LoopUtils.cpp
128 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/RegionUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "LoopUtils"
using namespace mlir;
using llvm::SetVector;
using llvm::SmallMapVector;
namespace {
// This structure is to pass and return sets of loop parameters without
// confusing the order.
struct LoopParams {
Value lowerBound;
Value upperBound;
Value step;
};
} // namespace
/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
static void getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
AffineMap &map,
SmallVectorImpl<Value> &operands) {
auto lbMap = forOp.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1) {
map = AffineMap();
return;
}
AffineMap tripCountMap;
SmallVector<Value, 4> tripCountOperands;
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
// Sometimes the trip count cannot be expressed as an affine expression.
if (!tripCountMap) {
map = AffineMap();
return;
}
OpBuilder b(forOp);
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap,
forOp.getLowerBoundOperands());
// For each upper bound expr, get the range.
// Eg: affine.for %i = lb to min (ub1, ub2),
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
// these affine.apply's make up the cleanup loop lower bound.
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
SmallVector<Value, 4> bumpValues(tripCountMap.getNumResults());
int64_t step = forOp.getStep();
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
auto tripCountExpr = tripCountMap.getResult(i);
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
auto bumpMap = AffineMap::get(tripCountMap.getNumDims(),
tripCountMap.getNumSymbols(), bumpExprs[i]);
bumpValues[i] =
b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
}
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);
operands.clear();
operands.push_back(lb);
operands.append(bumpValues.begin(), bumpValues.end());
map = AffineMap::get(1 + tripCountMap.getNumResults(), 0, newUbExprs,
b.getContext());
// Simplify the map + operands.
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
// Remove any affine.apply's that became dead from the simplification above.
for (auto v : bumpValues)
if (v.use_empty())
v.getDefiningOp()->erase();
if (lb.use_empty())
lb.erase();
}
// Build the IR that performs ceil division of a positive value by a constant:
// ceildiv(a, B) = divis(a + (B-1), B)
// where divis is rounding-to-zero division.
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
int64_t divisor) {
assert(divisor > 0 && "expected positive divisor");
assert(dividend.getType().isIndex() && "expected index-typed value");
Value divisorMinusOneCst = builder.create<ConstantIndexOp>(loc, divisor - 1);
Value divisorCst = builder.create<ConstantIndexOp>(loc, divisor);
Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOneCst);
return builder.create<SignedDivIOp>(loc, sum, divisorCst);
}
// Build the IR that performs ceil division of a positive value by another
// positive value:
// ceildiv(a, b) = divis(a + (b - 1), b)
// where divis is rounding-to-zero division.
static Value ceilDivPositive(OpBuilder &builder, Location loc, Value dividend,
Value divisor) {
assert(dividend.getType().isIndex() && "expected index-typed value");
Value cstOne = builder.create<ConstantIndexOp>(loc, 1);
Value divisorMinusOne = builder.create<SubIOp>(loc, divisor, cstOne);
Value sum = builder.create<AddIOp>(loc, dividend, divisorMinusOne);
return builder.create<SignedDivIOp>(loc, sum, divisor);
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
// TODO: extend this for arbitrary affine bounds.
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount || tripCount.getValue() != 1)
return failure();
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// Replaces all IV uses to its single iteration value.
auto iv = forOp.getInductionVar();
auto *parentBlock = forOp.getOperation()->getBlock();
if (!iv.use_empty()) {
if (forOp.hasConstantLowerBound()) {
OpBuilder topBuilder(forOp.getParentOfType<FuncOp>().getBody());
auto constOp = topBuilder.create<ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv.replaceAllUsesWith(constOp);
} else {
auto lbOperands = forOp.getLowerBoundOperands();
auto lbMap = forOp.getLowerBoundMap();
OpBuilder builder(parentBlock, Block::iterator(forOp));
if (lbMap == builder.getDimIdentityMap()) {
// No need of generating an affine.apply.
iv.replaceAllUsesWith(lbOperands[0]);
} else {
auto affineApplyOp =
builder.create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands);
iv.replaceAllUsesWith(affineApplyOp);
}
}
}
// Move the loop body operations, except for its terminator, to the loop's
// containing block.
forOp.getBody()->back().erase();
parentBlock->getOperations().splice(Block::iterator(forOp),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// it can be determined that the loop has a single iteration.
LogicalResult mlir::promoteIfSingleIteration(scf::ForOp forOp) {
auto lbCstOp = forOp.lowerBound().getDefiningOp<ConstantIndexOp>();
auto ubCstOp = forOp.upperBound().getDefiningOp<ConstantIndexOp>();
auto stepCstOp = forOp.step().getDefiningOp<ConstantIndexOp>();
if (!lbCstOp || !ubCstOp || !stepCstOp || lbCstOp.getValue() < 0 ||
ubCstOp.getValue() < 0 || stepCstOp.getValue() < 0)
return failure();
int64_t tripCount = mlir::ceilDiv(ubCstOp.getValue() - lbCstOp.getValue(),
stepCstOp.getValue());
if (tripCount != 1)
return failure();
auto iv = forOp.getInductionVar();
iv.replaceAllUsesWith(lbCstOp);
// Move the loop body operations, except for its terminator, to the loop's
// containing block.
auto *parentBlock = forOp.getOperation()->getBlock();
forOp.getBody()->back().erase();
parentBlock->getOperations().splice(Block::iterator(forOp),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Promotes all single iteration 'for' ops in `f`, i.e., moves
/// their body into the containing Block.
void mlir::promoteSingleIterationLoops(FuncOp f) {
// Gathers all innermost loops through a post order pruned walk.
f.walk([](Operation *op) {
if (auto forOp = dyn_cast<AffineForOp>(op))
promoteIfSingleIteration(forOp);
else if (auto forOp = dyn_cast<scf::ForOp>(op))
promoteIfSingleIteration(forOp);
});
}
/// Generates an affine.for op with the specified lower and upper bounds
/// while generating the right IV remappings to realize shifts for operations in
/// its body. The operations that go into the loop body are specified in
/// opGroupQueue starting from the specified offset, and in that order. The
/// first element of the pair specifies the shift applied to that group of
/// operations; the shift is multiplied by the loop step before being applied.
/// Returns nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp generateShiftedLoop(
AffineMap lbMap, AffineMap ubMap,
const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> &opGroupQueue,
unsigned offset, AffineForOp srcForOp, OpBuilder b) {
auto lbOperands = srcForOp.getLowerBoundOperands();
auto ubOperands = srcForOp.getUpperBoundOperands();
assert(lbMap.getNumInputs() == lbOperands.size());
assert(ubMap.getNumInputs() == ubOperands.size());
auto loopChunk = b.create<AffineForOp>(srcForOp.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, srcForOp.getStep());
auto loopChunkIV = loopChunk.getInductionVar();
auto srcIV = srcForOp.getInductionVar();
BlockAndValueMapping operandMap;
auto bodyBuilder = OpBuilder::atBlockTerminator(loopChunk.getBody());
for (auto it = opGroupQueue.begin() + offset, e = opGroupQueue.end(); it != e;
++it) {
uint64_t shift = it->first;
auto ops = it->second;
// All 'same shift' operations get added with their operands being
// remapped to results of cloned operations, and their IV used remapped.
// Generate the remapping if the shift is not zero: remappedIV = newIV -
// shift.
if (!srcIV.use_empty() && shift != 0) {
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
srcForOp.getLoc(),
bodyBuilder.getSingleDimShiftAffineMap(
-static_cast<int64_t>(srcForOp.getStep() * shift)),
loopChunkIV);
operandMap.map(srcIV, ivRemap);
} else {
operandMap.map(srcIV, loopChunkIV);
}
for (auto *op : ops)
bodyBuilder.clone(*op, operandMap);
};
if (succeeded(promoteIfSingleIteration(loopChunk)))
return AffineForOp();
return loopChunk;
}
// The skewing of operations with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of operations
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of operations.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of operations
// in the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based dependence preservation check rests with the users of this
// method.
LogicalResult mlir::affineForOpBodySkew(AffineForOp forOp,
ArrayRef<uint64_t> shifts,
bool unrollPrologueEpilogue) {
assert(forOp.getBody()->getOperations().size() == shifts.size() &&
"too few/many shifts");
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return success();
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
return success();
}
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(isOpwiseShiftValid(forOp, shifts) &&
"shifts will lead to an invalid transformation\n");
int64_t step = forOp.getStep();
unsigned numChildOps = shifts.size();
// Do a linear time (counting) sort for the shifts.
uint64_t maxShift = *std::max_element(shifts.begin(), shifts.end());
if (maxShift >= numChildOps) {
// Large shifts are not the typical use case.
forOp.emitWarning("not shifting because shifts are unrealistically large");
return success();
}
// An array of operation groups sorted by shift amount; each group has all
// operations with the same shift in the order in which they appear in the
// body of the 'affine.for' op.
std::vector<std::vector<Operation *>> sortedOpGroups(maxShift + 1);
unsigned pos = 0;
for (auto &op : forOp.getBody()->without_terminator()) {
auto shift = shifts[pos++];
sortedOpGroups[shift].push_back(&op);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
AffineForOp prologue, epilogue;
// Do a sweep over the sorted shifts while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of operations is paired with its shift.
std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> opGroupQueue;
auto origLbMap = forOp.getLowerBoundMap();
uint64_t lbShift = 0;
OpBuilder b(forOp);
for (uint64_t d = 0, e = sortedOpGroups.size(); d < e; ++d) {
// If nothing is shifted by d, continue.
if (sortedOpGroups[d].empty())
continue;
if (!opGroupQueue.empty()) {
assert(d > 0 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// [lbShift, min(lbShift + tripCount, d)) and the body of the
// loop needs to have all operations in opQueue in that order.
AffineForOp res;
if (lbShift + tripCount * step < d * step) {
res = generateShiftedLoop(
b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
opGroupQueue, /*offset=*/0, forOp, b);
// Entire loop for the queued op groups generated, empty it.
opGroupQueue.clear();
lbShift += tripCount * step;
} else {
res = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, d),
opGroupQueue, /*offset=*/0, forOp, b);
lbShift = d * step;
}
if (res) {
// Simplify/canonicalize the affine.for.
OwningRewritePatternList patterns;
AffineForOp::getCanonicalizationPatterns(patterns, res.getContext());
bool erased;
applyOpPatternsAndFold(res, std::move(patterns), &erased);
if (!erased && !prologue)
prologue = res;
if (!erased)
epilogue = res;
}
} else {
// Start of first interval.
lbShift = d * step;
}
// Augment the list of operations that get into the current open interval.
opGroupQueue.push_back({d, sortedOpGroups[d]});
}
// Those operations groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = opGroupQueue.size(); i < e; ++i) {
uint64_t ubShift = (opGroupQueue[i].first + tripCount) * step;
epilogue = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, ubShift),
opGroupQueue, /*offset=*/i, forOp, b);
lbShift = ubShift;
if (!prologue)
prologue = epilogue;
}
// Erase the original for op.
forOp.erase();
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue && epilogue != prologue)
loopUnrollFull(epilogue);
return success();
}
/// Checks the legality of tiling of a hyper-rectangular loop nest by simply
/// checking if there is a 'negative' dependence in the memrefs present in
/// the loop nest. If yes then tiling is invalid.
static bool
checkTilingLegalityImpl(MutableArrayRef<mlir::AffineForOp> origLoops) {
assert(!origLoops.empty() && "no original loops provided");
// We first find out all dependences we intend to check.
SmallVector<Operation *, 8> loadAndStoreOps;
origLoops[0].getOperation()->walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
});
unsigned numOps = loadAndStoreOps.size();
unsigned numLoops = origLoops.size();
FlatAffineConstraints dependenceConstraints;
for (unsigned d = 1; d <= numLoops + 1; ++d) {
for (unsigned i = 0; i < numOps; ++i) {
Operation *srcOp = loadAndStoreOps[i];
MemRefAccess srcAccess(srcOp);
for (unsigned j = 0; j < numOps; ++j) {
Operation *dstOp = loadAndStoreOps[j];
MemRefAccess dstAccess(dstOp);
SmallVector<DependenceComponent, 2> depComps;
dependenceConstraints.reset();
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, &dependenceConstraints, &depComps);
// Skip if there is no dependence in this case.
if (!hasDependence(result))
continue;
// Check whether there is any negative direction vector in the
// dependence components found above, which means that dependence is
// violated by the default hyper-rect tiling method.
LLVM_DEBUG(llvm::dbgs() << "Checking whether tiling legality violated "
"for dependence at depth: "
<< Twine(d) << " between:\n";);
LLVM_DEBUG(srcAccess.opInst->dump(););
LLVM_DEBUG(dstAccess.opInst->dump(););
for (unsigned k = 0, e = depComps.size(); k < e; k++) {
DependenceComponent depComp = depComps[k];
if (depComp.lb.hasValue() && depComp.ub.hasValue() &&
depComp.lb.getValue() < depComp.ub.getValue() &&
depComp.ub.getValue() < 0) {
LLVM_DEBUG(llvm::dbgs()
<< "Dependence component lb = "
<< Twine(depComp.lb.getValue())
<< " ub = " << Twine(depComp.ub.getValue())
<< " is negative at depth: " << Twine(d)
<< " and thus violates the legality rule.\n");
return false;
}
}
}
}
}
return true;
}
/// Checks whether hyper-rectangular loop tiling of the nest
/// represented by `origLoops` is valid. The validity condition is from Irigoin
/// and Triolet, which states that two tiles cannot depend on each other. We
/// simplify such condition to just checking whether there is any negative
/// dependence direction, since we have the prior knowledge that the tiling
/// results will be hyper-rectangles, which are scheduled in the
/// lexicographically increasing order on the vector of loop indices. This
/// function will return failure when any dependence component is negative along
/// any of `origLoops`.
LogicalResult
checkTilingLegality(MutableArrayRef<mlir::AffineForOp> origLoops) {
return success(checkTilingLegalityImpl(origLoops));
}
/// Check if the input data is valid and wheter tiled code will be legal or not.
template <typename t>
void performPreTilingChecks(MutableArrayRef<AffineForOp> input,
ArrayRef<t> tileSizes) {
// Check if the supplied for op's are all successively nested.
assert(!input.empty() && "no loops in input band");
assert(input.size() == tileSizes.size() && "Too few/many tile sizes");
assert(isPerfectlyNested(input) && "input loops not perfectly nested");
// Perform tiling legality test.
if (failed(checkTilingLegality(input)))
input[0].emitRemark("tiled code is illegal due to dependences");
}
/// Move the loop body of AffineForOp 'src' from 'src' into the specified
/// location in destination's body, ignoring the terminator.
static void moveLoopBodyImpl(AffineForOp src, AffineForOp dest,
Block::iterator loc) {
auto &ops = src.getBody()->getOperations();
dest.getBody()->getOperations().splice(loc, ops, ops.begin(),
std::prev(ops.end()));
}
/// Move the loop body of AffineForOp 'src' from 'src' to the start of dest
/// body.
void moveLoopBody(AffineForOp src, AffineForOp dest) {
moveLoopBodyImpl(src, dest, dest.getBody()->begin());
}
/// Constructs tiled loop nest, without setting the loop bounds and move the
/// body of the original loop nest to the tiled loop nest.
void constructTiledLoopNest(MutableArrayRef<AffineForOp> origLoops,
AffineForOp rootAffineForOp, unsigned width,
MutableArrayRef<AffineForOp> tiledLoops) {
Location loc = rootAffineForOp.getLoc();
// The outermost among the loops as we add more..
Operation *topLoop = rootAffineForOp.getOperation();
AffineForOp innermostPointLoop;
// Add intra-tile (or point) loops.
for (unsigned i = 0; i < width; i++) {
OpBuilder b(topLoop);
// Loop bounds will be set later.
AffineForOp pointLoop = b.create<AffineForOp>(loc, 0, 0);
pointLoop.getBody()->getOperations().splice(
pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
topLoop);
tiledLoops[2 * width - 1 - i] = pointLoop;
topLoop = pointLoop.getOperation();
if (i == 0)
innermostPointLoop = pointLoop;
}
// Add tile space loops;
for (unsigned i = width; i < 2 * width; i++) {
OpBuilder b(topLoop);
// Loop bounds will be set later.
AffineForOp tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
tileSpaceLoop.getBody()->getOperations().splice(
tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
topLoop);
tiledLoops[2 * width - i - 1] = tileSpaceLoop;
topLoop = tileSpaceLoop.getOperation();
}
// Move the loop body of the original nest to the new one.
moveLoopBody(origLoops.back(), innermostPointLoop);
}
/// Checks whether a loop nest is hyper-rectangular or not.
LogicalResult checkIfHyperRectangular(MutableArrayRef<AffineForOp> input,
AffineForOp rootAffineForOp,
unsigned width) {
FlatAffineConstraints cst;
SmallVector<Operation *, 8> ops(input.begin(), input.end());
getIndexSet(ops, &cst);
if (!cst.isHyperRectangular(0, width)) {
rootAffineForOp.emitError("tiled code generation unimplemented for the "
"non-hyperrectangular case");
return failure();
}
return success();
}
/// Set lower and upper bounds of intra-tile loops for parametric tiling.
// TODO: Handle non-constant lower bounds.
static void setIntraTileBoundsParametric(OpBuilder &b, AffineForOp origLoop,
AffineForOp newInterTileLoop,
AffineForOp newIntraTileLoop,
Value tileSize) {
// The lower bound for the intra-tile loop is represented by an affine map
// as (%i, %t0)->((%i - %origlb) * %t0 + %origlb). Similarly, the upper bound
// for the intra-tile loop is represented by an affine map as (%i, %t0)->((%i
// - %origlb) * %t0) + (%t0 * %origLoopStep) + %origlb), where %i is loop IV
// of the corresponding inter-tile loop, %t0 is the corresponding tiling
// parameter, %origlb is lower bound and %origLoopStep is the loop step of the
// corresponding inter-tile loop.
assert(origLoop.hasConstantLowerBound() &&
"expected input loops to have constant lower bound.");
// Get lower bound of original loop as an affine expression.
AffineExpr origLowerBoundExpr;
origLowerBoundExpr =
b.getAffineConstantExpr(origLoop.getConstantLowerBound());
// Add dim operands from original lower/upper bound.
SmallVector<Value, 4> lbOperands, ubOperands;
AffineBound lb = origLoop.getLowerBound();
AffineBound ub = origLoop.getUpperBound();
lbOperands.reserve(lb.getNumOperands() + 2);
ubOperands.reserve(ub.getNumOperands() + 2);
AffineMap origLbMap = lb.getMap();
AffineMap origUbMap = ub.getMap();
for (unsigned j = 0, e = origLbMap.getNumDims(); j < e; ++j)
lbOperands.push_back(lb.getOperand(j));
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add a new dim operand in lb/ubOperands corresponding to the origLoop
// IV.
lbOperands.push_back(newInterTileLoop.getInductionVar());
ubOperands.push_back(newInterTileLoop.getInductionVar());
// Get loop IV as an affine expression for lower/upper bound. Size of
// lb/ubOperands is guaranteed to be atleast one.
AffineExpr lbLoopIvExpr = b.getAffineDimExpr(lbOperands.size() - 1);
AffineExpr ubLoopIvExpr = b.getAffineDimExpr(ubOperands.size() - 1);
// Add symbol operands from original lower/upper bound.
for (unsigned j = 0, e = origLbMap.getNumSymbols(); j < e; ++j)
lbOperands.push_back(lb.getOperand(origLbMap.getNumDims() + j));
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
// Add a new symbol operand which is the tile size for this loop.
lbOperands.push_back(tileSize);
ubOperands.push_back(tileSize);
SmallVector<AffineExpr, 4> lbBoundExprs;
SmallVector<AffineExpr, 4> ubBoundExprs;
lbBoundExprs.reserve(origLbMap.getNumResults());
ubBoundExprs.reserve(origUbMap.getNumResults());
// Get tiling parameter as an affine expression for lb/ub.
AffineExpr lbTileParameter = b.getAffineSymbolExpr(origLbMap.getNumSymbols());
AffineExpr ubTileParameter = b.getAffineSymbolExpr(origUbMap.getNumSymbols());
// Insert lb as inter-tile ((loop IV - origlb) * tilingParameter) + origlb.
lbBoundExprs.push_back(
((lbLoopIvExpr - origLowerBoundExpr) * lbTileParameter) +
origLowerBoundExpr);
// Get the origLoopStep as an affine expression.
AffineExpr origLoopStep = b.getAffineConstantExpr(origLoop.getStep());
// Insert ub as inter-tile ((loop IV - origlb) * tilingParameter) +
// (tilingParameter * origLoopStep) + origlb.
ubBoundExprs.push_back(
((ubLoopIvExpr - origLowerBoundExpr) * ubTileParameter) +
(ubTileParameter * origLoopStep) + origLowerBoundExpr);
ubBoundExprs.append(origUbMap.getResults().begin(),
origUbMap.getResults().end());
AffineMap lbMap =
AffineMap::get(origLbMap.getNumDims() + 1, origLbMap.getNumSymbols() + 1,
lbBoundExprs, b.getContext());
newIntraTileLoop.setLowerBound(lbOperands, lbMap);
AffineMap ubMap =
AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols() + 1,
ubBoundExprs, b.getContext());
newIntraTileLoop.setUpperBound(ubOperands, ubMap);
// Original loop step must be preserved.
newIntraTileLoop.setStep(origLoop.getStep());
}
/// Set lower and upper bounds of inter-tile loops for parametric tiling.
// TODO: Handle non-constant lower bounds.
static void setInterTileBoundsParametric(OpBuilder &b, AffineForOp origLoop,
AffineForOp newLoop, Value tileSize) {
OperandRange newLbOperands = origLoop.getLowerBoundOperands();
// The lower bounds for inter-tile loops are same as the correspondig lower
// bounds of original loops.
newLoop.setLowerBound(newLbOperands, origLoop.getLowerBoundMap());
// The new upper bound map for inter-tile loops, assuming constant lower
// bounds, are now originalLowerBound + ceildiv((orignalUpperBound -
// originalLowerBound), tiling paramter); where tiling parameter is the
// respective tile size for that loop. For e.g. if the original ubmap was
// ()->(1024), the new map will be
// ()[s0]->(ceildiv((1024 -lb) % s0)), where s0 is the tiling parameter.
// Therefore a new symbol operand is inserted in the map and the result
// expression is overwritten.
assert(origLoop.hasConstantLowerBound() &&
"expected input loops to have constant lower bound.");
// Get lower bound of original loop as an affine expression.
AffineExpr origLowerBoundExpr;
origLowerBoundExpr =
b.getAffineConstantExpr(origLoop.getConstantLowerBound());
// Add dim operands from original upper bound.
SmallVector<Value, 4> ubOperands;
AffineBound ub = origLoop.getUpperBound();
ubOperands.reserve(ub.getNumOperands() + 1);
AffineMap origUbMap = ub.getMap();
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add symbol operands from original upper bound.
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
// Add a new symbol operand which is the tile size for this loop.
ubOperands.push_back(tileSize);
// Get tiling parameter as an affine expression.
AffineExpr tileParameter = b.getAffineSymbolExpr(origUbMap.getNumSymbols());
SmallVector<AffineExpr, 4> boundExprs;
boundExprs.reserve(origUbMap.getNumResults());
int64_t origUpperBound;
AffineExpr origUpperBoundExpr;
// If upper bound for the original loop is constant, then the constant can
// be obtained as an affine expression straight away.
if (origLoop.hasConstantUpperBound()) {
origUpperBound = origLoop.getConstantUpperBound();
// Get original constant upper bound as an affine expression.
origUpperBoundExpr = b.getAffineConstantExpr(origUpperBound);
// Insert the bound as originalLowerBoundceildiv((originalUpperBound -
// originalLowerBound), tilingParameter).
boundExprs.push_back(
origLowerBoundExpr +
(origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter));
} else {
// If upper bound for the original loop is not constant then two cases
// are possible, although there handeling is the same, 1.) The result of
// ubmap has only one result expression. For e.g.
// affine.for %i = 5 to %ub
//
// A symbol operand is added which represents the tiling paramater. The
// new loop bounds here will be like ()[s0, s1] -> ((s0 - 5) ceildiv s1 + 5)
// where 's0' is the original upper bound and 's1' is the tiling
// parameter. 2.) When ubMap has more than one result expression. For e.g.
// #map0 = affine_map<()[s0, s1] -> (s0, s1)
// affine.for %i = 5 to min #map0()[%s0, %s1]
//
// A symbol operand is added which represents the tiling parameter. The
// new loop bounds will be like ()[s0, s1, s2] -> ((s0 - 5) ceildiv s2 + 5,
// (s1 -5) ceildiv s2 + 5), where s2 is the tiling parameter.
// Insert the bounds as originalLowerBound + ceildiv((originalUpperBound -
// originalLowerBound), tilingParameter).
for (AffineExpr origUpperBoundExpr : origUbMap.getResults())
boundExprs.push_back(
origLowerBoundExpr +
(origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter));
}
AffineMap ubMap =
AffineMap::get(origUbMap.getNumDims(), origUbMap.getNumSymbols() + 1,
boundExprs, b.getContext());
newLoop.setUpperBound(ubOperands, ubMap);
// Original loop step must be preserved.
newLoop.setStep(origLoop.getStep());
}
/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions and tiling parameters are captured from SSA
/// values. Bounds of each dimension can thus be treated independently,
/// and deriving the new bounds is much simpler and faster than for the case of
/// tiling arbitrary polyhedral shapes.
static void constructParametricallyTiledIndexSetHyperRect(
MutableArrayRef<AffineForOp> origLoops,
MutableArrayRef<AffineForOp> newLoops, ArrayRef<Value> tileSizes) {
assert(!origLoops.empty() && "expected atleast one loop in band");
assert(origLoops.size() == tileSizes.size() &&
"expected tiling parameter for each loop in band.");
OpBuilder b(origLoops[0].getOperation());
unsigned width = origLoops.size();
// Set bounds for tile space loops.
for (unsigned i = 0; i < width; ++i) {
setInterTileBoundsParametric(b, origLoops[i], newLoops[i], tileSizes[i]);
}
// Set bounds for intra-tile loops.
for (unsigned i = 0; i < width; ++i) {
setIntraTileBoundsParametric(b, origLoops[i], newLoops[i],
newLoops[i + width], tileSizes[i]);
}
}
/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions. Bounds of each dimension can thus be treated
/// independently, and deriving the new bounds is much simpler and faster
/// than for the case of tiling arbitrary polyhedral shapes.
static void
constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
MutableArrayRef<AffineForOp> newLoops,
ArrayRef<unsigned> tileSizes) {
assert(!origLoops.empty());
assert(origLoops.size() == tileSizes.size());
OpBuilder b(origLoops[0].getOperation());
unsigned width = origLoops.size();
// Bounds for tile space loops.
for (unsigned i = 0; i < width; i++) {
OperandRange newLbOperands = origLoops[i].getLowerBoundOperands();
OperandRange newUbOperands = origLoops[i].getUpperBoundOperands();
newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
newLoops[i].setStep(tileSizes[i]);
}
// Bounds for intra-tile loops.
for (unsigned i = 0; i < width; i++) {
int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
Optional<uint64_t> mayBeConstantCount = getConstantTripCount(origLoops[i]);
// The lower bound is just the tile-space loop.
AffineMap lbMap = b.getDimIdentityMap();
newLoops[width + i].setLowerBound(
/*operands=*/newLoops[i].getInductionVar(), lbMap);
// Set the upper bound.
if (mayBeConstantCount && mayBeConstantCount.getValue() < tileSizes[i]) {
// Trip count is less than the tile size: upper bound is lower bound +
// trip count.
AffineMap ubMap =
b.getSingleDimShiftAffineMap(mayBeConstantCount.getValue());
newLoops[width + i].setUpperBound(
/*operands=*/newLoops[i].getInductionVar(), ubMap);
} else if (largestDiv % tileSizes[i] != 0) {
// Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
// Construct the upper bound map; the operands are the original operands
// with 'i' (tile-space loop) appended to it. The new upper bound map is
// the original one with an additional expression i + tileSize appended.
// Add dim operands from original upper bound.
SmallVector<Value, 4> ubOperands;
AffineBound ub = origLoops[i].getUpperBound();
ubOperands.reserve(ub.getNumOperands() + 1);
AffineMap origUbMap = ub.getMap();
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add dim operand for new loop upper bound.
ubOperands.push_back(newLoops[i].getInductionVar());
// Add symbol operands from original upper bound.
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
SmallVector<AffineExpr, 4> boundExprs;
boundExprs.reserve(1 + origUbMap.getNumResults());
AffineExpr dim = b.getAffineDimExpr(origUbMap.getNumDims());
// The new upper bound map is the original one with an additional
// expression i + tileSize appended.
boundExprs.push_back(dim + tileSizes[i]);
boundExprs.append(origUbMap.getResults().begin(),
origUbMap.getResults().end());
AffineMap ubMap =
AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols(),
boundExprs, b.getContext());
newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
} else {
// No need of the min expression.
AffineExpr dim = b.getAffineDimExpr(0);
AffineMap ubMap = AffineMap::get(1, 0, dim + tileSizes[i]);
newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
}
}
}
/// Tiles the specified band of perfectly nested loops creating tile-space loops
/// and intra-tile loops. A band is a contiguous set of loops.
// TODO: handle non hyper-rectangular spaces.
LogicalResult
mlir::tilePerfectlyNested(MutableArrayRef<AffineForOp> input,
ArrayRef<unsigned> tileSizes,
SmallVectorImpl<AffineForOp> *tiledNest) {
performPreTilingChecks(input, tileSizes);
MutableArrayRef<AffineForOp> origLoops = input;
AffineForOp rootAffineForOp = origLoops[0];
// Note that width is at least one since band isn't empty.
unsigned width = input.size();
SmallVector<AffineForOp, 6> tiledLoops(2 * width);
// Construct a tiled loop nest without setting their bounds. Bounds are
// set later.
constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops);
SmallVector<Value, 8> origLoopIVs;
extractForInductionVars(input, &origLoopIVs);
if (failed(checkIfHyperRectangular(input, rootAffineForOp, width)))
return failure();
// Set loop bounds for the tiled loop nest.
constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes);
// Replace original IVs with intra-tile loop IVs.
for (unsigned i = 0; i < width; i++)
origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
// Erase the old loop nest.
rootAffineForOp.erase();
if (tiledNest)
*tiledNest = std::move(tiledLoops);
return success();
}
/// Tiles the specified band of perfectly nested loops creating tile-space
/// loops and intra-tile loops, using SSA values as tiling parameters. A band
/// is a contiguous set of loops.
// TODO: handle non hyper-rectangular spaces.
LogicalResult
mlir::tilePerfectlyNestedParametric(MutableArrayRef<AffineForOp> input,
ArrayRef<Value> tileSizes,
SmallVectorImpl<AffineForOp> *tiledNest) {
performPreTilingChecks(input, tileSizes);
MutableArrayRef<AffineForOp> origLoops = input;
AffineForOp rootAffineForOp = origLoops[0];
// Note that width is at least one since band isn't empty.
unsigned width = input.size();
SmallVector<AffineForOp, 6> tiledLoops(2 * width);
// Construct a tiled loop nest without setting their bounds. Bounds are
// set later.
constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops);
SmallVector<Value, 8> origLoopIVs;
extractForInductionVars(input, &origLoopIVs);
if (failed(checkIfHyperRectangular(input, rootAffineForOp, width)))
return failure();
// Set loop bounds for the tiled loop nest.
constructParametricallyTiledIndexSetHyperRect(origLoops, tiledLoops,
tileSizes);
// Replace original IVs with intra-tile loop IVs.
for (unsigned i = 0; i < width; i++)
origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
// Erase the old loop nest.
rootAffineForOp.erase();
if (tiledNest)
*tiledNest = std::move(tiledLoops);
return success();
}
/// Collect perfectly nested loops starting from `rootForOps`. Loops are
/// perfectly nested if each loop is the first and only non-terminator operation
/// in the parent loop. Collect at most `maxLoops` loops and append them to
/// `forOps`.
template <typename T>
static void getPerfectlyNestedLoopsImpl(
SmallVectorImpl<T> &forOps, T rootForOp,
unsigned maxLoops = std::numeric_limits<unsigned>::max()) {
for (unsigned i = 0; i < maxLoops; ++i) {
forOps.push_back(rootForOp);
Block &body = rootForOp.region().front();
if (body.begin() != std::prev(body.end(), 2))
return;
rootForOp = dyn_cast<T>(&body.front());
if (!rootForOp)
return;
}
}
/// Get perfectly nested sequence of loops starting at root of loop nest
/// (the first op being another AffineFor, and the second op - a terminator).
/// A loop is perfectly nested iff: the first op in the loop's body is another
/// AffineForOp, and the second op is a terminator).
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<AffineForOp> &nestedLoops,
AffineForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<scf::ForOp> &nestedLoops,
scf::ForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
/// Identify valid and profitable bands of loops to tile. This is currently just
/// a temporary placeholder to test the mechanics of tiled code generation.
/// Returns all maximal outermost perfect loop nests to tile.
void mlir::getTileableBands(FuncOp f,
std::vector<SmallVector<AffineForOp, 6>> *bands) {
// Get maximal perfect nest of 'affine.for' insts starting from root
// (inclusive).
for (AffineForOp forOp : f.getOps<AffineForOp>()) {
SmallVector<AffineForOp, 6> band;
getPerfectlyNestedLoops(band, forOp);
bands->push_back(band);
}
}
/// Unrolls this loop completely.
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue()) {
uint64_t tripCount = mayBeConstantTripCount.getValue();
if (tripCount == 1)
return promoteIfSingleIteration(forOp);
return loopUnrollByFactor(forOp, tripCount);
}
return failure();
}
/// Unrolls this loop by the specified factor or by the trip count (if constant)
/// whichever is lower.
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
uint64_t unrollFactor) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
return loopUnrollByFactor(forOp, unrollFactor);
}
// Generates unrolled copies of AffineForOp or scf::ForOp 'loopBodyBlock', with
// associated 'forOpIV' by 'unrollFactor', calling 'ivRemapFn' to remap
// 'forOpIV' for each unrolled body.
static void generateUnrolledLoop(
Block *loopBodyBlock, Value forOpIV, uint64_t unrollFactor,
function_ref<Value(unsigned, Value, OpBuilder)> ivRemapFn) {
// Builder to insert unrolled bodies just before the terminator of the body of
// 'forOp'.
auto builder = OpBuilder::atBlockTerminator(loopBodyBlock);
// Keep a pointer to the last non-terminator operation in the original block
// so that we know what to clone (since we are doing this in-place).
Block::iterator srcBlockEnd = std::prev(loopBodyBlock->end(), 2);
// Unroll the contents of 'forOp' (append unrollFactor - 1 additional copies).
for (unsigned i = 1; i < unrollFactor; i++) {
BlockAndValueMapping operandMap;
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV.use_empty()) {
Value ivUnroll = ivRemapFn(i, forOpIV, builder);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the original body of 'forOp'.
for (auto it = loopBodyBlock->begin(); it != std::next(srcBlockEnd); it++)
builder.clone(*it, operandMap);
}
}
/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
uint64_t unrollFactor) {
assert(unrollFactor > 0 && "unroll factor should be positive");
if (unrollFactor == 1)
return promoteIfSingleIteration(forOp);
// Nothing in the loop body other than the terminator.
if (llvm::hasSingleElement(forOp.getBody()->getOperations()))
return success();
// Loops where the lower bound is a max expression isn't supported for
// unrolling since the trip count can be expressed as an affine function when
// both the lower bound and the upper bound are multi-result maps. However,
// one meaningful way to do such unrolling would be to specialize the loop for
// the 'hotspot' case and unroll that hotspot.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// If the trip count is lower than the unroll factor, no unrolled body.
// TODO: option to specify cleanup loop unrolling.
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return failure();
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
OpBuilder builder(forOp.getOperation()->getBlock(),
std::next(Block::iterator(forOp)));
auto cleanupForOp = cast<AffineForOp>(builder.clone(*forOp));
AffineMap cleanupMap;
SmallVector<Value, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollFactor, cleanupMap, cleanupOperands);
assert(cleanupMap &&
"cleanup loop lower bound map for single result lower bound maps "
"can always be determined");
cleanupForOp.setLowerBound(cleanupOperands, cleanupMap);
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(cleanupForOp);
// Adjust upper bound of the original loop; this is the same as the lower
// bound of the cleanup loop.
forOp.setUpperBound(cleanupOperands, cleanupMap);
}
// Scale the step of loop being unrolled by unroll factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollFactor);
generateUnrolledLoop(forOp.getBody(), forOp.getInductionVar(), unrollFactor,
[&](unsigned i, Value iv, OpBuilder b) {
// iv' = iv + i * step
auto d0 = b.getAffineDimExpr(0);
auto bumpMap = AffineMap::get(1, 0, d0 + i * step);
return b.create<AffineApplyOp>(forOp.getLoc(), bumpMap,
iv);
});
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
/// Unrolls 'forOp' by 'unrollFactor', returns success if the loop is unrolled.
LogicalResult mlir::loopUnrollByFactor(scf::ForOp forOp,
uint64_t unrollFactor) {
assert(unrollFactor > 0 && "expected positive unroll factor");
if (unrollFactor == 1)
return promoteIfSingleIteration(forOp);
// Return if the loop body is empty.
if (llvm::hasSingleElement(forOp.getBody()->getOperations()))
return success();
// Compute tripCount = ceilDiv((upperBound - lowerBound), step) and populate
// 'upperBoundUnrolled' and 'stepUnrolled' for static and dynamic cases.
OpBuilder boundsBuilder(forOp);
auto loc = forOp.getLoc();
auto step = forOp.step();
Value upperBoundUnrolled;
Value stepUnrolled;
bool generateEpilogueLoop = true;
auto lbCstOp = forOp.lowerBound().getDefiningOp<ConstantIndexOp>();
auto ubCstOp = forOp.upperBound().getDefiningOp<ConstantIndexOp>();
auto stepCstOp = forOp.step().getDefiningOp<ConstantIndexOp>();
if (lbCstOp && ubCstOp && stepCstOp) {
// Constant loop bounds computation.
int64_t lbCst = lbCstOp.getValue();
int64_t ubCst = ubCstOp.getValue();
int64_t stepCst = stepCstOp.getValue();
assert(lbCst >= 0 && ubCst >= 0 && stepCst >= 0 &&
"expected positive loop bounds and step");
int64_t tripCount = mlir::ceilDiv(ubCst - lbCst, stepCst);
int64_t tripCountEvenMultiple = tripCount - (tripCount % unrollFactor);
int64_t upperBoundUnrolledCst = lbCst + tripCountEvenMultiple * stepCst;
assert(upperBoundUnrolledCst <= ubCst);
int64_t stepUnrolledCst = stepCst * unrollFactor;
// Create constant for 'upperBoundUnrolled' and set epilogue loop flag.
generateEpilogueLoop = upperBoundUnrolledCst < ubCst;
if (generateEpilogueLoop)
upperBoundUnrolled =
boundsBuilder.create<ConstantIndexOp>(loc, upperBoundUnrolledCst);
else
upperBoundUnrolled = ubCstOp;
// Create constant for 'stepUnrolled'.
stepUnrolled =
stepCst == stepUnrolledCst
? step
: boundsBuilder.create<ConstantIndexOp>(loc, stepUnrolledCst);
} else {
// Dynamic loop bounds computation.
// TODO: Add dynamic asserts for negative lb/ub/step, or
// consider using ceilDiv from AffineApplyExpander.
auto lowerBound = forOp.lowerBound();
auto upperBound = forOp.upperBound();
Value diff = boundsBuilder.create<SubIOp>(loc, upperBound, lowerBound);
Value tripCount = ceilDivPositive(boundsBuilder, loc, diff, step);
Value unrollFactorCst =
boundsBuilder.create<ConstantIndexOp>(loc, unrollFactor);
Value tripCountRem =
boundsBuilder.create<SignedRemIOp>(loc, tripCount, unrollFactorCst);
// Compute tripCountEvenMultiple = tripCount - (tripCount % unrollFactor)
Value tripCountEvenMultiple =
boundsBuilder.create<SubIOp>(loc, tripCount, tripCountRem);
// Compute upperBoundUnrolled = lowerBound + tripCountEvenMultiple * step
upperBoundUnrolled = boundsBuilder.create<AddIOp>(
loc, lowerBound,
boundsBuilder.create<MulIOp>(loc, tripCountEvenMultiple, step));
// Scale 'step' by 'unrollFactor'.
stepUnrolled = boundsBuilder.create<MulIOp>(loc, step, unrollFactorCst);
}
// Create epilogue clean up loop starting at 'upperBoundUnrolled'.
if (generateEpilogueLoop) {
OpBuilder epilogueBuilder(forOp.getOperation()->getBlock(),
std::next(Block::iterator(forOp)));
auto epilogueForOp = cast<scf::ForOp>(epilogueBuilder.clone(*forOp));
epilogueForOp.setLowerBound(upperBoundUnrolled);
promoteIfSingleIteration(epilogueForOp);
}
// Create unrolled loop.
forOp.setUpperBound(upperBoundUnrolled);
forOp.setStep(stepUnrolled);
generateUnrolledLoop(forOp.getBody(), forOp.getInductionVar(), unrollFactor,
[&](unsigned i, Value iv, OpBuilder b) {
// iv' = iv + step * i;
auto stride = b.create<MulIOp>(
loc, step, b.create<ConstantIndexOp>(loc, i));
return b.create<AddIOp>(loc, iv, stride);
});
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
LogicalResult mlir::loopUnrollJamUpToFactor(AffineForOp forOp,
uint64_t unrollJamFactor) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollJamFactor)
return loopUnrollJamByFactor(forOp, mayBeConstantTripCount.getValue());
return loopUnrollJamByFactor(forOp, unrollJamFactor);
}
/// Unrolls and jams this loop by the specified factor.
LogicalResult mlir::loopUnrollJamByFactor(AffineForOp forOp,
uint64_t unrollJamFactor) {
// Gathers all maximal sub-blocks of operations that do not themselves
// include a for op (a operation could have a descendant for op though
// in its tree). Ignore the block terminators.
struct JamBlockGatherer {
// Store iterators to the first and last op of each sub-block found.
std::vector<std::pair<Block::iterator, Block::iterator>> subBlocks;
// This is a linear time walk.
void walk(Operation *op) {
for (auto ®ion : op->getRegions())
for (auto &block : region)
walk(block);
}
void walk(Block &block) {
for (auto it = block.begin(), e = std::prev(block.end()); it != e;) {
auto subBlockStart = it;
while (it != e && !isa<AffineForOp>(&*it))
++it;
if (it != subBlockStart)
subBlocks.push_back({subBlockStart, std::prev(it)});
// Process all for ops that appear next.
while (it != e && isa<AffineForOp>(&*it))
walk(&*it++);
}
}
};
assert(unrollJamFactor > 0 && "unroll jam factor should be positive");
if (unrollJamFactor == 1)
return promoteIfSingleIteration(forOp);
// Nothing in the loop body other than the terminator.
if (llvm::hasSingleElement(forOp.getBody()->getOperations()))
return success();
// Loops where both lower and upper bounds are multi-result maps won't be
// unrolled (since the trip can't be expressed as an affine function in
// general).
// TODO: this may not be common, but we could support the case
// where the lower bound is a multi-result map and the ub is a single result
// one.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
// If the trip count is lower than the unroll jam factor, no unroll jam.
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollJamFactor) {
LLVM_DEBUG(llvm::dbgs() << "[failed] trip count < unroll-jam factor\n");
return failure();
}
// Gather all sub-blocks to jam upon the loop being unrolled.
JamBlockGatherer jbg;
jbg.walk(forOp);
auto &subBlocks = jbg.subBlocks;
// Generate the cleanup loop if trip count isn't a multiple of
// unrollJamFactor.
if (getLargestDivisorOfTripCount(forOp) % unrollJamFactor != 0) {
// Insert the cleanup loop right after 'forOp'.
OpBuilder builder(forOp.getOperation()->getBlock(),
std::next(Block::iterator(forOp)));
auto cleanupAffineForOp = cast<AffineForOp>(builder.clone(*forOp));
// Adjust the lower bound of the cleanup loop; its upper bound is the same
// as the original loop's upper bound.
AffineMap cleanupMap;
SmallVector<Value, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollJamFactor, cleanupMap,
cleanupOperands);
cleanupAffineForOp.setLowerBound(cleanupOperands, cleanupMap);
// Promote the cleanup loop if it has turned into a single iteration loop.
promoteIfSingleIteration(cleanupAffineForOp);
// Adjust the upper bound of the original loop - it will be the same as the
// cleanup loop's lower bound. Its lower bound remains unchanged.
forOp.setUpperBound(cleanupOperands, cleanupMap);
}
// Scale the step of loop being unroll-jammed by the unroll-jam factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollJamFactor);
auto forOpIV = forOp.getInductionVar();
// Unroll and jam (appends unrollJamFactor - 1 additional copies).
for (unsigned i = unrollJamFactor - 1; i >= 1; --i) {
// Operand map persists across all sub-blocks.
BlockAndValueMapping operandMap;
for (auto &subBlock : subBlocks) {
// Builder to insert unroll-jammed bodies. Insert right at the end of
// sub-block.
OpBuilder builder(subBlock.first->getBlock(), std::next(subBlock.second));
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV.use_empty()) {
// iv' = iv + i, i = 1 to unrollJamFactor-1.
auto d0 = builder.getAffineDimExpr(0);
auto bumpMap = AffineMap::get(1, 0, d0 + i * step);
auto ivUnroll =
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the sub-block being unroll-jammed.
for (auto it = subBlock.first; it != std::next(subBlock.second); ++it)
builder.clone(*it, operandMap);
}
}
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
auto &forOpABody = forOpA.getBody()->getOperations();
auto &forOpBBody = forOpB.getBody()->getOperations();
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
// body containing only the terminator.
forOpA.getOperation()->getBlock()->getOperations().splice(
Block::iterator(forOpA), forOpABody, forOpABody.begin(),
std::prev(forOpABody.end()));
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
// body (this leaves forOpB's body containing only the terminator).
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
std::prev(forOpBBody.end()));
// 3) Splice forOpA into the beginning of forOpB's body.
forOpBBody.splice(forOpBBody.begin(),
forOpA.getOperation()->getBlock()->getOperations(),
Block::iterator(forOpA));
}
// Checks each dependence component against the permutation to see if the
// desired loop interchange would violate dependences by making the
// dependence component lexicographically negative.
static bool checkLoopInterchangeDependences(
const std::vector<SmallVector<DependenceComponent, 2>> &depCompsVec,
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
// Invert permutation map.
unsigned maxLoopDepth = loops.size();
SmallVector<unsigned, 4> loopPermMapInv;
loopPermMapInv.resize(maxLoopDepth);
for (unsigned i = 0; i < maxLoopDepth; ++i)
loopPermMapInv[loopPermMap[i]] = i;
// Check each dependence component against the permutation to see if the
// desired loop interchange permutation would make the dependence vectors
// lexicographically negative.
// Example 1: [-1, 1][0, 0]
// Example 2: [0, 0][-1, 1]
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
const SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
// Check if the first non-zero dependence component is positive.
// This iterates through loops in the desired order.
for (unsigned j = 0; j < maxLoopDepth; ++j) {
unsigned permIndex = loopPermMapInv[j];
assert(depComps[permIndex].lb.hasValue());
int64_t depCompLb = depComps[permIndex].lb.getValue();
if (depCompLb > 0)
break;
if (depCompLb < 0)
return false;
}
}
return true;
}
/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
/// nested sequence of loops in 'loops' would violate dependences.
bool mlir::isValidLoopInterchangePermutation(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
assert(loopPermMap.size() == loops.size());
unsigned maxLoopDepth = loops.size();
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
}
/// Returns true if `loops` is a perfectly nested loop nest, where loops appear
/// in it from outermost to innermost.
bool LLVM_ATTRIBUTE_UNUSED
mlir::isPerfectlyNested(ArrayRef<AffineForOp> loops) {
assert(!loops.empty() && "no loops provided");
// We already know that the block can't be empty.
auto hasTwoElements = [](Block *block) {
auto secondOpIt = std::next(block->begin());
return secondOpIt != block->end() && &*secondOpIt == &block->back();
};
auto enclosingLoop = loops.front();
for (auto loop : loops.drop_front()) {
auto parentForOp = dyn_cast<AffineForOp>(loop.getParentOp());
// parentForOp's body should be just this loop and the terminator.
if (parentForOp != enclosingLoop || !hasTwoElements(parentForOp.getBody()))
return false;
enclosingLoop = loop;
}
return true;
}
// input[i] should move from position i -> permMap[i]. Returns the position in
// `input` that becomes the new outermost loop.
unsigned mlir::permuteLoops(MutableArrayRef<AffineForOp> input,
ArrayRef<unsigned> permMap) {
assert(input.size() == permMap.size() && "invalid permutation map size");
// Check whether the permutation spec is valid. This is a small vector - we'll
// just sort and check if it's iota.
SmallVector<unsigned, 4> checkPermMap(permMap.begin(), permMap.end());
llvm::sort(checkPermMap);
if (llvm::any_of(llvm::enumerate(checkPermMap),
[](const auto &en) { return en.value() != en.index(); }))
assert(false && "invalid permutation map");
// Nothing to do.
if (input.size() < 2)
return 0;
assert(isPerfectlyNested(input) && "input not perfectly nested");
// Compute the inverse mapping, invPermMap: since input[i] goes to position
// permMap[i], position i of the permuted nest is at input[invPermMap[i]].
SmallVector<std::pair<unsigned, unsigned>, 4> invPermMap;
for (unsigned i = 0, e = input.size(); i < e; ++i)
invPermMap.push_back({permMap[i], i});
llvm::sort(invPermMap);
// Move the innermost loop body to the loop that would be the innermost in the
// permuted nest (only if the innermost loop is going to change).
if (permMap.back() != input.size() - 1) {
auto *destBody = input[invPermMap.back().second].getBody();
auto *srcBody = input.back().getBody();
destBody->getOperations().splice(destBody->begin(),
srcBody->getOperations(), srcBody->begin(),
std::prev(srcBody->end()));
}
// We'll move each loop in `input` in the reverse order so that its body is
// empty when we are moving it; this incurs zero copies and no erasing.
for (int i = input.size() - 1; i >= 0; --i) {
// If this has to become the outermost loop after permutation, add it to the
// parent block of the original root.
if (permMap[i] == 0) {
// If the root remains the same, nothing to do.
if (i == 0)
continue;
// Make input[i] the new outermost loop moving it into parentBlock.
auto *parentBlock = input[0].getOperation()->getBlock();
parentBlock->getOperations().splice(
Block::iterator(input[0]),
input[i].getOperation()->getBlock()->getOperations(),
Block::iterator(input[i]));
continue;
}
// If the parent in the permuted order is the same as in the original,
// nothing to do.
unsigned parentPosInInput = invPermMap[permMap[i] - 1].second;
if (i > 0 && static_cast<unsigned>(i - 1) == parentPosInInput)
continue;
// Move input[i] to its surrounding loop in the transformed nest.
auto *destBody = input[parentPosInInput].getBody();
destBody->getOperations().splice(
destBody->begin(), input[i].getOperation()->getBlock()->getOperations(),
Block::iterator(input[i]));
}
return invPermMap[0].second;
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) {
SmallVector<AffineForOp, 4> loops;
getPerfectlyNestedLoops(loops, forOp);
if (loops.size() < 2)
return forOp;
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
unsigned maxLoopDepth = loops.size();
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
// Mark loops as either parallel or sequential.
SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
for (unsigned j = 0; j < maxLoopDepth; ++j) {
DependenceComponent &depComp = depComps[j];
assert(depComp.lb.hasValue() && depComp.ub.hasValue());
if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0)
isParallelLoop[j] = false;
}
}
// Count the number of parallel loops.
unsigned numParallelLoops = 0;
for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
if (isParallelLoop[i])
++numParallelLoops;
// Compute permutation of loops that sinks sequential loops (and thus raises
// parallel loops) while preserving relative order.
SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
unsigned nextSequentialLoop = numParallelLoops;
unsigned nextParallelLoop = 0;
for (unsigned i = 0; i < maxLoopDepth; ++i) {
if (isParallelLoop[i]) {
loopPermMap[i] = nextParallelLoop++;
} else {
loopPermMap[i] = nextSequentialLoop++;
}
}
// Check if permutation 'loopPermMap' would violate dependences.
if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
return forOp;
// Perform loop interchange according to permutation 'loopPermMap'.
unsigned loopNestRootIndex = permuteLoops(loops, loopPermMap);
return loops[loopNestRootIndex];
}
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
// ...
// }
// ```
static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map,
SmallVector<Value, 4> *operands,
int64_t offset = 0) {
auto bounds = llvm::to_vector<4>(map->getResults());
bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
operands->insert(operands->begin() + map->getNumDims(), iv);
*map = AffineMap::get(map->getNumDims() + 1, map->getNumSymbols(), bounds,
b.getContext());
canonicalizeMapAndOperands(map, operands);
}
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
ArrayRef<AffineForOp> targets) {
auto originalStep = forOp.getStep();
auto scaledStep = originalStep * factor;
forOp.setStep(scaledStep);
OpBuilder b(forOp.getOperation()->getBlock(),
std::next(Block::iterator(forOp)));
// Lower-bound map creation.
auto lbMap = forOp.getLowerBoundMap();
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);
// Upper-bound map creation.
auto ubMap = forOp.getUpperBoundMap();
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
/*offset=*/scaledStep);
auto iv = forOp.getInductionVar();
SmallVector<AffineForOp, 8> innerLoops;
for (auto t : targets) {
// Insert newForOp before the terminator of `t`.
auto b = OpBuilder::atBlockTerminator(t.getBody());
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, originalStep);
auto begin = t.getBody()->begin();
// Skip terminator and `newForOp` which is just before the terminator.
auto nOps = t.getBody()->getOperations().size() - 2;
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
static Loops stripmineSink(scf::ForOp forOp, Value factor,
ArrayRef<scf::ForOp> targets) {
auto originalStep = forOp.step();
auto iv = forOp.getInductionVar();
OpBuilder b(forOp);
forOp.setStep(b.create<MulIOp>(forOp.getLoc(), originalStep, factor));
Loops innerLoops;
for (auto t : targets) {
// Save information for splicing ops out of t when done
auto begin = t.getBody()->begin();
auto nOps = t.getBody()->getOperations().size();
// Insert newForOp before the terminator of `t`.
auto b = OpBuilder::atBlockTerminator((t.getBody()));
Value stepped = b.create<AddIOp>(t.getLoc(), iv, forOp.step());
Value less = b.create<CmpIOp>(t.getLoc(), CmpIPredicate::slt,
forOp.upperBound(), stepped);
Value ub =
b.create<SelectOp>(t.getLoc(), less, forOp.upperBound(), stepped);
// Splice [begin, begin + nOps - 1) into `newForOp` and replace uses.
auto newForOp = b.create<scf::ForOp>(t.getLoc(), iv, ub, originalStep);
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps - 1));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
template <typename ForType, typename SizeType>
static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) {
// TODO: Use cheap structural assertions that targets are nested under
// forOp and that targets are not nested under each other when DominanceInfo
// exposes the capability. It seems overkill to construct a whole function
// dominance tree at this point.
auto res = stripmineSink(forOp, factor, ArrayRef<ForType>{target});
assert(res.size() == 1 && "Expected 1 inner forOp");
return res[0];
}
template <typename ForType, typename SizeType>
static SmallVector<SmallVector<ForType, 8>, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes,
ArrayRef<ForType> targets) {
SmallVector<SmallVector<ForType, 8>, 8> res;
SmallVector<ForType, 8> currentTargets(targets.begin(), targets.end());
for (auto it : llvm::zip(forOps, sizes)) {
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
res.push_back(step);
currentTargets = step;
}
return res;
}
SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
ArrayRef<AffineForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
SmallVector<Loops, 8> mlir::tile(ArrayRef<scf::ForOp> forOps,
ArrayRef<Value> sizes,
ArrayRef<scf::ForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
template <typename ForType, typename SizeType>
static SmallVector<ForType, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes, ForType target) {
SmallVector<ForType, 8> res;
for (auto loops : tile(forOps, sizes, ArrayRef<ForType>{target})) {
assert(loops.size() == 1);
res.push_back(loops[0]);
}
return res;
}
SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
ArrayRef<uint64_t> sizes,
AffineForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tile(ArrayRef<scf::ForOp> forOps, ArrayRef<Value> sizes,
scf::ForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tilePerfectlyNested(scf::ForOp rootForOp, ArrayRef<Value> sizes) {
// Collect perfectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<scf::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
return ::tile(forOps, sizes, forOps.back());
}
// Hoist the ops within `outer` that appear before `inner`.
// Such ops include the ops that have been introduced by parametric tiling.
// Ops that come from triangular loops (i.e. that belong to the program slice
// rooted at `outer`) and ops that have side effects cannot be hoisted.
// Return failure when any op fails to hoist.
static LogicalResult hoistOpsBetween(scf::ForOp outer, scf::ForOp inner) {
SetVector<Operation *> forwardSlice;
getForwardSlice(outer.getOperation(), &forwardSlice, [&inner](Operation *op) {
return op != inner.getOperation();
});
LogicalResult status = success();
SmallVector<Operation *, 8> toHoist;
for (auto &op : outer.getBody()->without_terminator()) {
// Stop when encountering the inner loop.
if (&op == inner.getOperation())
break;
// Skip over non-hoistable ops.
if (forwardSlice.count(&op) > 0) {
status = failure();
continue;
}
// Skip scf::ForOp, these are not considered a failure.
if (op.getNumRegions() > 0)
continue;
// Skip other ops with regions.
if (op.getNumRegions() > 0) {
status = failure();
continue;
}
// Skip if op has side effects.
// TODO: loads to immutable memory regions are ok.
if (!MemoryEffectOpInterface::hasNoEffect(&op)) {
status = failure();
continue;
}
toHoist.push_back(&op);
}
auto *outerForOp = outer.getOperation();
for (auto *op : toHoist)
op->moveBefore(outerForOp);
return status;
}
// Traverse the interTile and intraTile loops and try to hoist ops such that
// bands of perfectly nested loops are isolated.
// Return failure if either perfect interTile or perfect intraTile bands cannot
// be formed.
static LogicalResult tryIsolateBands(const TileLoops &tileLoops) {
LogicalResult status = success();
const Loops &interTile = tileLoops.first;
const Loops &intraTile = tileLoops.second;
auto size = interTile.size();
assert(size == intraTile.size());
if (size <= 1)
return success();
for (unsigned s = 1; s < size; ++s)
status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s])
: failure();
for (unsigned s = 1; s < size; ++s)
status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s])
: failure();
return status;
}
TileLoops mlir::extractFixedOuterLoops(scf::ForOp rootForOp,
ArrayRef<int64_t> sizes) {
// Collect perfectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<scf::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
// Compute the tile sizes such that i-th outer loop executes size[i]
// iterations. Given that the loop current executes
// numIterations = ceildiv((upperBound - lowerBound), step)
// iterations, we need to tile with size ceildiv(numIterations, size[i]).
SmallVector<Value, 4> tileSizes;
tileSizes.reserve(sizes.size());
for (unsigned i = 0, e = sizes.size(); i < e; ++i) {
assert(sizes[i] > 0 && "expected strictly positive size for strip-mining");
auto forOp = forOps[i];
OpBuilder builder(forOp);
auto loc = forOp.getLoc();
Value diff =
builder.create<SubIOp>(loc, forOp.upperBound(), forOp.lowerBound());
Value numIterations = ceilDivPositive(builder, loc, diff, forOp.step());
Value iterationsPerBlock =
ceilDivPositive(builder, loc, numIterations, sizes[i]);
tileSizes.push_back(iterationsPerBlock);
}
// Call parametric tiling with the given sizes.
auto intraTile = tile(forOps, tileSizes, forOps.back());
TileLoops tileLoops = std::make_pair(forOps, intraTile);
// TODO: for now we just ignore the result of band isolation.
// In the future, mapping decisions may be impacted by the ability to
// isolate perfectly nested bands.
tryIsolateBands(tileLoops);
return tileLoops;
}
/// Return the new lower bound, upper bound, and step in that order. Insert any
/// additional bounds calculations before the given builder and any additional
/// conversion back to the original loop induction value inside the given Block.
static LoopParams normalizeLoop(OpBuilder &boundsBuilder,
OpBuilder &insideLoopBuilder, Location loc,
Value lowerBound, Value upperBound, Value step,
Value inductionVar) {
// Check if the loop is already known to have a constant zero lower bound or
// a constant one step.
bool isZeroBased = false;
if (auto ubCst = lowerBound.getDefiningOp<ConstantIndexOp>())
isZeroBased = ubCst.getValue() == 0;
bool isStepOne = false;
if (auto stepCst = step.getDefiningOp<ConstantIndexOp>())
isStepOne = stepCst.getValue() == 1;
// Compute the number of iterations the loop executes: ceildiv(ub - lb, step)
// assuming the step is strictly positive. Update the bounds and the step
// of the loop to go from 0 to the number of iterations, if necessary.
// TODO: introduce support for negative steps or emit dynamic asserts
// on step positivity, whatever gets implemented first.
if (isZeroBased && isStepOne)
return {/*lowerBound=*/lowerBound, /*upperBound=*/upperBound,
/*step=*/step};
Value diff = boundsBuilder.create<SubIOp>(loc, upperBound, lowerBound);
Value newUpperBound = ceilDivPositive(boundsBuilder, loc, diff, step);
Value newLowerBound =
isZeroBased ? lowerBound : boundsBuilder.create<ConstantIndexOp>(loc, 0);
Value newStep =
isStepOne ? step : boundsBuilder.create<ConstantIndexOp>(loc, 1);
// Insert code computing the value of the original loop induction variable
// from the "normalized" one.
Value scaled =
isStepOne ? inductionVar
: insideLoopBuilder.create<MulIOp>(loc, inductionVar, step);
Value shifted =
isZeroBased ? scaled
: insideLoopBuilder.create<AddIOp>(loc, scaled, lowerBound);
SmallPtrSet<Operation *, 2> preserve{scaled.getDefiningOp(),
shifted.getDefiningOp()};
inductionVar.replaceAllUsesExcept(shifted, preserve);
return {/*lowerBound=*/newLowerBound, /*upperBound=*/newUpperBound,
/*step=*/newStep};
}
/// Transform a loop with a strictly positive step
/// for %i = %lb to %ub step %s
/// into a 0-based loop with step 1
/// for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 {
/// %i = %ii * %s + %lb
/// Insert the induction variable remapping in the body of `inner`, which is
/// expected to be either `loop` or another loop perfectly nested under `loop`.
/// Insert the definition of new bounds immediate before `outer`, which is
/// expected to be either `loop` or its parent in the loop nest.
static void normalizeLoop(scf::ForOp loop, scf::ForOp outer, scf::ForOp inner) {
OpBuilder builder(outer);
OpBuilder innerBuilder = OpBuilder::atBlockBegin(inner.getBody());
auto loopPieces =
normalizeLoop(builder, innerBuilder, loop.getLoc(), loop.lowerBound(),
loop.upperBound(), loop.step(), loop.getInductionVar());
loop.setLowerBound(loopPieces.lowerBound);
loop.setUpperBound(loopPieces.upperBound);
loop.setStep(loopPieces.step);
}
void mlir::coalesceLoops(MutableArrayRef<scf::ForOp> loops) {
if (loops.size() < 2)
return;
scf::ForOp innermost = loops.back();
scf::ForOp outermost = loops.front();
// 1. Make sure all loops iterate from 0 to upperBound with step 1. This
// allows the following code to assume upperBound is the number of iterations.
for (auto loop : loops)
normalizeLoop(loop, outermost, innermost);
// 2. Emit code computing the upper bound of the coalesced loop as product
// of the number of iterations of all loops.
OpBuilder builder(outermost);
Location loc = outermost.getLoc();
Value upperBound = outermost.upperBound();
for (auto loop : loops.drop_front())
upperBound = builder.create<MulIOp>(loc, upperBound, loop.upperBound());
outermost.setUpperBound(upperBound);
builder.setInsertionPointToStart(outermost.getBody());
// 3. Remap induction variables. For each original loop, the value of the
// induction variable can be obtained by dividing the induction variable of
// the linearized loop by the total number of iterations of the loops nested
// in it modulo the number of iterations in this loop (remove the values
// related to the outer loops):
// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
// Compute these iteratively from the innermost loop by creating a "running
// quotient" of division by the range.
Value previous = outermost.getInductionVar();
for (unsigned i = 0, e = loops.size(); i < e; ++i) {
unsigned idx = loops.size() - i - 1;
if (i != 0)
previous = builder.create<SignedDivIOp>(loc, previous,
loops[idx + 1].upperBound());
Value iv = (i == e - 1) ? previous
: builder.create<SignedRemIOp>(
loc, previous, loops[idx].upperBound());
replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv,
loops.back().region());
}
// 4. Move the operations from the innermost just above the second-outermost
// loop, delete the extra terminator and the second-outermost loop.
scf::ForOp second = loops[1];
innermost.getBody()->back().erase();
outermost.getBody()->getOperations().splice(
Block::iterator(second.getOperation()),
innermost.getBody()->getOperations());
second.erase();
}
void mlir::collapseParallelLoops(
scf::ParallelOp loops, ArrayRef<std::vector<unsigned>> combinedDimensions) {
OpBuilder outsideBuilder(loops);
Location loc = loops.getLoc();
// Normalize ParallelOp's iteration pattern.
SmallVector<Value, 3> normalizedLowerBounds;
SmallVector<Value, 3> normalizedSteps;
SmallVector<Value, 3> normalizedUpperBounds;
for (unsigned i = 0, e = loops.getNumLoops(); i < e; ++i) {
OpBuilder insideLoopBuilder = OpBuilder::atBlockBegin(loops.getBody());
auto resultBounds =
normalizeLoop(outsideBuilder, insideLoopBuilder, loc,
loops.lowerBound()[i], loops.upperBound()[i],
loops.step()[i], loops.getBody()->getArgument(i));
normalizedLowerBounds.push_back(resultBounds.lowerBound);
normalizedUpperBounds.push_back(resultBounds.upperBound);
normalizedSteps.push_back(resultBounds.step);
}
// Combine iteration spaces.
SmallVector<Value, 3> lowerBounds;
SmallVector<Value, 3> steps;
SmallVector<Value, 3> upperBounds;
auto cst0 = outsideBuilder.create<ConstantIndexOp>(loc, 0);
auto cst1 = outsideBuilder.create<ConstantIndexOp>(loc, 1);
for (unsigned i = 0, e = combinedDimensions.size(); i < e; ++i) {
Value newUpperBound = outsideBuilder.create<ConstantIndexOp>(loc, 1);
for (auto idx : combinedDimensions[i]) {
newUpperBound = outsideBuilder.create<MulIOp>(loc, newUpperBound,
normalizedUpperBounds[idx]);
}
lowerBounds.push_back(cst0);
steps.push_back(cst1);
upperBounds.push_back(newUpperBound);
}
// Create new ParallelLoop with conversions to the original induction values.
// The loop below uses divisions to get the relevant range of values in the
// new induction value that represent each range of the original induction
// value. The remainders then determine based on that range, which iteration
// of the original induction value this represents. This is a normalized value
// that is un-normalized already by the previous logic.
auto newPloop = outsideBuilder.create<scf::ParallelOp>(
loc, lowerBounds, upperBounds, steps,
[&](OpBuilder &insideBuilder, Location, ValueRange ploopIVs) {
for (unsigned i = 0, e = combinedDimensions.size(); i < e; ++i) {
Value previous = ploopIVs[i];
unsigned numberCombinedDimensions = combinedDimensions[i].size();
// Iterate over all except the last induction value.
for (unsigned j = 0, e = numberCombinedDimensions - 1; j < e; ++j) {
unsigned idx = combinedDimensions[i][j];
// Determine the current induction value's current loop iteration
Value iv = insideBuilder.create<SignedRemIOp>(
loc, previous, normalizedUpperBounds[idx]);
replaceAllUsesInRegionWith(loops.getBody()->getArgument(idx), iv,
loops.region());
// Remove the effect of the current induction value to prepare for
// the next value.
previous = insideBuilder.create<SignedDivIOp>(
loc, previous, normalizedUpperBounds[idx]);
}
// The final induction value is just the remaining value.
unsigned idx = combinedDimensions[i][numberCombinedDimensions - 1];
replaceAllUsesInRegionWith(loops.getBody()->getArgument(idx),
previous, loops.region());
}
});
// Replace the old loop with the new loop.
loops.getBody()->back().erase();
newPloop.getBody()->getOperations().splice(
Block::iterator(newPloop.getBody()->back()),
loops.getBody()->getOperations());
loops.erase();
}
void mlir::mapLoopToProcessorIds(scf::ForOp forOp, ArrayRef<Value> processorId,
ArrayRef<Value> numProcessors) {
assert(processorId.size() == numProcessors.size());
if (processorId.empty())
return;
OpBuilder b(forOp);
Location loc(forOp.getLoc());
Value mul = processorId.front();
for (unsigned i = 1, e = processorId.size(); i < e; ++i)
mul = b.create<AddIOp>(loc, b.create<MulIOp>(loc, mul, numProcessors[i]),
processorId[i]);
Value lb = b.create<AddIOp>(loc, forOp.lowerBound(),
b.create<MulIOp>(loc, forOp.step(), mul));
forOp.setLowerBound(lb);
Value step = forOp.step();
for (auto numProcs : numProcessors)
step = b.create<MulIOp>(loc, step, numProcs);
forOp.setStep(step);
}
/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) copies
/// respectively. The lowest depth depends on whether the region being accessed
/// is hoistable with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block,
Block::iterator &begin, Block::iterator &end,
Block **copyPlacementBlock,
Block::iterator *copyInPlacementStart,
Block::iterator *copyOutPlacementStart) {
const auto *cst = region.getConstraints();
SmallVector<Value, 4> symbols;
cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);
SmallVector<AffineForOp, 4> enclosingFors;
getLoopIVs(*block.begin(), &enclosingFors);
// Walk up loop parents till we find an IV on which this region is
// symbolic/variant.
auto it = enclosingFors.rbegin();
for (auto e = enclosingFors.rend(); it != e; ++it) {
// TODO: also need to be checking this for regions symbols that
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
if (llvm::is_contained(symbols, it->getInductionVar()))
break;
}
if (it != enclosingFors.rbegin()) {
auto lastInvariantIV = *std::prev(it);
*copyInPlacementStart = Block::iterator(lastInvariantIV.getOperation());
*copyOutPlacementStart = std::next(*copyInPlacementStart);
*copyPlacementBlock = lastInvariantIV.getOperation()->getBlock();
} else {
*copyInPlacementStart = begin;
*copyOutPlacementStart = end;
*copyPlacementBlock = █
}
}
// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
int64_t stride;
int64_t numEltPerStride;
};
/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
// TODO: make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion ®ion,
ArrayRef<int64_t> bufferShape,
SmallVectorImpl<StrideInfo> *strideInfos) {
if (bufferShape.size() <= 1)
return;
int64_t numEltPerStride = 1;
int64_t stride = 1;
for (int d = bufferShape.size() - 1; d >= 1; d--) {
int64_t dimSize = region.memref.getType().cast<MemRefType>().getDimSize(d);
stride *= dimSize;
numEltPerStride *= bufferShape[d];
// A stride is needed only if the region has a shorter extent than the
// memref along the dimension *and* has an extent greater than one along the
// next major dimension.
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
strideInfos->push_back({stride, numEltPerStride});
}
}
}
/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
/// returns the outermost AffineForOp of the copy loop nest. `lbMaps` and
/// `ubMaps` along with `lbOperands` and `ubOperands` hold the lower and upper
/// bound information for the copy loop nest. `fastBufOffsets` contain the
/// expressions to be subtracted out from the respective copy loop iterators in
/// order to index the fast buffer. If `copyOut' is true, generates a copy-out;
/// otherwise a copy-in. Builder `b` should be set to the point the copy nest is
/// inserted.
//
/// The copy-in nest is generated as follows as an example for a 2-d region:
/// for x = ...
/// for y = ...
/// fast_buf[x - offset_x][y - offset_y] = memref[x][y]
///
static AffineForOp
generatePointWiseCopy(Location loc, Value memref, Value fastMemRef,
ArrayRef<AffineMap> lbMaps, ArrayRef<Value> lbOperands,
ArrayRef<AffineMap> ubMaps, ArrayRef<Value> ubOperands,
ArrayRef<AffineExpr> fastBufOffsets, bool isCopyOut,
OpBuilder b) {
assert(llvm::all_of(lbMaps, [&](AffineMap lbMap) {
return lbMap.getNumInputs() == lbOperands.size();
}));
assert(llvm::all_of(ubMaps, [&](AffineMap ubMap) {
return ubMap.getNumInputs() == ubOperands.size();
}));
unsigned rank = memref.getType().cast<MemRefType>().getRank();
assert(lbMaps.size() == rank && "wrong number of lb maps");
assert(ubMaps.size() == rank && "wrong number of ub maps");
SmallVector<Value, 4> memIndices;
SmallVector<AffineExpr, 4> fastBufExprs;
SmallVector<Value, 4> fastBufMapOperands;
AffineForOp copyNestRoot;
SmallVector<AffineApplyOp, 4> mayBeDeadApplys;
for (unsigned d = 0; d < rank; ++d) {
auto forOp = createCanonicalizedAffineForOp(b, loc, lbOperands, lbMaps[d],
ubOperands, ubMaps[d]);
if (d == 0)
copyNestRoot = forOp;
b = OpBuilder::atBlockTerminator(forOp.getBody());
auto fastBufOffsetMap =
AffineMap::get(lbOperands.size(), 0, fastBufOffsets[d]);
auto offset = b.create<AffineApplyOp>(loc, fastBufOffsetMap, lbOperands);
// Construct the subscript for the fast memref being copied into/from:
// x - offset_x.
fastBufExprs.push_back(b.getAffineDimExpr(2 * d + 1) -
b.getAffineDimExpr(2 * d));
fastBufMapOperands.push_back(offset);
fastBufMapOperands.push_back(forOp.getInductionVar());
mayBeDeadApplys.push_back(offset);
// Subscript for the slow memref being copied.
memIndices.push_back(forOp.getInductionVar());
}
auto fastBufMap =
AffineMap::get(2 * rank, /*symbolCount=*/0, fastBufExprs, b.getContext());
fullyComposeAffineMapAndOperands(&fastBufMap, &fastBufMapOperands);
fastBufMap = simplifyAffineMap(fastBufMap);
canonicalizeMapAndOperands(&fastBufMap, &fastBufMapOperands);
// Drop any dead affine.applys.
for (auto applyOp : mayBeDeadApplys)
if (applyOp.use_empty())
applyOp.erase();
if (!isCopyOut) {
// Copy in.
auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufMap,
fastBufMapOperands);
return copyNestRoot;
}
// Copy out.
auto load =
b.create<AffineLoadOp>(loc, fastMemRef, fastBufMap, fastBufMapOperands);
b.create<AffineStoreOp>(loc, load, memref, memIndices);
return copyNestRoot;
}
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
return block.getParentOp()->emitRemark();
}
/// Creates a buffer in the faster memory space for the specified memref region;
/// generates a copy from the lower memory space to this one, and replaces all
/// loads/stores in the block range [`begin', `end') of `block' to load/store
/// from that buffer. Returns failure if copies could not be generated due to
/// yet unimplemented cases. `copyInPlacementStart` and `copyOutPlacementStart`
/// in copyPlacementBlock specify the insertion points where the incoming copies
/// and outgoing copies, respectively, should be inserted (the insertion happens
/// right before the insertion point). Since `begin` can itself be invalidated
/// due to the memref rewriting done from this method, the output argument
/// `nBegin` is set to its replacement (set to `begin` if no invalidation
/// happens). Since outgoing copies could have been inserted at `end`, the
/// output argument `nEnd` is set to the new end. `sizeInBytes` is set to the
/// size of the fast buffer allocated.
static LogicalResult generateCopy(
const MemRefRegion ®ion, Block *block, Block::iterator begin,
Block::iterator end, Block *copyPlacementBlock,
Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart,
AffineCopyOptions copyOptions, DenseMap<Value, Value> &fastBufferMap,
DenseSet<Operation *> ©Nests, uint64_t *sizeInBytes,
Block::iterator *nBegin, Block::iterator *nEnd) {
*nBegin = begin;
*nEnd = end;
FuncOp f = begin->getParentOfType<FuncOp>();
OpBuilder topBuilder(f.getBody());
Value zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
if (begin == end)
return success();
// Is the copy out point at the end of the block where we are doing
// explicit copying.
bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart);
// Copies for read regions are going to be inserted at 'begin'.
OpBuilder prologue(copyPlacementBlock, copyInPlacementStart);
// Copies for write regions are going to be inserted at 'end'.
OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart);
OpBuilder &b = region.isWrite() ? epilogue : prologue;
// Builder to create constants at the top level.
auto func = copyPlacementBlock->getParent()->getParentOfType<FuncOp>();
OpBuilder top(func.getBody());
auto loc = region.loc;
auto memref = region.memref;
auto memRefType = memref.getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return failure();
}
// Indices to use for the copying.
// Indices for the original memref being copied from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being copied into/from.
SmallVector<Value, 4> bufIndices;
unsigned rank = memRefType.getRank();
SmallVector<int64_t, 4> fastBufferShape;
// Compute the extents of the buffer.
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
&fastBufferShape, &lbs, &lbDivisors);
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
return failure();
}
if (numElements.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
*sizeInBytes = 0;
return success();
}
SmallVector<AffineMap, 4> lbMaps(rank), ubMaps(rank);
for (unsigned i = 0; i < rank; ++i)
region.getLowerAndUpperBound(i, lbMaps[i], ubMaps[i]);
const FlatAffineConstraints *cst = region.getConstraints();
// 'regionSymbols' hold values that this memory region is symbolic/parametric
// on; these typically include loop IVs surrounding the level at which the
// copy generation is being done or other valid symbols in MLIR.
SmallVector<Value, 8> regionSymbols;
cst->getIdValues(rank, cst->getNumIds(), ®ionSymbols);
// Construct the index expressions for the fast memory buffer. The index
// expression for a particular dimension of the fast buffer is obtained by
// subtracting out the lower bound on the original memref's data region
// along the corresponding dimension.
// Index start offsets for faster memory buffer relative to the original.
SmallVector<AffineExpr, 4> fastBufOffsets;
fastBufOffsets.reserve(rank);
for (unsigned d = 0; d < rank; d++) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++)
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
// Set copy start location for this dimension in the lower memory space
// memref.
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
auto indexVal = caf.getValue();
if (indexVal == 0) {
memIndices.push_back(zeroIndex);
} else {
memIndices.push_back(
top.create<ConstantIndexOp>(loc, indexVal).getResult());
}
} else {
// The coordinate for the start location is just the lower bound along the
// corresponding dimension on the memory region (stored in 'offset').
auto map = AffineMap::get(
cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
}
// The fast buffer is copied into at location zero; addressing is relative.
bufIndices.push_back(zeroIndex);
// Record the offsets since they are needed to remap the memory accesses of
// the original memref further below.
fastBufOffsets.push_back(offset);
}
// The faster memory space buffer.
Value fastMemRef;
// Check if a buffer was already created.
bool existingBuf = fastBufferMap.count(memref) > 0;
if (!existingBuf) {
AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank);
auto fastMemRefType =
MemRefType::get(fastBufferShape, memRefType.getElementType(),
fastBufferLayout, copyOptions.fastMemorySpace);
// Create the fast memory space buffer just before the 'affine.for'
// operation.
fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
// Record it.
fastBufferMap[memref] = fastMemRef;
// fastMemRefType is a constant shaped memref.
*sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
LLVM_DEBUG(emitRemarkForBlock(*block)
<< "Creating fast buffer of type " << fastMemRefType
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
<< " KiB\n");
} else {
// Reuse the one already created.
fastMemRef = fastBufferMap[memref];
*sizeInBytes = 0;
}
auto numElementsSSA =
top.create<ConstantIndexOp>(loc, numElements.getValue());
Value dmaStride = nullptr;
Value numEltPerDmaStride = nullptr;
if (copyOptions.generateDma) {
SmallVector<StrideInfo, 4> dmaStrideInfos;
getMultiLevelStrides(region, fastBufferShape, &dmaStrideInfos);
// TODO: use all stride levels once DmaStartOp is extended for
// multi-level strides.
if (dmaStrideInfos.size() > 1) {
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
return failure();
}
if (!dmaStrideInfos.empty()) {
dmaStride = top.create<ConstantIndexOp>(loc, dmaStrideInfos[0].stride);
numEltPerDmaStride =
top.create<ConstantIndexOp>(loc, dmaStrideInfos[0].numEltPerStride);
}
}
// Record the last operation where we want the memref replacement to end. We
// later do the memref replacement only in [begin, postDomFilter] so
// that the original memref's used in the data movement code themselves don't
// get replaced.
auto postDomFilter = std::prev(end);
// Create fully composed affine maps for each memref.
auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);
if (!copyOptions.generateDma) {
// Point-wise copy generation.
auto copyNest =
generatePointWiseCopy(loc, memref, fastMemRef, lbMaps,
/*lbOperands=*/regionSymbols, ubMaps,
/*ubOperands=*/regionSymbols, fastBufOffsets,
/*isCopyOut=*/region.isWrite(), b);
// Record this so that we can skip it from yet another copy.
copyNests.insert(copyNest);
// Since new ops are being appended (for copy out's), adjust the end to
// mark end of block range being processed if necessary.
if (region.isWrite() && isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(copyNest.getOperation());
} else {
// DMA generation.
// Create a tag (single element 1-d memref) for the DMA.
auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {},
copyOptions.tagMemorySpace);
auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);
SmallVector<Value, 4> tagIndices({zeroIndex});
auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
if (!region.isWrite()) {
// DMA non-blocking read from original buffer to fast buffer.
b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
fastMemRef, bufAffineMap, bufIndices,
tagMemRef, tagAffineMap, tagIndices,
numElementsSSA, dmaStride, numEltPerDmaStride);
} else {
// DMA non-blocking write from fast buffer to the original memref.
auto op = b.create<AffineDmaStartOp>(
loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
dmaStride, numEltPerDmaStride);
// Since new ops may be appended at 'end' (for outgoing DMAs), adjust the
// end to mark end of block range being processed.
if (isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(op.getOperation());
}
// Matching DMA wait to block on completion; tag always has a 0 index.
b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
numElementsSSA);
// Generate dealloc for the tag.
auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
if (*nEnd == end && isCopyOutAtEndOfBlock)
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(tagDeallocOp.getOperation());
}
// Generate dealloc for the buffer.
if (!existingBuf) {
auto bufDeallocOp = epilogue.create<DeallocOp>(loc, fastMemRef);
// When generating pointwise copies, `nEnd' has to be set to deallocOp on
// the fast buffer (since it marks the new end insertion point).
if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(bufDeallocOp.getOperation());
}
// Replace all uses of the old memref with the faster one while remapping
// access indices (subtracting out lower bound offsets for each dimension).
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
// d2, d3 correspond to the original indices (%i, %j).
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
// The starting operands of indexRemap will be regionSymbols (the symbols on
// which the memref region is parametric); then those corresponding to
// the memref's original indices follow.
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
remapExprs.push_back(dimExpr - fastBufOffsets[i]);
}
auto indexRemap = AffineMap::get(regionSymbols.size() + rank, 0, remapExprs,
b.getContext());
// Record the begin since it may be invalidated by memref replacement.
Block::iterator prevOfBegin;
bool isBeginAtStartOfBlock = (begin == block->begin());
if (!isBeginAtStartOfBlock)
prevOfBegin = std::prev(begin);
// *Only* those uses within the range [begin, end) of 'block' are replaced.
replaceAllMemRefUsesWith(memref, fastMemRef,
/*extraIndices=*/{}, indexRemap,
/*extraOperands=*/regionSymbols,
/*symbolOperands=*/{},
/*domInstFilter=*/&*begin,
/*postDomInstFilter=*/&*postDomFilter);
*nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(prevOfBegin);
return success();
}
/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of `op` (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *op, unsigned numParamLoopIVs,
MemRefRegion *region) {
unsigned rank;
if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
rank = loadOp.getMemRefType().getRank();
region->memref = loadOp.getMemRef();
region->setWrite(false);
} else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
rank = storeOp.getMemRefType().getRank();
region->memref = storeOp.getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
auto memRefType = region->memref.getType().cast<MemRefType>();
if (!memRefType.hasStaticShape())
return false;
auto *regionCst = region->getConstraints();
// Just get the first numSymbols IVs, which the memref region is parametric
// on.
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*op, &ivs);
ivs.resize(numParamLoopIVs);
SmallVector<Value, 4> symbols;
extractForInductionVars(ivs, &symbols);
regionCst->reset(rank, numParamLoopIVs, 0);
regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);
// Memref dim sizes provide the bounds.
for (unsigned d = 0; d < rank; d++) {
auto dimSize = memRefType.getDimSize(d);
assert(dimSize > 0 && "filtered dynamic shapes above");
regionCst->addConstantLowerBound(d, 0);
regionCst->addConstantUpperBound(d, dimSize - 1);
}
return true;
}
/// Performs explicit copying for the contiguous sequence of operations in the
/// block iterator range [`begin', `end'), where `end' can't be past the
/// terminator of the block (since additional operations are potentially
/// inserted right before `end`. Returns the total size of fast memory space
/// buffers used. `copyOptions` provides various parameters, and the output
/// argument `copyNests` is the set of all copy nests inserted, each represented
/// by its root affine.for. Since we generate alloc's and dealloc's for all fast
/// buffers (before and after the range of operations resp. or at a hoisted
/// position), all of the fast memory capacity is assumed to be available for
/// processing this block range. When 'filterMemRef' is specified, copies are
/// only generated for the provided MemRef.
uint64_t mlir::affineDataCopyGenerate(Block::iterator begin,
Block::iterator end,
const AffineCopyOptions ©Options,
Optional<Value> filterMemRef,
DenseSet<Operation *> ©Nests) {
if (begin == end)
return 0;
assert(begin->getBlock() == std::prev(end)->getBlock() &&
"Inconsistent block begin/end args");
assert(end != end->getBlock()->end() && "end can't be the block terminator");
Block *block = begin->getBlock();
// Copies will be generated for this depth, i.e., symbolic in all loops
// surrounding the this block range.
unsigned copyDepth = getNestingDepth(&*begin);
LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
<< "\n");
LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n");
LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n");
// List of memory regions to copy for. We need a map vector to have a
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
// since the alloc's for example are identical except for the SSA id.
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> readRegions;
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> writeRegions;
// Map from original memref's to the fast buffers that their accesses are
// replaced with.
DenseMap<Value, Value> fastBufferMap;
// To check for errors when walking the block.
bool error = false;
// Walk this range of operations to gather all memory regions.
block->walk(begin, end, [&](Operation *opInst) {
// Gather regions to allocate to buffers in faster memory space.
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
if ((filterMemRef.hasValue() && filterMemRef != loadOp.getMemRef()) ||
(loadOp.getMemRefType().getMemorySpace() !=
copyOptions.slowMemorySpace))
return;
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
if ((filterMemRef.hasValue() && filterMemRef != storeOp.getMemRef()) ||
storeOp.getMemRefType().getMemorySpace() !=
copyOptions.slowMemorySpace)
return;
} else {
// Neither load nor a store op.
return;
}
// Compute the MemRefRegion accessed.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(region->compute(opInst, copyDepth, /*sliceState=*/nullptr,
/*addMemRefDimBounds=*/false))) {
LLVM_DEBUG(llvm::dbgs()
<< "Error obtaining memory region: semi-affine maps?\n");
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(
opInst->emitError("non-constant memref sizes not yet supported"));
error = true;
return;
}
}
// Each memref has a single buffer associated with it irrespective of how
// many load's and store's happen on it.
// TODO: in the future, when regions don't intersect and satisfy
// other properties (based on load/store regions), we could consider
// multiple buffers per memref.
// Add to the appropriate region if it's not already in it, or take a
// bounding box union with the existing one if it's already in there.
// Note that a memref may have both read and write regions - so update the
// region in the other list if one exists (write in case of read and vice
// versa) since there is a single bounding box for a memref across all reads
// and writes that happen on it.
// Attempts to update; returns true if 'region' exists in targetRegions.
auto updateRegion =
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
&targetRegions) {
const auto it = targetRegions.find(region->memref);
if (it == targetRegions.end())
return false;
// Perform a union with the existing region.
if (failed(it->second->unionBoundingBox(*region))) {
LLVM_DEBUG(llvm::dbgs()
<< "Memory region bounding box failed; "
"over-approximating to the entire memref\n");
// If the union fails, we will overapproximate.
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(opInst->emitError(
"non-constant memref sizes not yet supported"));
error = true;
return true;
}
it->second->getConstraints()->clearAndCopyFrom(
*region->getConstraints());
} else {
// Union was computed and stored in 'it->second': copy to 'region'.
region->getConstraints()->clearAndCopyFrom(
*it->second->getConstraints());
}
return true;
};
bool existsInRead = updateRegion(readRegions);
if (error)
return;
bool existsInWrite = updateRegion(writeRegions);
if (error)
return;
// Finally add it to the region list.
if (region->isWrite() && !existsInWrite) {
writeRegions[region->memref] = std::move(region);
} else if (!region->isWrite() && !existsInRead) {
readRegions[region->memref] = std::move(region);
}
});
if (error) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return 0;
}
uint64_t totalCopyBuffersSizeInBytes = 0;
bool ret = true;
auto processRegions =
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
®ions) {
for (const auto ®ionEntry : regions) {
// For each region, hoist copy in/out past all hoistable
// 'affine.for's.
Block::iterator copyInPlacementStart, copyOutPlacementStart;
Block *copyPlacementBlock;
findHighestBlockForPlacement(
*regionEntry.second, *block, begin, end, ©PlacementBlock,
©InPlacementStart, ©OutPlacementStart);
uint64_t sizeInBytes;
Block::iterator nBegin, nEnd;
LogicalResult iRet = generateCopy(
*regionEntry.second, block, begin, end, copyPlacementBlock,
copyInPlacementStart, copyOutPlacementStart, copyOptions,
fastBufferMap, copyNests, &sizeInBytes, &nBegin, &nEnd);
if (succeeded(iRet)) {
// begin/end could have been invalidated, and need update.
begin = nBegin;
end = nEnd;
totalCopyBuffersSizeInBytes += sizeInBytes;
}
ret = ret & succeeded(iRet);
}
};
processRegions(readRegions);
processRegions(writeRegions);
if (!ret) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return totalCopyBuffersSizeInBytes;
}
// For a range of operations, a note will be emitted at the caller.
AffineForOp forOp;
uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024);
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
forOp.emitRemark()
<< sizeInKib
<< " KiB of copy buffers in fast memory space for this block\n";
}
if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) {
StringRef str = "Total size of all copy buffers' for this block "
"exceeds fast memory capacity\n";
block->getParentOp()->emitWarning(str);
}
return totalCopyBuffersSizeInBytes;
}
// A convenience version of affineDataCopyGenerate for all ops in the body of
// an AffineForOp.
uint64_t mlir::affineDataCopyGenerate(AffineForOp forOp,
const AffineCopyOptions ©Options,
Optional<Value> filterMemRef,
DenseSet<Operation *> ©Nests) {
return affineDataCopyGenerate(forOp.getBody()->begin(),
std::prev(forOp.getBody()->end()), copyOptions,
filterMemRef, copyNests);
}
LogicalResult mlir::generateCopyForMemRegion(
const MemRefRegion &memrefRegion, Operation *analyzedOp,
const AffineCopyOptions ©Options, CopyGenerateResult &result) {
Block *block = analyzedOp->getBlock();
auto begin = analyzedOp->getIterator();
auto end = std::next(begin);
DenseMap<Value, Value> fastBufferMap;
DenseSet<Operation *> copyNests;
auto err = generateCopy(memrefRegion, block, begin, end, block, begin, end,
copyOptions, fastBufferMap, copyNests,
&result.sizeInBytes, &begin, &end);
if (failed(err))
return err;
result.alloc =
fastBufferMap.find(memrefRegion.memref)->second.getDefiningOp();
assert(copyNests.size() <= 1 && "At most one copy nest is expected.");
result.copyNest = copyNests.empty() ? nullptr : *copyNests.begin();
return success();
}
/// Gathers all AffineForOps in 'block' at 'currLoopDepth' in 'depthToLoops'.
static void
gatherLoopsInBlock(Block *block, unsigned currLoopDepth,
std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) {
// Add a new empty level to output if it doesn't exist level already.
assert(currLoopDepth <= depthToLoops.size() && "Unexpected currLoopDepth");
if (currLoopDepth == depthToLoops.size())
depthToLoops.push_back(SmallVector<AffineForOp, 2>());
for (auto &op : *block) {
if (auto forOp = dyn_cast<AffineForOp>(op)) {
depthToLoops[currLoopDepth].push_back(forOp);
gatherLoopsInBlock(forOp.getBody(), currLoopDepth + 1, depthToLoops);
}
}
}
/// Gathers all AffineForOps in 'func' grouped by loop depth.
void mlir::gatherLoops(FuncOp func,
std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) {
for (auto &block : func)
gatherLoopsInBlock(&block, /*currLoopDepth=*/0, depthToLoops);
// Remove last loop level from output since it's empty.
if (!depthToLoops.empty()) {
assert(depthToLoops.back().empty() && "Last loop level is not empty?");
depthToLoops.pop_back();
}
}
// TODO: if necessary, this can be extended to also compose in any
// affine.applys, fold to constant if all result dimensions of the map are
// constant (canonicalizeMapAndOperands below already does this for single
// result bound maps), and use simplifyMap to perform algebraic simplification.
AffineForOp mlir::createCanonicalizedAffineForOp(
OpBuilder b, Location loc, ValueRange lbOperands, AffineMap lbMap,
ValueRange ubOperands, AffineMap ubMap, int64_t step) {
SmallVector<Value, 4> lowerOperands(lbOperands);
SmallVector<Value, 4> upperOperands(ubOperands);
fullyComposeAffineMapAndOperands(&lbMap, &lowerOperands);
canonicalizeMapAndOperands(&lbMap, &lowerOperands);
lbMap = removeDuplicateExprs(lbMap);
fullyComposeAffineMapAndOperands(&ubMap, &upperOperands);
canonicalizeMapAndOperands(&ubMap, &upperOperands);
ubMap = removeDuplicateExprs(ubMap);
return b.create<AffineForOp>(loc, lowerOperands, lbMap, upperOperands, ubMap,
step);
}
/// Creates an AffineIfOp that encodes the conditional to choose between
/// the constant trip count version and an unknown trip count version of this
/// nest of loops. This is used to separate partial and full tiles if `loops`
/// has the intra-tile loops. The affine.if op is inserted at the builder
/// insertion point of `b`.
static AffineIfOp createSeparationCondition(MutableArrayRef<AffineForOp> loops,
OpBuilder b) {
if (loops.empty())
return nullptr;
auto *context = loops[0].getContext();
FlatAffineConstraints cst;
SmallVector<Operation *, 8> ops;
ops.reserve(loops.size());
for (AffineForOp forOp : loops)
ops.push_back(forOp);
getIndexSet(ops, &cst);
// Remove constraints that are independent of these loop IVs.
cst.removeIndependentConstraints(/*pos=*/0, /*num=*/loops.size());
// Construct the constraint set representing the guard for full tiles. The
// lower bound (and upper bound) corresponding to the full tile should be
// larger (and resp. smaller) than any other lower (or upper bound).
SmallVector<int64_t, 8> fullTileLb, fullTileUb;
for (auto loop : loops) {
(void)loop;
// TODO: Non-unit stride is not an issue to generalize to.
assert(loop.getStep() == 1 && "point loop step expected to be one");
// Mark everything symbols for the purpose of finding a constant diff pair.
cst.setDimSymbolSeparation(/*newSymbolCount=*/cst.getNumDimAndSymbolIds() -
1);
unsigned fullTileLbPos, fullTileUbPos;
if (!cst.getConstantBoundOnDimSize(0, /*lb=*/nullptr,
/*lbFloorDivisor=*/nullptr,
/*ub=*/nullptr, &fullTileLbPos,
&fullTileUbPos)) {
LLVM_DEBUG(llvm::dbgs() << "Can't get constant diff pair for a loop\n");
return nullptr;
}
SmallVector<unsigned, 4> lbIndices, ubIndices;
cst.getLowerAndUpperBoundIndices(/*pos=*/0, &lbIndices, &ubIndices);
auto fLb = cst.getInequality(fullTileLbPos);
auto fUb = cst.getInequality(fullTileUbPos);
fullTileLb.assign(fLb.begin(), fLb.end());
fullTileUb.assign(fUb.begin(), fUb.end());
// Full tile lower bound should be >= than any other lower bound.
for (auto lbIndex : lbIndices)
for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i)
cst.atIneq(lbIndex, i) = fullTileLb[i] - cst.atIneq(lbIndex, i);
// Full tile upper bound should be <= any other upper bound.
for (auto ubIndex : ubIndices)
for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i)
cst.atIneq(ubIndex, i) -= fullTileUb[i];
cst.removeId(0);
}
// The previous step leads to all zeros for the full tile lb and ub position
// itself; remove those and any other duplicates / trivial redundancies.
cst.removeTrivialRedundancy();
// Turn everything into dims conservatively since we earlier turned all
// trailing ids past point loop IV into symbols. Some of these could be outer
// loop IVs; we'll canonicalize anyway.
cst.setDimSymbolSeparation(0);
IntegerSet ifCondSet = cst.getAsIntegerSet(context);
// ifCondSet can be null if cst was empty -- this can happen if all loops
// in the nest have constant trip counts.
if (!ifCondSet)
return nullptr;
SmallVector<Value, 4> setOperands;
cst.getIdValues(0, cst.getNumDimAndSymbolIds(), &setOperands);
canonicalizeSetAndOperands(&ifCondSet, &setOperands);
return b.create<AffineIfOp>(loops[0].getLoc(), ifCondSet, setOperands,
/*withElseRegion=*/true);
}
/// Create the full tile loop nest (along with its body).
static LogicalResult
createFullTiles(MutableArrayRef<AffineForOp> inputNest,
SmallVectorImpl<AffineForOp> &fullTileLoops, OpBuilder b) {
fullTileLoops.reserve(inputNest.size());
// For each loop in the original nest identify a lower/upper bound pair such
// that their difference is a constant.
FlatAffineConstraints cst;
for (auto loop : inputNest) {
// TODO: straightforward to generalize to a non-unit stride.
if (loop.getStep() != 1) {
LLVM_DEBUG(llvm::dbgs()
<< "[tile separation] non-unit stride not implemented\n");
return failure();
}
SmallVector<Operation *, 1> loopOp{loop.getOperation()};
getIndexSet(loopOp, &cst);
// We will mark everything other than this loop IV as symbol for getting a
// pair of <lb, ub> with a constant difference.
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - 1);
unsigned lbPos, ubPos;
if (!cst.getConstantBoundOnDimSize(/*pos=*/0, /*lb=*/nullptr,
/*lbDivisor=*/nullptr, /*ub=*/nullptr,
&lbPos, &ubPos) ||
lbPos == ubPos) {
LLVM_DEBUG(llvm::dbgs() << "[tile separation] Can't get constant diff / "
"equalities not yet handled\n");
return failure();
}
// Set all identifiers as dimensions uniformly since some of those marked as
// symbols above could be outer loop IVs (corresponding tile space IVs).
cst.setDimSymbolSeparation(/*newSymbolCount=*/0);
AffineValueMap lbVmap, ubVmap;
cst.getIneqAsAffineValueMap(/*pos=*/0, lbPos, lbVmap, b.getContext());
cst.getIneqAsAffineValueMap(/*pos=*/0, ubPos, ubVmap, b.getContext());
AffineForOp fullTileLoop = createCanonicalizedAffineForOp(
b, loop.getLoc(), lbVmap.getOperands(), lbVmap.getAffineMap(),
ubVmap.getOperands(), ubVmap.getAffineMap());
b = OpBuilder::atBlockTerminator(fullTileLoop.getBody());
fullTileLoops.push_back(fullTileLoop);
}
// Add the body for the full tile loop nest.
BlockAndValueMapping operandMap;
for (auto loopEn : llvm::enumerate(inputNest))
operandMap.map(loopEn.value().getInductionVar(),
fullTileLoops[loopEn.index()].getInductionVar());
b = OpBuilder::atBlockTerminator(fullTileLoops.back().getBody());
for (auto &op : inputNest.back().getBody()->without_terminator())
b.clone(op, operandMap);
return success();
}
LogicalResult
mlir::separateFullTiles(MutableArrayRef<AffineForOp> inputNest,
SmallVectorImpl<AffineForOp> *fullTileNest) {
if (inputNest.empty())
return success();
auto firstLoop = inputNest[0];
// Each successive for op has to be nested in the other.
auto prevLoop = firstLoop;
for (auto loop : inputNest.drop_front(1)) {
assert(loop.getParentOp() == prevLoop && "input not contiguously nested");
prevLoop = loop;
}
// Create the full tile loop nest.
SmallVector<AffineForOp, 4> fullTileLoops;
OpBuilder b(firstLoop);
if (failed(createFullTiles(inputNest, fullTileLoops, b))) {
if (!fullTileLoops.empty())
fullTileLoops.front().erase();
return failure();
}
// Create and insert the version select right before the root of the nest.
b = OpBuilder(firstLoop);
AffineIfOp ifOp = createSeparationCondition(inputNest, b);
if (!ifOp) {
fullTileLoops.front().erase();
LLVM_DEBUG(llvm::dbgs() << "All tiles are full tiles, or failure creating "
"separation condition\n");
return failure();
}
// Move the full tile into the then block.
Block *thenBlock = ifOp.getThenBlock();
AffineForOp outermostFullTileLoop = fullTileLoops[0];
thenBlock->getOperations().splice(
std::prev(thenBlock->end()),
outermostFullTileLoop.getOperation()->getBlock()->getOperations(),
Block::iterator(outermostFullTileLoop));
// Move the partial tile into the else block. The partial tile is the same as
// the original loop nest.
Block *elseBlock = ifOp.getElseBlock();
elseBlock->getOperations().splice(
std::prev(elseBlock->end()),
firstLoop.getOperation()->getBlock()->getOperations(),
Block::iterator(firstLoop));
if (fullTileNest)
*fullTileNest = std::move(fullTileLoops);
return success();
}