldOrElementCommon(B, R, Ty);
}

Optional<SVal>
RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
                                                     const MemRegion *superR,
                                                     const TypedValueRegion *R,
                                                     QualType Ty) {

  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
    const SVal &val = D.getValue();
    if (SymbolRef parentSym = val.getAsSymbol())
      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);

    if (val.isZeroConstant())
      return svalBuilder.makeZeroVal(Ty);

    if (val.isUnknownOrUndef())
      return val;

    // Lazy bindings are usually handled through getExistingLazyBinding().
    // We should unify these two code paths at some point.
    if (val.getAs<nonloc::LazyCompoundVal>() ||
        val.getAs<nonloc::CompoundVal>())
      return val;

    llvm_unreachable("Unknown default value");
  }

  return None;
}

SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
                                        RegionBindingsRef LazyBinding) {
  SVal Result;
  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
    Result = getBindingForElement(LazyBinding, ER);
  else
    Result = getBindingForField(LazyBinding,
                                cast<FieldRegion>(LazyBindingRegion));

  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
  // default value for /part/ of an aggregate from a default value for the
  // /entire/ aggregate. The most common case of this is when struct Outer
  // has as its first member a struct Inner, which is copied in from a stack
  // variable. In this case, even if the Outer's default value is symbolic, 0,
  // or unknown, it gets overridden by the Inner's default value of undefined.
  //
  // This is a general problem -- if the Inner is zero-initialized, the Outer
  // will now look zero-initialized. The proper way to solve this is with a
  // new version of RegionStore that tracks the extent of a binding as well
  // as the offset.
  //
  // This hack only takes care of the undefined case because that can very
  // quickly result in a warning.
  if (Result.isUndef())
    Result = UnknownVal();

  return Result;
}

SVal
RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
                                                      const TypedValueRegion *R,
                                                      QualType Ty) {

  // At this point we have already checked in either getBindingForElement or
  // getBindingForField if 'R' has a direct binding.

  // Lazy binding?
  Store lazyBindingStore = nullptr;
  const SubRegion *lazyBindingRegion = nullptr;
  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
  if (lazyBindingRegion)
    return getLazyBinding(lazyBindingRegion,
                          getRegionBindings(lazyBindingStore));

  // Record whether or not we see a symbolic index.  That can completely
  // be out of scope of our lookup.
  bool hasSymbolicIndex = false;

  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
  // default value for /part/ of an aggregate from a default value for the
  // /entire/ aggregate. The most common case of this is when struct Outer
  // has as its first member a struct Inner, which is copied in from a stack
  // variable. In this case, even if the Outer's default value is symbolic, 0,
  // or unknown, it gets overridden by the Inner's default value of undefined.
  //
  // This is a general problem -- if the Inner is zero-initialized, the Outer
  // will now look zero-initialized. The proper way to solve this is with a
  // new version of RegionStore that tracks the extent of a binding as well
  // as the offset.
  //
  // This hack only takes care of the undefined case because that can very
  // quickly result in a warning.
  bool hasPartialLazyBinding = false;

  const SubRegion *SR = R;
  while (SR) {
    const MemRegion *Base = SR->getSuperRegion();
    if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
      if (D->getAs<nonloc::LazyCompoundVal>()) {
        hasPartialLazyBinding = true;
        break;
      }

      return *D;
    }

    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
      NonLoc index = ER->getIndex();
      if (!index.isConstant())
        hasSymbolicIndex = true;
    }

    // If our super region is a field or element itself, walk up the region
    // hierarchy to see if there is a default value installed in an ancestor.
    SR = dyn_cast<SubRegion>(Base);
  }

  if (R->hasStackNonParametersStorage()) {
    if (isa<ElementRegion>(R)) {
      // Currently we don't reason specially about Clang-style vectors.  Check
      // if superR is a vector and if so return Unknown.
      if (const TypedValueRegion *typedSuperR =
            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
        if (typedSuperR->getValueType()->isVectorType())
          return UnknownVal();
      }
    }

    // FIXME: We also need to take ElementRegions with symbolic indexes into
    // account.  This case handles both directly accessing an ElementRegion
    // with a symbolic offset, but also fields within an element with
    // a symbolic offset.
    if (hasSymbolicIndex)
      return UnknownVal();

    // Additionally allow introspection of a block's internal layout.
    if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
      return UndefinedVal();
  }

  // All other values are symbolic.
  return svalBuilder.getRegionValueSymbolVal(R);
}

SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
                                               const ObjCIvarRegion* R) {
  // Check if the region has a binding.
  if (const Optional<SVal> &V = B.getDirectBinding(R))
    return *V;

  const MemRegion *superR = R->getSuperRegion();

  // Check if the super region has a default binding.
  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
    if (SymbolRef parentSym = V->getAsSymbol())
      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);

    // Other cases: give up.
    return UnknownVal();
  }

  return getBindingForLazySymbol(R);
}

SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
                                          const VarRegion *R) {

  // Check if the region has a binding.
  if (Optional<SVal> V = B.getDirectBinding(R))
    return *V;

  if (Optional<SVal> V = B.getDefaultBinding(R))
    return *V;

  // Lazily derive a value for the VarRegion.
  const VarDecl *VD = R->getDecl();
  const MemSpaceRegion *MS = R->getMemorySpace();

  // Arguments are always symbolic.
  if (isa<StackArgumentsSpaceRegion>(MS))
    return svalBuilder.getRegionValueSymbolVal(R);

  // Is 'VD' declared constant?  If so, retrieve the constant value.
  if (VD->getType().isConstQualified()) {
    if (const Expr *Init = VD->getAnyInitializer()) {
      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
        return *V;

      // If the variable is const qualified and has an initializer but
      // we couldn't evaluate initializer to a value, treat the value as
      // unknown.
      return UnknownVal();
    }
  }

  // This must come after the check for constants because closure-captured
  // constant variables may appear in UnknownSpaceRegion.
  if (isa<UnknownSpaceRegion>(MS))
    return svalBuilder.getRegionValueSymbolVal(R);

  if (isa<GlobalsSpaceRegion>(MS)) {
    QualType T = VD->getType();

    // If we're in main(), then global initializers have not become stale yet.
    if (B.isMainAnalysis())
      if (const Expr *Init = VD->getAnyInitializer())
        if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
          return *V;

    // Function-scoped static variables are default-initialized to 0; if they
    // have an initializer, it would have been processed by now.
    // FIXME: This is only true when we're starting analysis from main().
    // We're losing a lot of coverage here.
    if (isa<StaticGlobalSpaceRegion>(MS))
      return svalBuilder.makeZeroVal(T);

    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
      assert(!V->getAs<nonloc::LazyCompoundVal>());
      return V.getValue();
    }

    return svalBuilder.getRegionValueSymbolVal(R);
  }

  return UndefinedVal();
}

SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
  // All other values are symbolic.
  return svalBuilder.getRegionValueSymbolVal(R);
}

const RegionStoreManager::SValListTy &
RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
  // First, check the cache.
  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
  if (I != LazyBindingsMap.end())
    return I->second;

  // If we don't have a list of values cached, start constructing it.
  SValListTy List;

  const SubRegion *LazyR = LCV.getRegion();
  RegionBindingsRef B = getRegionBindings(LCV.getStore());

  // If this region had /no/ bindings at the time, there are no interesting
  // values to return.
  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
  if (!Cluster)
    return (LazyBindingsMap[LCV.getCVData()] = std::move(List));

  SmallVector<BindingPair, 32> Bindings;
  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
                           /*IncludeAllDefaultBindings=*/true);
  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
                                                    E = Bindings.end();
       I != E; ++I) {
    SVal V = I->second;
    if (V.isUnknownOrUndef() || V.isConstant())
      continue;

    if (Optional<nonloc::LazyCompoundVal> InnerLCV =
            V.getAs<nonloc::LazyCompoundVal>()) {
      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
      List.insert(List.end(), InnerList.begin(), InnerList.end());
      continue;
    }

    List.push_back(V);
  }

  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
}

NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
                                             const TypedValueRegion *R) {
  if (Optional<nonloc::LazyCompoundVal> V =
        getExistingLazyBinding(svalBuilder, B, R, false))
    return *V;

  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
}

static bool isRecordEmpty(const RecordDecl *RD) {
  if (!RD->field_empty())
    return false;
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
    return CRD->getNumBases() == 0;
  return true;
}

SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
                                             const TypedValueRegion *R) {
  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
  if (!RD->getDefinition() || isRecordEmpty(RD))
    return UnknownVal();

  return createLazyBinding(B, R);
}

SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
                                            const TypedValueRegion *R) {
  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
         "Only constant array types can have compound bindings.");

  return createLazyBinding(B, R);
}

bool RegionStoreManager::includedInBindings(Store store,
                                            const MemRegion *region) const {
  RegionBindingsRef B = getRegionBindings(store);
  region = region->getBaseRegion();

  // Quick path: if the base is the head of a cluster, the region is live.
  if (B.lookup(region))
    return true;

  // Slow path: if the region is the VALUE of any binding, it is live.
  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
    const ClusterBindings &Cluster = RI.getData();
    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
         CI != CE; ++CI) {
      const SVal &D = CI.getData();
      if (const MemRegion *R = D.getAsRegion())
        if (R->getBaseRegion() == region)
          return true;
    }
  }

  return false;
}

//===----------------------------------------------------------------------===//
// Binding values to regions.
//===----------------------------------------------------------------------===//

StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
    if (const MemRegion* R = LV->getRegion())
      return StoreRef(getRegionBindings(ST).removeBinding(R)
                                           .asImmutableMap()
                                           .getRootWithoutRetain(),
                      *this);

  return StoreRef(ST, *this);
}

RegionBindingsRef
RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
  if (L.getAs<loc::ConcreteInt>())
    return B;

  // If we get here, the location should be a region.
  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();

  // Check if the region is a struct region.
  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
    QualType Ty = TR->getValueType();
    if (Ty->isArrayType())
      return bindArray(B, TR, V);
    if (Ty->isStructureOrClassType())
      return bindStruct(B, TR, V);
    if (Ty->isVectorType())
      return bindVector(B, TR, V);
    if (Ty->isUnionType())
      return bindAggregate(B, TR, V);
  }

  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
    // Binding directly to a symbolic region should be treated as binding
    // to element 0.
    QualType T = SR->getSymbol()->getType();
    if (T->isAnyPointerType() || T->isReferenceType())
      T = T->getPointeeType();

    R = GetElementZeroRegion(SR, T);
  }

  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
         "'this' pointer is not an l-value and is not assignable");

  // Clear out bindings that may overlap with this binding.
  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
}

RegionBindingsRef
RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
                                            const MemRegion *R,
                                            QualType T) {
  SVal V;

  if (Loc::isLocType(T))
    V = svalBuilder.makeNull();
  else if (T->isIntegralOrEnumerationType())
    V = svalBuilder.makeZeroVal(T);
  else if (T->isStructureOrClassType() || T->isArrayType()) {
    // Set the default value to a zero constant when it is a structure
    // or array.  The type doesn't really matter.
    V = svalBuilder.makeZeroVal(Ctx.IntTy);
  }
  else {
    // We can't represent values of this type, but we still need to set a value
    // to record that the region has been initialized.
    // If this assertion ever fires, a new case should be added above -- we
    // should know how to default-initialize any value we can symbolicate.
    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
    V = UnknownVal();
  }

  return B.addBinding(R, BindingKey::Default, V);
}

RegionBindingsRef
RegionStoreManager::bindArray(RegionBindingsConstRef B,
                              const TypedValueRegion* R,
                              SVal Init) {

  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
  QualType ElementTy = AT->getElementType();
  Optional<uint64_t> Size;

  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
    Size = CAT->getSize().getZExtValue();

  // Check if the init expr is a literal. If so, bind the rvalue instead.
  // FIXME: It's not responsibility of the Store to transform this lvalue
  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
    SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
    return bindAggregate(B, R, V);
  }

  // Handle lazy compound values.
  if (Init.getAs<nonloc::LazyCompoundVal>())
    return bindAggregate(B, R, Init);

  if (Init.isUnknown())
    return bindAggregate(B, R, UnknownVal());

  // Remaining case: explicit compound values.
  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
  uint64_t i = 0;

  RegionBindingsRef NewB(B);

  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
    // The init list might be shorter than the array length.
    if (VI == VE)
      break;

    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);

    if (ElementTy->isStructureOrClassType())
      NewB = bindStruct(NewB, ER, *VI);
    else if (ElementTy->isArrayType())
      NewB = bindArray(NewB, ER, *VI);
    else
      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
  }

  // If the init list is shorter than the array length (or the array has
  // variable length), set the array default value. Values that are already set
  // are not overwritten.
  if (!Size.hasValue() || i < Size.getValue())
    NewB = setImplicitDefaultValue(NewB, R, ElementTy);

  return NewB;
}

RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
                                                 const TypedValueRegion* R,
                                                 SVal V) {
  QualType T = R->getValueType();
  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.

  // Handle lazy compound values and symbolic values.
  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
    return bindAggregate(B, R, V);

  // We may get non-CompoundVal accidentally due to imprecise cast logic or
  // that we are binding symbolic struct value. Kill the field values, and if
  // the value is symbolic go and bind it as a "default" binding.
  if (!V.getAs<nonloc::CompoundVal>()) {
    return bindAggregate(B, R, UnknownVal());
  }

  QualType ElemType = VT->getElementType();
  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
  unsigned index = 0, numElements = VT->getNumElements();
  RegionBindingsRef NewB(B);

  for ( ; index != numElements ; ++index) {
    if (VI == VE)
      break;

    NonLoc Idx = svalBuilder.makeArrayIndex(index);
    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);

    if (ElemType->isArrayType())
      NewB = bindArray(NewB, ER, *VI);
    else if (ElemType->isStructureOrClassType())
      NewB = bindStruct(NewB, ER, *VI);
    else
      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
  }
  return NewB;
}

Optional<RegionBindingsRef>
RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
                                       const TypedValueRegion *R,
                                       const RecordDecl *RD,
                                       nonloc::LazyCompoundVal LCV) {
  FieldVector Fields;

  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
      return None;

  for (const auto *FD : RD->fields()) {
    if (FD->isUnnamedBitfield())
      continue;

    // If there are too many fields, or if any of the fields are aggregates,
    // just use the LCV as a default binding.
    if (Fields.size() == SmallStructLimit)
      return None;

    QualType Ty = FD->getType();
    if (!(Ty->isScalarType() || Ty->isReferenceType()))
      return None;

    Fields.push_back(FD);
  }

  RegionBindingsRef NewB = B;

  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
    const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);

    const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
  }

  return NewB;
}

RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
                                                 const TypedValueRegion* R,
                                                 SVal V) {
  if (!Features.supportsFields())
    return B;

  QualType T = R->getValueType();
  assert(T->isStructureOrClassType());

  const RecordType* RT = T->castAs<RecordType>();
  const RecordDecl *RD = RT->getDecl();

  if (!RD->isCompleteDefinition())
    return B;

  // Handle lazy compound values and symbolic values.
  if (Optional<nonloc::LazyCompoundVal> LCV =
        V.getAs<nonloc::LazyCompoundVal>()) {
    if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
      return *NewB;
    return bindAggregate(B, R, V);
  }
  if (V.getAs<nonloc::SymbolVal>())
    return bindAggregate(B, R, V);

  // We may get non-CompoundVal accidentally due to imprecise cast logic or
  // that we are binding symbolic struct value. Kill the field values, and if
  // the value is symbolic go and bind it as a "default" binding.
  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
    return bindAggregate(B, R, UnknownVal());

  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
  // list of other values. It appears pretty much only when there's an actual
  // initializer list expression in the program, and the analyzer tries to
  // unwrap it as soon as possible.
  // This code is where such unwrap happens: when the compound value is put into
  // the object that it was supposed to initialize (it's an *initializer* list,
  // after all), instead of binding the whole value to the whole object, we bind
  // sub-values to sub-objects. Sub-values may themselves be compound values,
  // and in this case the procedure becomes recursive.
  // FIXME: The annoying part about compound values is that they don't carry
  // any sort of information about which value corresponds to which sub-object.
  // It's simply a list of values in the middle of nowhere; we expect to match
  // them to sub-objects, essentially, "by index": first value binds to
  // the first field, second value binds to the second field, etc.
  // It would have been much safer to organize non-lazy compound values as
  // a mapping from fields/bases to values.
  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();

  RegionBindingsRef NewB(B);

  // In C++17 aggregates may have base classes, handle those as well.
  // They appear before fields in the initializer list / compound value.
  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    // If the object was constructed with a constructor, its value is a
    // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
    // performing aggregate initialization. The only exception from this
    // rule is sending an Objective-C++ message that returns a C++ object
    // to a nil receiver; in this case the semantics is to return a
    // zero-initialized object even if it's a C++ object that doesn't have
    // this sort of constructor; the CompoundVal is empty in this case.
    assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
           "Non-aggregates are constructed with a constructor!");

    for (const auto &B : CRD->bases()) {
      // (Multiple inheritance is fine though.)
      assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");

      if (VI == VE)
        break;

      QualType BTy = B.getType();
      assert(BTy->isStructureOrClassType() && "Base classes must be classes!");

      const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
      assert(BRD && "Base classes must be C++ classes!");

      const CXXBaseObjectRegion *BR =
          MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);

      NewB = bindStruct(NewB, BR, *VI);

      ++VI;
    }
  }

  RecordDecl::field_iterator FI, FE;

  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {

    if (VI == VE)
      break;

    // Skip any unnamed bitfields to stay in sync with the initializers.
    if (FI->isUnnamedBitfield())
      continue;

    QualType FTy = FI->getType();
    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);

    if (FTy->isArrayType())
      NewB = bindArray(NewB, FR, *VI);
    else if (FTy->isStructureOrClassType())
      NewB = bindStruct(NewB, FR, *VI);
    else
      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
    ++VI;
  }

  // There may be fewer values in the initialize list than the fields of struct.
  if (FI != FE) {
    NewB = NewB.addBinding(R, BindingKey::Default,
                           svalBuilder.makeIntVal(0, false));
  }

  return NewB;
}

RegionBindingsRef
RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
                                  const TypedRegion *R,
                                  SVal Val) {
  // Remove the old bindings, using 'R' as the root of all regions
  // we will invalidate. Then add the new binding.
  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
}

//===----------------------------------------------------------------------===//
// State pruning.
//===----------------------------------------------------------------------===//

namespace {
class RemoveDeadBindingsWorker
    : public ClusterAnalysis<RemoveDeadBindingsWorker> {
  SmallVector<const SymbolicRegion *, 12> Postponed;
  SymbolReaper &SymReaper;
  const StackFrameContext *CurrentLCtx;

public:
  RemoveDeadBindingsWorker(RegionStoreManager &rm,
                           ProgramStateManager &stateMgr,
                           RegionBindingsRef b, SymbolReaper &symReaper,
                           const StackFrameContext *LCtx)
    : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
      SymReaper(symReaper), CurrentLCtx(LCtx) {}

  // Called by ClusterAnalysis.
  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;

  using ClusterAnalysis::AddToWorkList;

  bool AddToWorkList(const MemRegion *R);

  bool UpdatePostponed();
  void VisitBinding(SVal V);
};
}

bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
  const MemRegion *BaseR = R->getBaseRegion();
  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
}

void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
                                                   const ClusterBindings &C) {

  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
    if (SymReaper.isLive(VR))
      AddToWorkList(baseR, &C);

    return;
  }

  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
    if (SymReaper.isLive(SR->getSymbol()))
      AddToWorkList(SR, &C);
    else
      Postponed.push_back(SR);

    return;
  }

  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
    AddToWorkList(baseR, &C);
    return;
  }

  // CXXThisRegion in the current or parent location context is live.
  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
    const auto *StackReg =
        cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
    const StackFrameContext *RegCtx = StackReg->getStackFrame();
    if (CurrentLCtx &&
        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
      AddToWorkList(TR, &C);
  }
}

void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
                                            const ClusterBindings *C) {
  if (!C)
    return;

  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
  // This means we should continue to track that symbol.
  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
    SymReaper.markLive(SymR->getSymbol());

  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
    // Element index of a binding key is live.
    SymReaper.markElementIndicesLive(I.getKey().getRegion());

    VisitBinding(I.getData());
  }
}

void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
  // Is it a LazyCompoundVal?  All referenced regions are live as well.
  if (Optional<nonloc::LazyCompoundVal> LCS =
          V.getAs<nonloc::LazyCompoundVal>()) {

    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);

    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
                                                        E = Vals.end();
         I != E; ++I)
      VisitBinding(*I);

    return;
  }

  // If V is a region, then add it to the worklist.
  if (const MemRegion *R = V.getAsRegion()) {
    AddToWorkList(R);
    SymReaper.markLive(R);

    // All regions captured by a block are also live.
    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
                                                E = BR->referenced_vars_end();
      for ( ; I != E; ++I)
        AddToWorkList(I.getCapturedRegion());
    }
  }


  // Update the set of live symbols.
  for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
    SymReaper.markLive(*SI);
}

bool RemoveDeadBindingsWorker::UpdatePostponed() {
  // See if any postponed SymbolicRegions are actually live now, after
  // having done a scan.
  bool Changed = false;

  for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
    if (const SymbolicRegion *SR = *I) {
      if (SymReaper.isLive(SR->getSymbol())) {
        Changed |= AddToWorkList(SR);
        *I = nullptr;
      }
    }
  }

  return Changed;
}

StoreRef RegionStoreManager::removeDeadBindings(Store store,
                                                const StackFrameContext *LCtx,
                                                SymbolReaper& SymReaper) {
  RegionBindingsRef B = getRegionBindings(store);
  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
  W.GenerateClusters();

  // Enqueue the region roots onto the worklist.
  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
       E = SymReaper.region_end(); I != E; ++I) {
    W.AddToWorkList(*I);
  }

  do W.RunWorkList(); while (W.UpdatePostponed());

  // We have now scanned the store, marking reachable regions and symbols
  // as live.  We now remove all the regions that are dead from the store
  // as well as update DSymbols with the set symbols that are now dead.
  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
    const MemRegion *Base = I.getKey();

    // If the cluster has been visited, we know the region has been marked.
    // Otherwise, remove the dead entry.
    if (!W.isVisited(Base))
      B = B.remove(Base);
  }

  return StoreRef(B.asStore(), *this);
}

//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//

void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
                                   unsigned int Space, bool IsDot) const {
  RegionBindingsRef Bindings = getRegionBindings(S);

  Indent(Out, Space, IsDot) << "\"store\": ";

  if (Bindings.isEmpty()) {
    Out << "null," << NL;
    return;
  }

  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
  Bindings.printJson(Out, NL, Space + 1, IsDot);
  Indent(Out, Space, IsDot) << "]}," << NL;
}